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The cross sections for transitions between the sublevels of 3 P triplets in collisions between atoms of a 
number of elements and their ions are calculated. The relative velocities of the colliding particles are 
assumed to be small. It is shown that the cross sections for the transitions between sublevels with total 
electron angular momemta J = I and J = 2, as well as J = 0 and J = 2, are small (of the order of atomic 
dimensions). The cross sections for transitions between sublevels with J = 0 and J = 1 depend significantly 
on the signs of the charge of the incident ion and of the atomic electric quadrupole moment. For identical 
signs the cross sections are large in the case of a normal triplet and increase in proportion to the square 
root of the relative velocity of the colliding particles; for opposite signs the cross sections are of the order 
of the atomic dimensions. The reverse is true of the inverted triplet. 

PACS numbers: 34.50.Hc 

1. INTRODUCTION 

1. For a number of problems in atomic phYSics, it 
is of great interest to consider transitions between sub­
levels of atomic multiplets in collisions of atoms with 
other atoms or ions. In[ll we conSidered transitions 
between sublevels of the multiplets 2p and 3p in colli­
sions between atoms and ions, occurring as a result of 
charge-quadrupole interaction. The relative velocities 
of the colliding particles were assumed to be large 
enough to neglect the energy splitting between the con­
sidered sublevels. Interest attaches also to the oppo­
site, adiabatic case, when the frequencies of these 
transitions are large in comparison with the reciprocal 
characteristic colliSion time. It was shown in[ll that 
the transition cross sections are exponentially small 
for the 2p doublets but not for the 3p triplets. These 
latter cross sections are determined in the present pa­
per. 

The following two assumptions are made: 

1) The motion of the ion nucleus relative to the atom 
nucleus is classical and along a straight line. The first 
of these conditions reduces to the inequality (see[l]) 

X=1IMv<po (1) 

(~ is the de Broglie wavelength connected with the rela­
ti ve motion of the nuclei of the atom and of the ion, M 
is the reduced mass of the ion and the atom, v is their 
relative velocity, and Po is the characteristic impact 
distance), while the second condition reduces to the in­
equality (see[11) 

po'~IZQIIMv' 

(Z is the charge multiplicity of the ion and Q is the 
quadrupole moment of the atom). 

(2) 

2) The frequencies of the conSidered transitions are 
high in comparison with the characteristic collision 
time. This condition is the opposite of that assumed 
in Ul, and therefore reduces to an inequality which is 
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the opposite to that given there 

Po~vlIIlEI (3) 

(I15E I is the energy spacing between the considered sub­
levels). We use the atomic system of units Ii = me = e 
= 1 throughout. 

The characteristic impact distance Po can be esti-
. mated in the following manner: the obtained cross sec­
tion is of the order of 1T( I QZ I V)1/2/I15EI (see (13». 
Since (J - 1TP~, it follows that 

p,- (I QZ I vi (6E) ') ';'. 

Taking this condition into account, the requirements 
(1)-(3) yield respectively 

v~«6E)'/IQzIM')'''. (4) 

1'» (I QZ I (6E)'1 AI') "", (5) 

v<[ IQzl (6En'. (6) 

It must be assumed that I QI -1 and I ZI = 1. Com­
paring the conditio~s (4) and (5) we find that (5) is 
stronger than (4) (the values of 15E for the different ele­
ments were taken from [21). In order for the inequali­
ties (5) and (6) to be simultaneously satisfied it is nec­
essary to satisfy the condition 

(QZ), 16E IJ!'~ 1. 

This inequality is satisfied for the resonant 3p term 
of helium, the metastable term of beryllium, 1) and the 
ground state terms of carbon and oxygen. The values 
of 15E and the resultant maxima and minima vmin and 
Vrnu of the relative velocities of the atoms and ions and 
respectively T min and T mu of the temperatures are 
listed for the indicated elements in Table I. It is as­
sumed that the atoms collide with their own ions. 

The polarization interaction can be disregarded in 
our case. To be able to neglect this interaction, the 
inequality 
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TABLE I. 

Element Term 6E. cm-1 1 "min,lo-'1 T min' K 1 "rna>' 10~, T max' K 
at. un. at. un. 

Jle 12P 'P' (res) -O.3~Jj 

I 
4 

I 
2 

I 
I 10 

Bt' 2p ,po (met) +1.3 5 7 2 1.;0 
C 2p' 'P (god) +14.5 JO 53 10 4·10' 
0 2p' 'P (god) -75.3 40 900 30 5·10' 

Po~lI~E 

must be satisfied (<1E is the energy difference between 
the given level and the nearest level to which the elec­
tric dipole transition is allowed. Taking the estimate 
given above for Po into account, this requirement yields 

. L'~(6E)'/IQzl (~E)'. 

This condition is somewhat weaker than (5), but is of 
the same order (the values of <1E for different elements 
were also taken from[2]). 

2. CALCULATION OF CROSS SECTIONS 

1. We introduce two coordinate systems: immobile 
O:r;y. and rotating 0t~c' They have a common origin that 
coincides with the nucleus of the atom. The x axis lies 
in the scattering plane and is perpendicular to the ve­
locity vector v of the incident ion, the y axis is di­
rected along this vector, and the z axis is perpendicular 
to the scattering plane. The ~ axis is directed along 
the radius vector R of the nucleus of the incident ion, 
the 1) axis also lies in the scattering plane, and the l: 
axis coincides with the z axis. 

The states of the atom with definite projection of the 
total electron angular momentum on the ~ axis are ex­
pressed. in the form 

¢±,=Y .. o'Z'. 0" 

¢~': =a;" Y,.±,x"o+b~" Y",x.,o' (i= 1. 2). (7) 

>poll) =c(j)YI.+,z.,_,+dwY"oz,.,+e(J) YI.-,ZI.+' (j=0. 1, 2). 

Here Yl,M is the angular wave function of the state with 
orbital quantum number L = 1 and magnetic quantum 
number M = -1, 0, + 1; Xl, St is the spin state with spin 
S= 1 and its projection on the ~ axis St = -1, 0, + 1 (all 
the angular momenta are projected on the ~ axis). The 
real coefficients a~i), b~l), c(J), d!il, and e(i> should 
satisfy the orthonormalization condition. 

2. The states (7) are acted upon by the operator 
H(t): 

!f(t) =!fo+V(t), 

where Ho is the spin-orbit interaction operator: 

flo=6E is, 

(8) 

(9) 

and V(t) is the carriage-quadrupole interaction operator 

V(t) =$ (3£,'-2). (10) 
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Here S, i, and it are respectively the operators of the 
total spin of the atom, its total orbital angular momen­
tum, and of the projection of the latter on the ~ axis, 
with S= 1, L= 1 and Lt =M=-1, 0, + 1; 

$=QZI2R'. 

(For the derivation of the form of the operator V(t) 
see[1]. ) 

The terms 8~J/ of the states (7) are obtained by solv­
ing the secular equations that result from the action of 
the operator H(t). As a result we get 

8,=6E(Hy), 8,"'=6E {-'/,y+(-1)' [1+('!,y),J'''} (i=I,2); 
(11) 

8t'=IiE(y-1), 8 0,u'='/,IiE [-I-y-3(-I)i(1-'I, y+y2)'!'] (j=0,1). 

Here 8~J/ denotes the energy of the state with projec­
tion Jt-Of the total electron angular momentum J on the 
~ axis, and furthermore such that at ~ = 0 we have J = i; 

y=$/IiE. 

The signs of J t are not marked, since the values of the 
energy 8~1/ do not depend on them (it is known that the 
electric field does not lift completely the degeneracy 
with respect to the projection of the angular momentum 
on the direction of this field). 

Plots of If:~I/ f6E as functions of yare shown in Fig. 
1. The energies are reckoned. from the values El + 6E 
= E2 - 6E, where E" is the energy of the sublevel with 
total electronic angular momentum J, and 6E=El -Eo• 

The equation for If:~l) separates from the equation for 
8a2J ). The reason is that the state 1/J~l) = 11,0) while the 
states 1/Ja2Jl are superpositions of the states 10,0) and 
I 2, 0) (I J, J t ) is a state with total electron angular mo­
mentum J and its projection J t on the ~ axis). No su­
perpOSitions of the states 11,0) on one hand, and 10,0) 

FIG. 1. The terms if}O 1 liE as functions of y: 1) if 21 oR = 1 + 'II. 
2) if?)1 liE, 3) if~2)1 liE, 4) if~1)1 liE =y -I, 5) if?)1 liE, 
6) if ~O) 1 6E. The dashed lines show the tangents to the hyper­
bolas at y = 0 and the asymptotes at if 1 liE = Y and if 1 liE,;" - 2y. 
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and 12,0) on the other, take place, however, because 
they are of different symmetry. Indeed, reflection in 
the scattering plane does not change the states 10,0) 
and 12,0), but the state 11,0) reverses sign; the opera­
tor iHt), on the other hand, is invariant to such an op­
eration (this is seen from (8)-(10». 

From formulas (11) and from the figure we can draw 
the following conclusions: 

a) No terms cross, with the exception of the obvious 
crossing point at ~= O. 

b) The terms o~2) and of2) converge asymptotically as 
y __ oo, but this of no interest, since they belong to one 
and the same sublevel with total electron angular mo­
mentum J = 2, as do also the terms o~O) and o~1); as y 
_+00, the terms o~1) and (!f~2) as well as (!f~O) and l!fP) 

converge asymptotically. 

It is easy to show that transitions between the states 
l/J~O) and l/J~1), on the one hand, and l/J~1) and l/J~2) on the 
other, do not exist at all. Indeed, assume that prior to 
the start of the collision the atom is in the state I/!~O) 
= 10,0). This state, as already noted, does not change 
upon reflection in the scattered plane. Since the colli­
sion process is symmetrical with respect to this plane, 
it follows that after its completion the atom should be in 
a state that is invariant relative to such a reflection. 
On the other hand, this operation reverses the sign of 
the state l/J~1) = 11,0). Consequently, such a transition 
is impossible. The proof of the impossibility of the in­
verse transitions, and also transitions between the 
states l/J~1) and l/J~2), is analogous. 

Thus, the only nonzero and exponentially not small 
transitions are those between the states I/!~O) and I/!~~), 
i. e., between sublevels with total angular momentum 
J=OandJ=l. 

3. The equations from which the sought transitions 
are calculated are the usual differential equations for 
the coefficients of the expansion of the wave function of 
an atom in the eigenstates of a Hamiltonian iHt) with 
explicit time dependence. For a derivation of such 
equations see, for example, Smirnov's book. [3J In our 
case the Hamiltonian H (t) is determined by formulas 
(8)-(10), its eigenstates are l/J~li (7), and the coeffi­
cients of expanSion of the atom wave function in terms 
of these states are designated by c~~(t). 

Since the sought tranSitions occur at y - + 00, it is 
necessary to write down the equations also in the 
asymptotic form as y - + 00. The equations describing 
transitions between the states l/J~O) and l/J~P as y _ + 00 
take the form 

C~I: +c~~ exp [-iPF (-1:) ] 

Y2 

de •• __ c, exp [iPF(T) I 
1+T' dT 12 

where 
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,;=vt/p, p= (oE)'p"/6\QZ\ v, 
, 

F( T) =4 J [1 + (,;') ']'" dT' =T ('/,+,;') (1 +T') '4'/,ln[,;+ (1 +T') "']. 
o 

It is convenient to make the change of variables 

For the functions u, v, and w we obtain the system of 
equations 

du v 
-=-, -exp [-iPF(,;)], 
dT 1,T' 
dv U 
-= ---, exp [tl'F(,;)], 
dT 1+<" 

(12) 

dw/dT=O. 

In general form (for arbitrary p), the system (12) 
cannot be solved analytically. Certain properties of its 
solution, however, are obvious: 

\u\'+\v\'=1; 

if U(T), V(T) is a solution, then V(-T), u(- T) and 
- V*(T), U*(T) are also solutions. Using these proper­
ties, we easily find that on going from T = - 00 to T 

= + 00 the solutions change in the following manner: 

where j, g, and cp are real functions of the parameter 
P, withj2+g2=1. 

The system (12) can be solved analytically at P« 1 
by successive approximations, and at P» 1 by the con­
tour 'integration method. For these cases, solutions 
change in the following manner: at P« 1 

(1) ( -Hi(2nP) 'I. ) ° -+ -(HyZ)'f·f('/,)P'J. , 

( 0) -+ (H12)'I'r{'/')P"') 
1 -1-i(2,.,P) , 

and at P» 1 

4. Since we are conSidering a transition between the 
states l/J~O)and l/J~~), and no other states take part in this 
tranSition, the state of the atom can be represented in 
the form of a vector cp made up of the coefficients c~P, 
C~l), and c~O). It is necessary to change over from this 
vector to a vector >¥ made up of the functions u, v, w, 
and c~1). This transition is effected by a unitary ma­
trix K: 

If we choose the vectors cp and >¥ in the form 
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then the matrix K takes the form 

( 0 0 0 1) 
_ 1/Y2 0 1/Y2 0 

K - 1/Y2 0 - 1/V~ 0 . 

, 0 1 0 0 

As'the result of the collision, the vector llf in' which de­
scribes the initial state of the atom, goes over into the 
vector llf ouO which describes its final state. This tran­
sition is described by the Wlitary matrix S: 

The matrix S is expressed simply in terms of the func­
tions t, g, and qJ of the parameter P: 

(
Ie;' gOO) 

= -g le-;' 0 0 
S 0 0 1 0 . 

,0 0 0 1 

If we express the states of the atom in terms of the vec­
tor 4>, then these transitions will be effected by the ma­
trix S': 

We consider here a transition from a state with angu­
lar momentum J = ° prior to the collision into a state 
with total electron angular momentum J = 1 after the 
collision, and the inverse transition, the initial state 
with J = 1 being assumed to be completely unpolarized. 
Summing over the final states or averaging over the 
initial states, we easily obtain 

W'~I= ~ 18(0,0; 1,l,) I'=g', 
J, 

. where S'(J, J t ; J', J;) is the S'-matrix element describ­
ing the tranSition from the state IJ, J t ) to the state 
IJ'~ J;). 

The corresponding cross sections are 

Jw , n (6IQzlv)" J~ dP 2 

cr'~1=2:1 pdp [g(P) j. = 2 16EI yp [g(P)] , 
, 

.. - - - .... - .. -
The function g(p) was obtained by solving equations (6) 
with a computer. The succeeding numerical integra­
tion yields the following values of the cross sections (in 
ordinary units): 

(13) 
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3. DISCUSSION OF RESULTS 

For the ballistics case we have previously obtained 
the general form of the cross sections a". ",I QeZI /nv, 
where a". '" is a certain number of the order of unity 
lUld depends on which of the transitions is being consid­
ered. The Sign of the quadrupole moment and of the ion 
is of no Significance. In the present adiabatic case, 
however, the situation is entirely different. In fact, 
for the doublets 2 P the cross sections are exponentially 
small (more accurately speaking, they are of the order 
of wag, where ag is the atom unit of length). The same 
holds also for the cross sections 0"0"'2 and 0"1"'2. 

However, only the cross sections 0"0"'1 are large in 
comparison with ago Since the transitions occur only 
at y > 0, i. e., at QeZ/6E > 0, the sign of QeZ is impor­
tant. In the case of the normal triplet 3p they take 
place only at QeZ > 0, and in the case of the inverted 
triplet_ at QeZ < 0. 

At nv - [I QeZI (6E)2] 1/3 we have a case intermediate 
between adiabatic and ballistic. For the cross sections 
(TO"'l and at QeZ/6E > 0, both methods yield the same 
order of magnitude: 

Since the cross section depends on the velocity like 
1)1/2 in the adiabatic case and like v· 1 in the ballistic 
case, this expression gives the maximum order of mag­
nitude of the cross section. For beryllium, for ex­
ample, 

We see that these cross sections are very large. 
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Professox: V. M. Galitskit for interest in the work and 
u.seful discussions. He thanks also Professors O. B. 
Firsov for discussion of the work and P. E. Nemirov­
skit and N. M. Polievktov-Nikoladze for help with the 
calculations. 

\)This term is deSignated as resonant inltl, but this is a mis­
take. 
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