
(the suppression of the pionic channels requires that n 
»1, or, on account of what was said, M» mo). 

In conclusion we note that one of the simplest types 
of coherent states was considered here. It is essential 
that the modern approach to coherent states (cf. [12 ~ 
considerably widens the spectrum of theoretically con­
ceivable models of this type. 

The author is indebted to V. A. Karmanov for a val­
uable remark regarding the calculation of the probability 
of electromagnetic leptonic decays, as well as to A. E. 
Kudryavtsevand A. M. Perelomov for useful discus­
sions. 

I )Equation (1) differs from the corresponding expressions inl3,41. 
It corresponds to the operator used in!4l in the special case 
of real functions f(x). 
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Decay of bounded laser beams in nonlinear media 
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The stability of propagation of an intense laser beam in a medium with quadratic or cubic optical 
nonlinearities is investigated. The existence of a discrete spectrum and of a set of natural perturbation 
functions that correspond to the modes of the "waveguide" produced by the laser beam in the nonlinear 
medium is found. "Branch points" at which, in contrast to the usual reversal point, no ret1ection of 
electromagnetic waves take place, are found to play an important role in the formation of the "waveguide." 
Dispersion equations for the perturbation growth rates are derived for axisymmetric laser beams of 
arbitrary and smooth intensity profile. Some simple geometric rules for determining the maximal growth 
rates are formulated and their dependence on the azimuthal number characterizing the perturbation is 
found. A limiting transition to the case of an unbounded laser beam considered by Bespalov and Talanov 
{Pis'ma Zh. Eksp. Teor. Fiz. 3, 471 (1966) [JETP Lett. 3, 307 (1966)]J is analyzed and compared with the 
results by others. 

PACS numbers: 42.60.Nj, 42.65.Hw 

Intense laser beams propagating in nonlinear media 
can be unstable to various types of perturbations. 
Growth of the perturbations leads to decay of the initial 
beam. For media with cubic nonlinearity, this effect 
has been most thoroughly investigated as applied to the 
self-focusing phenomenon. As shown by Bespalov and 
Talanov, [11 an intense plane wave is unstable to definite 
perturbations of its profile, and this causes the plane 
wave to break up into individual filaments. 

Although the theory of Bespalov and Talanov explains 
the main features of the phenomenon and yields for the 
self-focusing length an estimate that agrees with ex­
periment, it does not take into account so important a 
factor as the limited dimensions of real laser beams. 
Attempts to analyze the stability of a bounded laser 
beam in a cubic medium were undertaken in several 
places, the best results being obtained by Lyakhov. [2] 

This procedure, however, is not sufficiently well 
founded, and some of his results contradict numerical 
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experiments [3] as well as the ideas that have developed 
by now. 

The fundamental difference between the bounded 
laser beam and an infinite plane wave is the following: 
In the case of an intense bounded beam, it becomes pos­
sible for perturbations that are bounded in the trans­
verse direction to propagate. Such perturbations cor­
respond to the discrete modes of the "waveguide" pro­
duced in the nonlinear medium by the laser beam. The 
waveguide can be regarded as homogeneous, since the 
distances of interest to us, which are of the order of 
the characteristic perturbation growth length, are 
usually much smaller in real laser beams than the self­
focusing length of the beam as a whole. For bounded 
beams it is precisely the discrete spectrum which cor­
responds to increasing perturbations. An analysis of 
the stability of intense and broad laser beams without 
allowance for the waveguide modes (see, e. g., [4]) is 
therefore only of limited use. 
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We report here the results of an investigation of the 
stability of propagation of an axially-symmetrical beam 
with an arbitrary smooth i.htensity profile. In Secs. 1 
and 2 we consider a medium with cubic optic nonlinear­
ity. An essentially simila.r treatment is presented in 
Sec. 3 for a quadratic medium, where the decay of the 
initial "pump wave" corresponds, in the given-field 
approximation, to parametric amplification of weak 
waves. [5] We use in the analysis essentially a proce­
dure based on a semiclassical (WKB) method, [6, 7] the 
use of which is justified by the slowness of the trans­
verse change in the intensity of the main beam. When 
determining the indicated discrete spectrum, besides 
the turning points that are characteristic of second­
order differential equations, an essential role is played 
by the "branch points" first introduced by Rukhadze, 
Savadchenko, and Triger[8] in investigations of the spec­
trum of small oscillations of an inhomogeneous plasma 
in an external magnetic fiE!ld. Some of the results ob­
tained on the basis .of this procedure for a cubic medium 
are given in [9]. 

1. RADIAL EQUATIONS AND THEIR WKB 
SOLUTION 

We start with a parabolic equation for the amplitude 
of the field E: 

2ikaElaz~j,,-E+k' (e'!€o)E lEI'. (1) 

where k=we~/2/C, w is the optical frequency, and the 
nonlinear refractive index of the cubic medium is writ­
ten in the form e=fo+e2IEI2, E2>0. 

We represent the field E in a cylindrical coordinate 
frame in the form of a sum of a smooth axially-sym­
metric solution (1) Eo(r, z) and a small perturbation 
E 1(r, cp, z) with strongly differing space scales rO»rl. 
Linearizing (1) with respect to E 1 , we obtain the linear 
homogeneous equation 

2ikaE/az~j,.LE,+k'(e,/eo) [21Eol 'E,+Eo'E,·]. (2) 

Assuming that the wave Eo is plane at z = 0, we can 
put for the distances z « Lc of interest to us, where Lc 
is the self-focusing length of the beam as a whole (see 
also (101), 

B(r) ~k'(e,/eo)Ao2(1'). 

Introducing the large parameter 

:lf~B;"ro-rol"" where Bo~ maxB(r), 

we arrive at the truncated equation (see Appendix, 
Sec. 1) 

aA, ij'A, 1 iiA, 1 a'A, , ) ( A') 
2ik-.-~-. -. +--.-+-:;--. -, TB(r A,+ , . 

rJ:. fir- r rjr 1..... fJq 

Separating the variables 
A,~1j:(r) exp {pzI2k+imq;}+X'(r) exp Wz/2k-imcp}. m~O, 1,2, ... , 
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(3) 

(4) 

(5) 

we obtain a system of radial equations 

¢" +r-'¢' -m'''-'¢-i~1j:+B¢+B'I. ~O, 

(6) 
X" +r-'x' -m'''-''I.+i~x+B¢+Bx~O. 

In the system (6), the quantity {3 (the real part of 
which determines the growth rate of the perturbations) 
plays the role of the eigenvalue, and 1/J and X are the 
eigenfunctions. If we expand in terms of these eigen­
functions the arbitrary initial perturbation E 1 (r, cp, 0), 
then the perturbation in any section z« Lc is deter­
mined with the aid of (5). If the unperturbed field is 
an infinite plane wave B = const, then the spectrum is 
continuous, 

(7) 

Here Z m is a Bessel function of order m, and in ac­
cordance with the result of Bespalov and Talanov U ] we 
have {32 = K 2 (2B _}{ 2), the maximum growth rate {3mu. = B 
corresponding to K 2 = B. 

In the case of a bounded beam, the continuous spec­
trum corresponds to perturbations that do not increase 
(relative to z), for which (3 is pure imaginary. Under 
definite conditions there exists also a discrete spec­
trum of the system (6) supplemented by the conditions 
that the equations be finite at r = 0 and that they de­
crease sufficiently rapidly as r - 00. The arbitrary ini­
tial perturbation E 1(r, cp, 0) can be expanded in terms 
of the functions of the discrete and continuous spectra. 
It is precisely the discrete spectrum which is of in­
terest, since it corresponds to perturbations that in­
crease with increasing z. 

We note that the system (6) is equivalent to the 
fourth-order equation 

y"'++y'3'+(2B- 2m~+1)y,,+(2~ + 2m~+1)y' 

( mi.-4m2 m2 ) 
+ ----2B-+~' y=O, 

r'l , r2 

y=i(¢-X), ¢+x=-~ (y" + ~ y' _ m' y) . 
~ r r' 

(8) 

In the approximation wherein the transverse intensity 
of the unperturbed beam B(r) varies slowly, we can 
obtain a system of two uncoupled second-order equa­
tions for the functions 

a" +r- 1u'+.1c/u=O, u" +r- 1v'+k!2v=O; 
kl. ,'~B-m2r-'± (B'_~2) 'I., C'±'=i~±(B'-~2) 'I,. 

(9) 

(10) 

Equations (9) are valid everywhere except in narrow 
vicinities Ir-rb I-BA/ 2 of the points at whichB(rb) 
= {3, which we [81 shall call branch points. In the vi­
cinities of the branch points, where I B - {31 «{3, we can 
separate waves that travel in opposite directions (along 
r). At m= 0 we obtain the equation 

y~A,exp (ip"'r) +A, exp (-W'r) , (11) 

Ap~gpexp{ 2;'" j {B-p)dr}, g."+T{B-P)gp=O, p=1,2. 
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Let us investigate the character of the solutions in 
the vicinity O<r<rb' where rb is the branch point. A 
good approximation in this region is the solutions of 
(9). Equations of this type are investigated in the theory 
of elastic atomic collisions. [11] The most exact ap­
proximation was obtained by Rosen and Yennie U2 ] and 
is given by 

(12) 

where J", is a Bessel function of order m, and Q(:)(r) 
is determined from the equations 

m r m2 1/2 

[Q,'z)- m2 1',"-marccos-Q = S [B-_---:;-±(B'-~')"'] dr, 
(±) 1 

" (13) 
±[ , Q' p 

[m'-Q' l"'-mln m m - (~) 
(±) Q(±) J [:: -B+(B'-~'l '1'" dr, Q(±)<m, 

" 

rt is the turning point closest to zero. In this case, in 
contrast to the characteristic problems of the theory of 
elastic cOllisions, this approximation is valid for all 
m, including m = O. 

We shall need subsequently the asymptotic forms of 
the functions u and v far beyond the first turning point. 
In this case Q(:)>> m and it follows from (12) and (13) 
that 

(:) - r-'1 B - :: ±(B2-p'lr'sin : + J [B- ~'±(B'-p'l"J'dr} 
r, 

(14) 
The asymptotic form (14) is valid up to the vicinities 

of the next turning point of branch point. Far from 
the turning and branch points, as seen from (9), there 
are four solutions containing exponentials of the type 
(see, e. g., [13]) 

eXP[±iSkpdr], p=L2, 

In accordance with (14), we have taken into account 
here a distingiushing feature of the use of the WKB 
method for a radial equation. 1) As r- 00 we have B-O 
and the asymptotic form of these solutions is 

exp [(±1±i) (~/2)"rl, (15) 

The problem of the bound states corresponds to posi­
tive eigenvalues {3 > O. To obtain the discrete spec­
trum it is necessary to choose from among the four 
solutions (15) the two decreasing ones. 

2. DISCRETE SPECTRUM AND PERTURBATION 
GROWTH RATES 

The results of the preceding section enable us to de­
termine the eigenvalues (3 and the corresponding growth 
rates of the perturbations for arbitrary sufficiently 
smooth intensity profiles. The discrete-spectrum func­
tions are obtained by joining together the solutions (14) 
and the WKB solutions with allowance for the condition 
that they decrease as r - 00. To this end it is necessary 
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FIG. 1. Arrangement of the turning points and branch pOints 
for different azimuthal numbers and different laser-beam pro­
files: a) m =0, dispersion equation (19); b) Eq. (23); c) Eq. 
(25); d) curve 1-plot of m 2/r2 at small m, Eq. (29); curve 2-
large m. 

to examine in greater detail the vicinities of the turning 
points and the branch points. For the ordinary turning 
points at which kp= 0, there are the well known Jeffreys 
formulas [15] connecting the asymptotic forms of the 
functions on the left and on the right of the turning points 
(see, e. g., [6]). USing (11), we can show that the 
Jeffreys coupling formulas as valid for branch points. 

We note immediately the following distinguishing 
feature of bounded laser beams. First, the eigen­
values {3 cannot exceed a maximum value {3mu < Bo. In­
deed, in the opposite case it would follow from (14) that 
the solutions are not bounded as r - 00. Further, in 
contrast to the case of an unperturbed beam in the form 
of an infinite plane wave, when the growth increment 
{3 does not depend on m, this dependence is essential 
for a bounded beam. In addition, {3 depends on the 
transverse intensity profile of the unperturbed beam. 

We consider a typical case of laser beams with bell­
shaped intensity profile (Fig. 1(a)), when Bo=B(O). At 
m = 0 there are no real turning points and the only cause 
of the formation bound states is the presence of branch 
points. Investigating the behavior of the functions k/>(10) 
as r- oo, we can verify that the decreasing solutions 
take the form (the signs are in agreement) 

(16) 

In the vicinity of the branch point rb, at x=r-rb>O, 
expression (16) takes the form of a decreasing exponen­
tial (B' < 0): 

(17) 

Using Jeffreys coupling formulas we obtain from (17) 
at x<O 
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exp (±i~"'X) sin ('/,l'JB'J/2JxJ'4t/.n). (18) 

Matching this to the solution (14), we obtain an equation 
for the eigenvalue 13: 

't 

S {[B+ (B'-~')"'l"'-[B- (B'-~')"']"'}dr = ; + nn, n=O, 1, 2, .... . 
(19) 

The number of discrete eigenvalues can be estimated 
by putting in (19) (3 = 0 and rb = O. For aGaussian beam 
B=Boexp(-r2/r~) we have then 

Y2S~ 'I 1 ( Boro' ) 'I. 1 
nmo.=- B'(r)dr--= -- --. 

n 0 2 , n 2 
(20) 

Greatest interest attaches 1:0 the maximum values of (3 
corresponding to the fastest-growing perturbations. 
These perturbations are concentrated in the region of 
maximum intenSity, that is, in the vicinity of r=O. 
We can then put B(r) = Bo(l - r2 /r~), Bo - {3« Bo. Equa­
tion (19) yields then 

~/Bo=1-1'2M-t (1 +2n). (21) 

The rapidly-growing perturbations propagate in the 
central region of the band O<r<rb, inside which they 
are modulated at a period rl> where 

(22) 

Thus, we have succeeded in obtaining the bound 
states, despite the absence of turning points. We re­
turn now to the determination of the dependence of (3 

on m. From (10), as well as from Figs. 1(b) and l(c), 
it is seen that at m> 0 but somewhat smaller than a 
certain number m1 determined from the condition that 
the 2B(r) and m 2/r2 curves be tangent, there exist (3 
for which equations (9) have real turning pOints. We 
consider first the case when each equation has one 
turning point, r~+) and r~-) (Fig. 1(b». In analogy with 
the case m= 0, we can obtai.n the following equation for 
the eigenvalues: 

(23) 

This case does not differ in principle from the case 
m = 0, but yields the dependence of I3max on m. The 
geometrical determination of this dependence with 
allowance for M» 1 reduces to finding the intersection 
point of the B(r) and m2/r2 curves (Fig. l(b». 

We turn now to the second possibility, when the 
equation in (9) for the function u has two real turning 
points (Figs. l(c». In the region behind the second 
turning point (r> r~2) we have B - m2/~< O. Proceed­
ing in analogy with the case m = 0, we obtain the fol­
lowing two decreasing solutions 

r 2 11 

exp {i S ( B - ~ ± i(B'-P')'''] 'dr} 

= exp{ - f( I B -7.: I oF i(~'--B')'" fdr}. (24) 
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FIG. 2. Dependence of maximum 
growth rate of the perturbations on 
the azimuthal number. 
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As seen from (24), in this case solutions that decrease 
to the branch point will decrease also as r - 00. Since 
the equation in (9) for v has no turning points, it fol­
lows that vCr) is a monotonic function of r and the solu­
tion that decreases with increasing r will diverge at 
r= O. Consequently, the only solution of (8) is a func­
tion of u (Eq. (9» that decreases after the second turn­
ing point. 

Thus, the presence of a branch point turns out to in­
essential here and the equation for the eigenvalues as­
sumes the well known form (the Bohr-Sommerfeld 
quantization condition) 

Tt W Tt(~) m2 '/2 

S ktdr= S [B-,+(B'-P')"'] dr 
rt(1) '( (1) r 

n 
=T+nn, n=O,1,2, ... (25) 

Since the main interest attached to the maximum 
values of 13, the most important case is n = D. Although 
in this case the WKB approximation is not suitable 
between the turning point, formula (25), as shown by 
Heading, [61 is valid. In view of the fact that M» 1, the 
turning points r~l) and r~2) are quite close. Therefore 
the maximum value of {3 can be obtained geometrically 
(see Fig. l(c» from the condition of tangency of the 
curves m2/r2 and B+ (B2 -(32)112. For a Gaussian beam, 
the result is shown in Fig. 2 (curve 1). 

In the general case m *0, the maximum values of 13 
correspond either to the case of two turning points or 
to the case of one turning and a branch point. The 
second case is typical of m smaller than a certain value 
mo, and the first is typical of m> mo. Estimates show 
that mo-M314• 

Finally, at very large m> m1, there are no real turn­
ing points for Eqs. (9). All the solutions of (8) are 
then monotonic and the boundary conditions at r = 0 and 
r = 00 cannot be satisfied simultaneously. Therefore 
there is no discrete spectrum. Geometrically, m1 is 
determined.from the condition that the curves 2B(r) 
and m 2/r2 be tangent. For a Gaussian profile m1 = (2/ 
e)112M. For m> m1 the perturbations do not increase 
with increasing z. The conclusion that the perturba­
tions do not increase at large m is general for bounded 
laser beams, whereas for the unperturbed beam in the 
form of an unbounded plane wave there is no dependence 
of {3 on m. We note that the dispersion equations in the 
case (23) when one turning point exists for each of Eqs. 
(9) and when two turning points exist, the equations for 
u (25) go over into each other when the branch point 
coincides with the second turning point. 
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We consider now the case when the intensity profile 
has a maximum at r=rmu»rl. We assume first that 
m is not large enough to bring the intersection point 
r f of curves B(r) and m 21r2 close to the maximum of 
B(r) (Fig. l(d)). In this case the mixing of the WKB 
approximations at the pOint r~l) raises the difficulties 
typical of the WKB method. Indeed, on going from r 
>r~l) to r<r~l) it becomes necessary to separate the 
decreasing solution against the background of the in­
creasing one. If it is assumed that near the point r 
=r~l) the solution is well described by the Airy equa­
tion then, as shown by Heading, [6] we can use the fol­
lowing coupling formula: 

A exp [ i j (B~:~')' dr] + B exp [_ i j (B;:.~')'I' dr] 
'b I) 'b(l) , 

[ S' (p2_B'),I. ] [i ] 
-+(A+iB)exp - 2a'" dr + T(A-iB)+k(A+iB) 

rb(l) 

, W-B')':' 
Xexp [S 2a" dr], (26) 

co, 
rb 

where k is a real and generally speaking interminate 
number. 

JOining the solutions at the branch points r~I.2), we 
obtain 

e-r['/. (i-cos~) +k' (1 +cos .'1+sin.'1) 1 =i +cos!1, 
I~) 

rb 

'" = J {[a+(B'-~2)"F-[a-(B'-p')'''P}dr, 
'b,ll 

'b(d . 

f=Hm I [a+i(,3'-B')'']':'dr, 
m' 

a=B --:;-. ,.. 

(27) 

(28) 

The integration in the expression for r is carried out 
from the complex turning point r(+) to the first branch 
pOint. 

In the situation of practical interest, when the point 
of intersection r f is not too close to the branch point 
r~l" we have r» 1 and the left-hand side of (27) can be 
neglected. To determine (3 we then have the equation 

rb(~) m2 1/" m2 lla 

S ([B---;+(B'-p2)] '-[B--:;--(B2-n"'] }dr=11(1+2n) 
"') r r 

rb (29) 

For the maximum growth rates of interest to us we 
have F - (32« G!2. Then Eq. (29) becomes simpler: 

'b") (B'-~') 'I, I [ (B-m';'~)] dr=11(1+2n). 
'b' 

(30) 

We note that at m = 0 this condition can be obtained from 
(11). The latter describes correctly also the case of 
two close branch points. [6] By estimates similar to the 
foregoing ones it can be shown that the maximum values 
of (3 is very close to Bo. ThereforeBmu does not depend 
on m at m 2 <Bor!u. 

The form of the dispersion equation is significantly 
altered when the branch points r~l) and pOints rt come 
closer together. Comparing the conditions for one 
(23) and for (29) branch points, we see that in the latter 
case the spacing between the spectral line is twice as 
large. When r~l) and rt are closed, the form of the 
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dispersion equation is quite complicated (see, e. g., 
(27)). These regions, however, are very narrow, and 
will therefore not be considered. Excluding corre­
spondingly the region m 2 r:> Bor~u, we proceed to the 
case of large m (but m < ml where, as before, ml is 
determined from the condition that 2B(r) and m21r2 be 
tangent). Equation (9) for u now has two turning points 
located between two branch pOints (Fig. l(d)). As 
shown above, the decreasing solutions continue to de­
crease on going through the branch point. In this case, 
therefore, the dispersion equation coincides with (25). 
The dependence of {3mu on m is shown qualitatively in 
Fig. 2 (curve 2). 

3. MEDIUM WITH QUADRATIC NONLINEARITY 

We investigate the decay of a pump beam of fre­
quency w 3 , in a quadratic medium, into weak fields 
with frequencies WI and W2 (WI + wa = W 3). We assume 
the initial notation and the system of parabolic equa­
tions used in the paper of Karamzin and Sukhorukhov, [16] 

confining ourselves to the given-field approximation 
(Ys = 0) and to the absence of wave detuning (A = 0): 

(31) 
.'1.!..A,'+2ik,aA,·/az+2k'l,A,A,=0. 

The analySiS is similar to a considerable degree to that 
carried out above for a cubic medium. We assume 
that the pump wave has a plane phase front and is suf­
ficiently broad (the characteristic transverse scales 
are r3~>rl.a), so that at distances z «r~/A the dif­
fraction spreading of the pump beam can be neglected. 
Then the variables in Eqs. (31) for the weak-field am­
plitudes become separated: 

A,=IJ;(r)e",+imo, A;=x(r)e",+imo; 

IJ;" +r-'IJ;' -m'r-'¢-i,'l,¢+B,z=O, 

x" +r-'x' -m2r-'z-i,3,z+B,~·=0. 

~,,=2k,.a. B,,(r) =2kr1"A,(r), p=1. 2. 

(32) 

(33) 

(34) 

The system (33) is similar to the system of the radial 
equations (6) in a medium with cubic nonlinearity. The 
quantity 6! has the meaning of an eigenvalue, while 1jJ and 
X are the radial functions. For an unbounded plane 

. pump wave A3 = const the spectrum is continuous, and 
1jJ and X are expressed in terms of a Bessel function of 
order m. We consider firs t the discrete spectrum of a 
bounded pump beam for the degenerate case kl = k2' 
Yl = Ya, so that {31 = {3a;: (3, Bl = Ba;: B. We introduce the 
linear combinations 

u=B~+[i,H(B'-il')"'lx, L'=B¢+[i~-(B'-~')"'lx. (35) 

In analogy with the conclusion (9) for a slowly varying 
pump-beam amplitude profile B(r), we obtain 

lI"+r-'u' -m'r-'II+ (B'-~') "'ll=O, 

L'''+r-'v' -m'r-'v- (B2_~') 'I·V=O. 

(36) 

(37) 

Equation (36) at nn=O and {3<Bo has two turning points, 
rl and ra, so that the dispersion equation takes the 
usual form 
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I[-m2/r2+(B2-~2)"'l"'dr= ; +rm. (38) 

This case is similar to the case of two turning pOints, 
which was considered above for a cubic medium. As­
ymptotically (Bor~» 1), the maximum perturbation 
growth rates for a given m correspond to tangency of 
the curves mZ/r2 and (F_rf)lfZ. The dependence of 
the maximum increment on m for a bell-shaped intensi­
ty profile of the pump beam agrees qualitatively with 
that given in Fig. 2. Equation (37) has solutions that 
are finite at r= 0 and r- 00. 

At m = 0, Eq. (36) has only one turning point rt, at 
which all four roots of the initial system (33) vanish. 
This case calls for a special analYSiS, which is given 
in Sec. 2 of the Appendix, where coupling formulas are 
given for a solution that decreases as r- 00. Those 
solutions of (37) which are finite at r = 0 take the form 
(12) with Bessel functions of imaginary argument. 
Their asymptotic expression increases exponentially to 
the turning point r t • Then, according to Appendix (2), 
such solutions of (37) increase also beyond the turning 
point. Therefore bound states can be obtained only 
from Eq. (36) for u. USing the asymptotic forms 

u - sin [ ~ + I (B'_~2)'" dr ] (39) 

and (9), we arrive at the dispersion equation 

't 

S (B2_~') 'I. dr = ; + nn. 
• 

(40) 

In analogy with (20), we obtain an estimate for the 
number of discrete states: 

1 S~ 1 ( B.r.' ) 'f, 1 
nmox=- B"'(r)dr--;-= -- -T' 

n \1 .... 1t 

(41) 

The last equality is valid for a Gaussian beam B = Bo 
x exp{- ~ /(2r~)}. 

In the nondegenerate case we have, in place of (36) 
and (37), equations with a complex potential 

{~+~~+[ _ m' + i ~'-~' ± (BIB, _ (i>I+~' )')"']} (U) =0. 
d,.- r dr r' 2 2 v 

(42) 

The deviation from the degenerate case will be regarded 
as small, assuming k1 = k - Ak, k2 = k+ Ak, Ak/k« 1. 
Starting from a condition analogous to (38), we obtain 
in the lowest-order approximation the pure imaginary 
correction Aa: 

Lla Llk [ 1 'I --i- C-1 -., 
<to k 

C _ [kl / d2A"1 ] 'I, At (0) m-'I,. 
dr' ,_a 

(43) 

We note that the constant Cshould be large under con­
ditions when the quasiclassical approximation is valid. 
Then, as follows from (43), the results of the analysis 
of the degenerate case will be valid even if Ak/k is not 
too small. 

According to (43) the correction decreases with de­
creasing m. However, the estimate (43) itself can be 
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used only under the additional condition aoAk« m2/,y2, 
where the mean value r is determined from the indi­
cated tangency conditions. The case of small m is 
nevertheless of considerable interest, since it cor­
responds to maximum growth rates. It can be shown 
that in the limiting case m = 0 the maximum eigenvalue 
for given k1 and k2 is 

(44) 

Since Y1 + Yz = const, [16] it follows from (43) that the 
growth rate is maximal in the degenerate case, in 
agreement with the analysis of the unbounded pump 
beam. [5] Just as for media with cubic nonlinearity, 
the fastest to grow are the axially-symmetrical (m = 0) 
perturbations that propagate in the region of the maxi­
mum beam intensity. 

CONCLUSION 

Thus, the main feature of high-power bounded beams 
propagating in nonlinear media is the presence of a dis­
crete spectrum of perturbations whose growth can be 
interpreted as the decay of the initial pump beam. With 
increasing beam width, the number of such discrete 
states increases, and the spectrum itself becomes 
denser, and it is in this manner that transition to the 
case of an unbounded pump beam is attained. 

Let us trace this transition for a cubic medium in the 
case of axially-symmetrical perturbations (m = 0). The 
eigenfunctions of the discrete spectrum are high-fre­
quency oscillations with a characteristic period r1, 
filling the region near the beam axis -rb »r1' The 
period r1 (22) for the "lowest" discrete levels corre­
sponds to the characteristic transverse scale of the 
fastest-growing perturbations for an unbounded plane 
wave. [1] At the same time, the scale rb is possessed 
precisely by bounded beams. If r1 determines the dis­
tance between the filaments into which the laser beam 
breaks up, then rb can be connected with the dimension 
of the "filament-formation region." With increasing 
beam width (ro- 00) we get in accordance with (22) rb' 

For bounded beams, only the discrete spectrum cor­
responds to positive growth increments. A discrete 
spectrum exists when the beam power exceeds a cer­
tain critical value, the estimate of which can be ob­
tained from (20) by putting nmu= 1. The critical value 
agrees with that obtained by Lyakhov. [2] Under condi­
tions typical of high-power solid-state amplifiers (non­
linearity nz - 2. 5 X 10-13 cgs esu, light-energy density 
-1 J/cm2 at a pulse duration 10-10 sec, beam radius 
- 1 cm) the basic parameter of our paper is Bor~-104 
»1. The number of discrete states is then nmu= 56. 

Owing to the distortions of the pump beam as a whole 
(characteristic length L.), the description in the 
language of eigenfunctions is approximate. The ap­
proximation is justified precisely for high-power 
beams, where the characteristic growth length of the 
perturbations is 1s« Ls , and is valid in the region 
z « Ls. We note that in contrastto these conditiOns, the 
procedure employed in tz ], based on expanding the solu­
lions of (1) in a Taylor series, is justified only in the 
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immediate vicinity of the boundary of the nonlinear 
medium z = O. Thus, perturbations whose amplitude de­
crease at small z can increase at larger distances 
-ls' Such a situation is typical of perturbations whose 
scale is noticeably smaller than r1' Physically this 
means that these perturbations are initially spread out, 
on account of diffraction, to optimal dimensions, after 
which they begin to increase (see, e. g., curve 5 on Fig. 
40f[3]). Therefore the concept of "minimum width of 
growing perturbations,,[2] does not have a clear-cut 
physical meaning. 

For a medium with quadratic nonlinearity, the esti­
mate that follows from (41) for the critical power re­
quired for the existence of a discrete spectrum, and the 
characteristic dimension rt of the lower oscillation 
mode of the perturbation, agree with the quantities 
Scr a and ap introduced by Karamzin and Sukhorukov. US] 

We note that for a laser beam power greatly exceeding the 
critical value, it is necessary to take into account al­
so higher discrete levels. 

The authors thank P. I. Krepostnov for help with 
the work. 

APPENDIX 

1. Derivation of Eq. (4) 

After substituting (3) in (2) we obtain 

. {jE, {j'E,. 1 aE, 1 {j'E, • 
21k--=--T--+---+B(E,+E, )+R 

oz {jr' r ar r' oq;' ' (A. 1) 

(A.2) 

We shall show now that under the indicated conditions 
the quantity R in (A, 1) can be neglected. We introduce 
to this end the characteristic parameters of the dif­
fraction length (Ld , ltl) and the soft-focusing lengths 
(L., l.) of the unperturbed beam and of the perturba­
tion: 

Ld=ro'/i., ld=r.'/i., Ls =ro!i.B,· '=ro'/i.M, 

is =1/i.Bo=ro'/i.M', r,-Bo -'/'=ro/M. 

On the basis of the estimates 

dB Bo d'B Bo 
--a;:;: ~ --;:;;' ----

ar r, dr ro 

we obtain from a comparison of the different terms of 
(A. 1) and (A.2) that in order for (4) to be valid we must 
have 

(A.3) 

Since L.« Ltl at M» 1, the diffraction spreading of the 
unperturbed beam can also be neglected when the con­
dition (A. 3) is satisfied. 

2. Coupling formulas in the degenerate case 

The fourth-order equation corresponding to (33) takes 
in the vicinity of the turning point the form (x = r - r t , 

m=O) 
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FIG. 3. 

(A. 4) 

We obtain coupling formulas for a solution of (A.4) that 
decreases as x - + 00 and oscillates as x - - 00. We note 
that the formal solution of (A.4), obtained with the aid 
of a Laplace transform, is given inU7 ]. It is more 
convenient for us to use the method of Laplace contour 
integrals, [1a] according to which 

y = const· S exp [xt + 10;:B'1 ]dt. 
c 

(A. 5) 

The integration contour C in the complex variable plane 
must be chosen such that the values of the integrand on 
its ends are equal. Since the integrand has no singulari­
ties at finite t, the asymptotic form of the solutions at 
large Ix I can be determined by using the saddle-point 
method. Figure 3 indicates the directions (shaded 
sectors) in which the integrand tends to zero as I f I - 00. 

The figure shows also the saddle pOints f q at x - + 00 

(q = 1, 2, 3, 4) and at x - - 00 (q = 5, 6, 7, 8). 

The solutions that decrease as x - + 00 correspond to 
the pOints fa and ta. The equation for the steepest­
descent lines are 

1m <p=const=A (A.6) 

or 

(A. 7) 

Here f=T/+iy, c=1/lO!3IB'I, and qJ is the argument of 
the exponential in (A.5). ConSider, for example, a con­
contour passing through the point t2 (Fig. 3). At this 
point, the radicand in (A. 7) vanishes, whence 

Figure 3 shows two contours passing through ta and 
touching each other at this pOint; these contours cor­
respond to the two signs of the root in (A. 7). The in­
tegration contour Ca is chosen in the form of two 
branches that go off to infinity in the shaded regions. 
Analogously, in the third quadrant we choose the con­
tour Ca , which is obtained by specular reflection of 
Ca about the axis y = O. 

As x - - 00, the same shaded regions contain the saddle 
points ts , t7, and t a, the point t7 corresponding to in-
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creasing solutions. It is therefore necessary to take a 
linear combination of the solutions, which corresponds 
to successive integration along the contours C2 and Cs • 
Deforming these contours and taking into account the 
analyticity of the integrand, we find that the integration 
can be carried out along the axis 1) = 0, and the main 
contribution to the integral is made by the vicinities of 
the points t6 and ts • Accurate to constant factors we 
obtain as x _ - 00 

(A.S) 

For a solution that decreases as x - - 00, we must 
construct contour that passes through the point ts. As 
x-+ oo , the main contribution to the integration along 
such a contour is made by the vicinities of the points 
tl and t4 , which lead to increasing (as x-+ oo ) solu­
tions. 

1)Generally speaking, it will be possible to conclude from (9) that 
the WKB solution takes the form 

exp [ ±; S (k.'+1/4r') ", dr ] . 

As shown by Langer[14I (see, e. g. ,[SI), a consistent allowance 
for the singularity in the vicinity of r= 0 leads to the expres­
sions. 
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Experimental investigation of spontaneous emission by neon 
in the presence of a strong monochromatic field 

v. P. Kochanov, S. G. Rautian, E. G. Saprykin, and A. M. Shalagin 

Spectroscopy Institute, USSR Academy of Sciences 
(Submitted October 10, 1975) 
Zh. Eksp. Teor. Fiz. 70, 2074-2086 (June 1976) 

Quantitative measurements of the spontaneous emission spectra of atoms in the presence of a laser field 
are performed. Spontaneous emission is recorded for the 3 S2-2 P. (0.6328 ,...) and 3 S2 -2 PIO (0.5434 ,...) 
transitions in neon. The laser field is at resonance with the 3 S2-2 P. transition. The line broadening and 
shifts due to atom-atom and atom-electron collisions are measured. The relative amplitUde of the broad 
spectral component of the nonlinear resonance is determined. The experimental results are used to verify 
the nonlinear-resonance theory. 

PACS numbers: 32.1O.Nw, 32.1O.Ks 

1. INTRODUCTION 

The first experimental[1-4l and theoretical(S-Sl studies 
of the spectroscopy of spontaneous emission of a gas in 
the presence of a monochromatic laser field were pub­
lished relatively long ago. These papers were devoted 
to the modification of the spontaneous-emission spec­
trum by the laser field as a result of saturation effects, 
field splitting, and nonlinear interference effects. 
These changes manifest themselves as relatively sharp 
spectral structures (resonances) superimposed on in­
homogeneously broadened lines. The shapes of the res­
onances depend, generally speaking, on the observation 
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direction, while their widths are as a rule much smaller 
than the Doppler width. 

Field-induced changes in the spectra can be regis­
tered by measuring the absorption of a probing laser 
field, or by observing the spontaneous emission from 
the perturbed levels. The difficulties connected with 
the low brightness of the spontaneous emission and with 
the need for using high-resolution spectral apparatus 
hinder the progress of research on spontaneous emis­
sion. The available datart,sl are by way of qualitative 
reports of the phenomena and cannot claim to offer a 
quantitative check on the theory. At the same time, the 
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