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The intensity fluctuation spectrum of spontaneous radiation is calculated quantum-mechanically. The wave 
properties of the radiation as well as the effect of the excitation fluctuations are taken into account. The 
result agrees with the published experimental data on the noise spectrum of spontaneous radiation, which 
cannot be explained adequately by the semiclassical method. 

PACS numbers: 03.65.-w 

1. INTRODUCTION 

To describe certain spontaneous-emission character
istics, such as the average intensity and the average 
spectrum of the emission, the semiclassical method is 
quite adequate. In the semiclassical description of 
spontaneous emission, the radiative transition in the 
atom is set in correspondence with a classical charged 
oscillator with corresponding frequency and damping 
(see, e. g., (1]). The spontaneous emission is then re
garded as emission of a damped electromagnetic wave 
described within the framework of classical electrody
namics. 

Recently reported results on the fluctuation and cor
relation characteristics of spontaneous emission, how
ever, cannot be interpreted on the basis of semiclassi
cal concepts. [2.3] Aleksandrov et aI. [2] have measured 
the fluctuation intensity spectrum of spontaneous emis
sion of gas atoms, and the result of the experiment was 
not compatible with the semiclassical calculation per
formed in the same paper. The authors of[2] have suc
ceeded in explaining the experimental data by using a 
probability approach based on quantum concepts con
cerning emission and absorption of an electromagnetic 
field. In this approach, the exponential decay of the 
atomic excitation was interpreted as a time distribution 
of the probability of observing a photon. 

We present here a consistent quantum-mechanical 
description of an experiment on the measurement of the 
spontaneous-emission fluctuation spectrum, wherein 
the conclusion of Aleksandrov et aI., [2] namely that the 
semiclassical method does not agree in principle with 
quantum theory in this case, is confirmed. In our analy
sis we take into account the wave properties of the radi
ation, something that cannot be done in the probability 
approach. 

We note that a problem that is similar from the fun
damental point of view is considered by Fano. [4] He 
investigated quantum-mechanically the interference of 
the radiation of two atoms excited at the initial instant, 
an interference that manifests itself in the form of 
space-time correlations when this radiation is absorbed 
by two atoms-"counters." In this paper we use the 
Konstantinov and Perel' diagram method of nonstationary 
perturbation theory for the density matrix. [5.6] This 
makes the analysis easy to visualize and facilitates the 
comparison with the semiclassical method. 
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2. REGISTRATION OF RADIATION WITH A 
PHOTODETECTOR 

We consider a system of atoms interacting with a 
quantized electromagnetic field and subjected to a cer
tain external action responsible for the excitation of the 
atoms. The energy operator H of the system is taken 
in the form 

H~Ho+V+W, V = - ~ d,E(r.), (1) 
j 

E(l') ~E~ (r) +E- (r), 

E-() '\1. (2:tk)'h + _,k< 
r ~ ,-,' U e"u" e , (2) .. 

where Ho is the energy operator of the free atoms and 
of the quantized electromagnetic field, V is the operator 
of the interaction of the atoms with the quantized elec
tromagnetic field, and W is the operator of the pertur
bation that leads to excitation of the atoms. Here d; is 
the dipole-moment operator of the i-th atom, a;A is the 
operator for the production of a photon with momentum 
k and polarization A, ekA is the unit polarization vector, 
and L3 is the quantization volume. E+(r) and E-(r) de
note respectively the positive-frequency and negative
frequency contributions to the intensity operator of the 
quantized electromagnetic field. 

We assume a Doppler distribution in frequency with 
mean frequency Wo and with mean squared deviation wD • 

For the sake of argument we assume that the upper of 
the two working levels has a total angular momentum 1 
and a radiative width y, while the lower level represents 
the ground or metastable state with total angular mo
mentum 1'. 

The registration of the radiation by the photodetector 
is described in quantum theory in the following manner. 
The radiation causes the atoms of the photodetector to 
go from the ground state to an excited state belonging 
to the continuous spectrum or else having a larger width 
than the frequency spectrum of the incident radiation 
(the Glauber photon-model[7]). We denote by N(t, s) the 
operator of the number of atoms of the photodetector 
excited by the light by the instant of time t on a unit area 
with coordinate s (in the Heisenberg representation). 
The density of the photocurrent per unit surface is de
termined by the operator i(t, s), while the total photo
current by the operator i(t): 
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iJ 
i(t,s)=7il N (t,s), i(t)= f dsi(t,s), (3) 

where ds is the photodetector surface element. The 
radiation-intensity fluctuation spectrum (i 2 )w is given 
in the stationary case by the Fourier transform with 
respect to the difference between the times, of the cor
relator «t[i(fl )i(ta)].», (where [. •• J. is the anticommuta
tor. We shall henceforth use (. •• ) to denote quantum
mechanical averaging. If the excitation intensity of the 
atoms in the radiation source is specified as a random, 
function of the time, it is necessary to average over the 
corresponding random process, an operation designated 
by a horizontal bar in the absence of quantum-mechani
cal averaging. Simultaneous averagings (both quantum
mechanical and over the random function of the time) 
will be designated for brevity by the double angle bracket 
« ... ». 

For isotropic photodetector atoms, the photocurrent 
density and its correlator are represented, in the lowest 
order in the interaction between the quantized electro
magnetic field with the counter, in terms of the intensity 
operators in the following manner: 

«i(t, s»)=q(23tw,)-' I: «E.-(t, s)E. +(t, s»), (4) 

«'/ ,[ i (t" s.) i (t" 8,) 1 +»=6 (8.-.Y,) 6 (t.-t,) «i (t" s.)>> 

+q'(23tw,) -, I: {9(t,-t.) «E. - (t" 8.)E~-(t" 8,)E~ +(t" 8,)E. +[t" 8.)>> 

where q is the photodetector quantum yield, and 6( t) is 
the step function (it differs from zero and is equal to 
unity at t~ 0). 

The term of (5) quadratic in the intensity describes 
the shot noise of the photocurrent, and the fourth-de
gree terms determine the radiation-intensity fluctua
tions proper. Formulas (4) and (5) are similar to those 
'obtained by Glauber (see, e. g., (7l) for the registration 
of free fields. The difference is that (4) and (5) contain 
intensity operators that are developed in accordance 
with the Heisenberg representation with Hamiltonian (1). 

3. DIAGRAM REPRESENTATION OF THE 
OBSERVABLES 

We represent in explicit form the correlator that de
termines at t2 > t1 the fluctuation intensities of the spon
taneous emission 

I: <E. - (t" s,)E~- (t" s,)E, + (t" 8,)E. + (t.s,) > 
11,11=%",11,' 

I: Sp{E~+ (s,) U (t,-t,)E. + (s,) u(t.)p(O) U+ (t,)E. - (s.) 

x U+ (t,-t.) E, - (8,)}. (6) 

Here U(t) is the evolution operator and p(O) is the initial 
density matrix corresponding to the unexcited state of 
the radiating atoms and the vacuum state of the elec
tromagnetic field. We expand the evolution operator in 
the lowest orders in the perturbation V and W and select 
the terms that give a nonzero contribution to (6). 
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The graphic representation of the mean value of (6) is 

a_xm~ bDm, 1',--
t. t. t,s, tzsz 

m'p' 
b~==~ a-xm~'P 

(7) 
The vertices in (7) are set in correspondence with the 
interaction-representation matrix elements of the 
operators V, W, and E~. The circuit direction marked 
by the arrows (starting with the point ta on the lower 
line) corresponds to reading the expression under the 
spur Sign in (6) from right to left. The matrix elements 
of the operators W, V, and the intensity E~ are marked 
by a cross, a dot, and a circle, respectively. The 
wavy line corresponds to the emitted photons. The 
atoms a and b of the radiating gas are represented by 
straight lines. The thick atomic line on the segment 
(t', t") corresponds to the factor exp(-ty(t" - f'», 
which describes the radiative damping of the upper level 
of the atom. 

The aggregate of the lines going to the right in the 
first diagram of (7) describes the amplitude of a process 
in which the atoms a and b are excited into states with 
angular momentum projections m and m', and after 
radiative decay the photon emitted by the atoms a in the 
transition m - jJ. excites the atom of the counter at the 
point Sl and the instant tl • The photon emitted by the 
atom b in the transition m' - jJ.' excites a counter atom 
at the point S2 at the instant t2• The aggregate of the 
lines going to the left in the same diagram describes 
the complex-conjugate amplitude. 

If the perturbation W that excites the atoms has a 
frequency spectrum that is broad in comparison with y 
and W D, then the excitation can be described in the bal
ance approximation. The moments of the excitation of 
the atoms on the upper and lower lines in (7) are then 
regarded as coinciding (the vertical-tie approximation). 
A vertical tie is set in correspondence with an excitation 
intensity M(t) that coincides with the Poisson-averaged 
number of atoms excited in the volume per unit time. 
The intensity of the excitation can be a random function 
of the time. 

We integrate in the diagrams integration over the in
termediate times, average over the frequencies, coordi
nates, and angular-momentum projections m and m' 
over the atoms a and b (henceforth designated (.. ')w.r), 
and sum over the final angular-momentum projections 
jJ. and jJ.', over the momenta, and over the polarizations 
of the photons. 

Let us separate in the quantum expressions a function 
analogous to the radiation wave of a classical damped 
oscillator. To this end, we consider a fragment of the 
diagram in the form 

m 

(8) 
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tll1 = tl - tao A diagram with oppositely directed time 
corresponds to the complex-conjugate vector. 

It follows from (8) that 

t, ? k 
fff,m (t,., r ,.) = 1: I dt' e .. (e ... d"m) ~2, 

u. tIJ 

Xi exp{ ik (r,-r.) - ( + + iW.) (t' -t.) -ik (t,-t') }. (9) 

After changing over in (9) to integration in momentum 
space, it is convenient to use the residue theorem, ex
tending the integration with respect to k over the entire 
real axis. 1> As a result we obtain 

xexp{ ( -iw. - ~ ) (t,.-r,.) }e (t,.-r,,) , (10) 

It follows therefore that if"m(t1a , r 1a) coincides in form 
with the dipole-radiation wave in classical electrody
namics (see[S]). 

If the experimental conditions are such that: a) the 
linear dimension of the radiating volume is small in 
comparison with the distance R to the spherical cathode 
of the counter, b) all the distances are much less than 
the coherence length Wi}, c) the damping I' is much 
smaller than the carrier frequency Wa , then it is con
venient to choose the following approximation for the 
wave (10) on the photodetector surface: 

fff""(t" , "1.) =wo'R-'{d,m 

-n,. (d,mll,J }exp{-iw,tl.+iworl.-'j,1t,,}e (t,,), (11 ) 

4. INTENSITY·FLUCTUATION SPECTRUM 

The first diagram of (7) determines the spontaneous
emission intensity fluctuations connected with the ex
citation fluctuations M(t). Using (11), we obtain for the 
corresponding contribution to the photocurrent correla
tor 

II 1 .. ~ (I) q" (2rrwo)-" 
~:2[!(tl)!(t,)l+11 = (21+1)" Ids,ds, 

h ra 

XIdl. Idto.1J(I,JJJ(ld C~)g'''·(I, .. r,,)I") (1: lfff"m'(t",r,,)I'). 
In',,,,' 

(12) 

The sum over the projections of the angular momen
tum in the usual notation (see[9]) is given by 

1: Id,m-n,.(d""n,.) I' = ~ I (IlIdlll') I', (13) 
m,f.I. 

and we obtain for the contribution to the photocurrent 
correlator the final form 

(14) 

We have taken here into account the fact that 

(15) 
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S denotes the surface area of the photodector and L(t) 
denotes the atom excitation intensity smoothed out by 
the law governing the decay of the atomic excitation: 

1. 

L(t,)= I dt"M(t.hexp(-1t,.), (16) 

The smoothing means that the fluctuations of the photo
current follow the slow (in the scale of 1'-1) fluctuations 
of the excitation and do not respond to the fast excita
tions, a fact on which the method proposed in [2] for 
measuring the level width is based. 

The second diagram in (7) (with "nondiagonal" arrange
ment of the photon lines) describes the radiation wave 
noise produced when the intensities from the different 
radiators are added on the surface of the photodetector. 
The analytic expression for this contribution to the 
photocurrent correlator is 

II 1 ~ ,,) 
~ :2 [i(t,)i(t,) 1+ II 

(17) 

q' (2rrwo) -. I I" I = ds, ds, dt. dt.M (t,) M (t.) . 
(21+1)' _~_~ 

X 1: «fff" m' (tlb' rib) fff,m (t,., r,.) ) (fff,m (t,", r,,) fff" m' (t", r,,») .," 

where the averaging over the frequencies and coordinates 
of the radiating atoms is carried out in the following 
manner: 

(exp {i(w.-w.) (t,-t,)} >. ~ exp {- (t,-t,)'WD'}, 

J ds , ds, (exp {iwo (r,,-r,,+r,.-r,.)} >.=8a. 

(18) 

(19) 

The last equation is the usual definition of the co
herence area (J on the photodetector surface. If the 
length of the radiating volume is much larger than the 
wave length of the light, then (J« S. The contribution 
to the photocurrent correlator from the counter atoms 
that are separated by a much larger distance than the 
linear dimension of the coherence area is then equal to 
zero. Using this Circumstance, we sum over the pro
jections of the angular momentum at coinciding direc
tions from the radiating atoms to the counter atoms, 
n 1a = n2a = n 1b = n2b = n: 

1: I (d,'m·- Il (d,'m·n» (d,m-n(d,mn » 1'= ~ I (IlIdlll') I'. 
·""m',fl.,},' 

(20) 

Neglecting the damping of the atomic excitation over 
the small time interval (t2 - t1)- Wj}, we obtain 

(( ! [i(t,)i(t,) 1+ ~ ") 

q'8a 1 -,- « )' ') =----L-(t)exp - t,-i, WD . 
(4rrR') , 2 

(21) 

To calculate the contribution of the shot noise it suf
fices to note that the first diagram of (7) breaks up into 
the product of two diagrams of lower order, each of 
which determines the average photocurrent intensity. 

The foregoing quantum-mechanical calculation leads 
to the following form of the spontaneous-emission inten
sity fluctuation spectrum: 
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Q=_S_ 
/mR' ' 

P=iJQ, 

(22) 

where (W)", is the excitation-intensity noise spectrum, 
(} is the angle from which the radiation is gathered, F
is the average flux of the quanta through the photodetec
tor surface, and (; is the spontaneous-emission degen
eracy parameter. 

The spectrum (22) contains the following: a) the fre
quency-independent contribution of the shot noise; b) 
the excitation-intensity fluctuation contribution which 
makes it possible to measure the width I' of th~ atomic 
level; c) the broad (- wD) spectral contour of the radia
tion wave noise. A probability calculation of the inten
sity-fluctuation spectrum (see[2J) is less general, in the 
sense that no account is taken there of a fraction of the 
elementary processes (in the language of our paper, 
the "interference" second diagram in (7) is neglected). 
This leads to a loss of the wave properties of the radia
tion. 

Of fundamental interest is the discrepancy between 
the noise spectrum (22) and the semiclassical-theory 
result given inl:2l. For a comparison we must assume 
in (22) that the excitation intensity is constant, and omit 
the fact t which is a result of allowance for the wave 
character of the radiation field, and the contribution 
of the wave noise. The semi-classical result contains 
an excessive radiation noise that carries information 
on the width of the atomic level in the case of a rigorous
ly constant excitation intensity. In quantum theory 
there is no excess nOise, a fact confirmed by experi
ment with high accuracy. rZl 

The excess noise is apparently due to the fact in the 
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semiclassical theory the spontaneous-emission wave 
of the atom can participate in a number of successive 
absorption acts and lead to a correlation in the emission 
of the photoelectrons in times on the order of 1'-1. The 
quantum theory makes it possible to separate a relation 
similar to the atoms spontaneous-emission wave (see 
(7) and (8», but in the latter case the wave must be 
taken to mean the photon-registration probability am
plitude. If the corresponding event (absorption of a 
photon by the photodetector) is realized, then this am
plitude no longer contributes to the succeeding acts of 
radiation registration. 

In conclusion, the authors thank V. I. Perel' and 
E. D. Trifonov for useful discussions of the results. 

IIf the interaction is chosen in the form - d· E and not - p' E, 
then the single pole is located at k = w. - i"y /2, and there is no 
k=O pole. 
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