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The charge density induced by a Coulomb field is represented as the absorptive part of a certain operator, 
which can be reduced in tum to a finite-rotation operator of the Coulomb dynamic group 0(2,1). In this 
way the total induced charge can be calculated and the cause of suppression of the contribution from 
higher partial waves can be ascertained. 

PACS numbers: 12.20.Ds 

INTRODUCTION 

The polarization of a vacuum of charged particles by 
an external electromagnetic field was first considered 
by Dirac, Heisenberg, Serber, and Uehling in the weak­
field approximation. (1) They obtained an expression 
for the induced charge density 

p~-aDp,/ 15:tm' (1 ) 

in terms of the charge density Po that produces the ex­
ternal field. 

Subsequently Weisskof and Schwinger(2) presented a 
general expression suitable for fields of arbitrary 
strength, but this expression turned out to be too com­
plicated and yielded a result in explicit form only in 
some particular cases. In addition, the important case 
of a Coulomb field could not be handled by this method. 

Wichmann and Kroll(3) have therefore returned to the 
direct calculation methods and, by using very compli­
cated computations, obtained corrections to the Uehling 
formula. These calculations were recently radically 
improved by Brown et al. (4) 

The question of the calculation of the Coulomb polar­
ization of vacuum has been under lively discussion in 
recent times, since this effect turned out to be particu­
larly noticeable in heavy J..L-mesic atoms. [5) However, 
even after the publication of(4), the theory of Coulomb 
polarization remains rather cumbersome. The reason, 
in our opinion, is the neglect of the symmetry of the 
Coulomb field, 

We describe below a calculation method that takes 
into account this important property explicitly. 

GENERAL RELATIONS 

We first transform the well known formula[2) for the 
induced current 
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(2) 

which contains for an electron in the external field, a 
Green's function satisfying the equation 

[m-, (p-eA) ]G~1. (3) 

In operator form (IT = p - eA) we have 

i.=tr ,.(m-IT) -I~tr ,,,(m+ II) (m'-rf') -I~tr ,,,Ii (m'--IT') -I (4) 

(the term - m has dropped out, since it contains an odd 
number of Dirac matrices). Transferring IT to the 
right, we obtain the expression 

which when summed with (4) yields 

i.~tI'IT.(m,-n')-I=IT. fdstrexp{-s(m,-rr,]}. (5) 

The charge density induced by the static field is 
equal to 

or 

PE= (E -eA,) f ds tl' exp {-s [m'+p'- (E -eA,) '-eo.vF.,!2]} 

1dS~dS -
PE~---' -trexp{-s[m'-IT'l}. 

2 dE, s 

(6) 

(6a) 

This means that the total charge density is equal to 

(7) 

so that the problem reduces to the calculation of 
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1 500 ds W(E) = - -tl'exp{s[ (E-eA o),+eaFI2-m'-p']). 
2 0 s 

(8) 

COULOMB SYMMETRY 

In a Coulomb field eAo = - ZQ!/r, e(JF/2 = - YoyZQ!r/r 3. 

the argument of the exponential in (8) is 

, , ' 2ZaE 1'- (Za) '+Za1o'yn 
(E--m )--p,-+--- , . 

r r-
(9) 

The operator 

N=1'- (Za)'+ZaYo''(n (10) 

commutes with the angular momentum r, with its pro­
jection J., and with the parity P. Its eigenvalues are 
doubly degenerate and are equal to y(y± 1), where[Sl 

1= [ (j+'/,) '- (Za)'] '\ 

and the ± sign is the same as in the relation P 
=± (_1)i.1/2 0 

(11) 

Since N is a unit matrix in formula (8), the deter­
mination of the trace reduces to summation over the 
two parity signs and to multiplication by two. Thus, 

5~' {[" , . 2ZaE 1 (y± 1) ]} ) W,.uf'(E) = 0 s- dsexp s (E--m-)-p,-t--r---r-,- . (12 

Replacing the integration variable s by sr, we re­
duce the quantity in the square brackets to the form 

where 

Ko=[rp;+1 (1±1)r-'+rk'] (2k)-', 

K,=[rp,'+1(1±1)r-'-rk'] (2k)-', 
p=k+ (m'-E')/2k, ).=k- (m'-E'l/2k. 

The operators Ko, Ku and 

K,=rp,-i 

form an 0(2, 1) algebra (see[71): 

[Ko,K,]=iK" [K,K,]=-iKo, [K,Ko]=iK .. 

with a Casimir operator 

C(2)=Ko'-K,'-K"=1(1±1)· 

(14) 

(15) 

(16) 

(17) 

(18) 

It follows from (17) that the operator K.=Kl +iK2 in­
creases the eigenvalue of the operator Ko by unity, so 
that the spectrum of Ko takes a ladder form: 

(Ko)' =x+n, n=O, 1, 2, .... (19) 

The maximum eigenvalue x is determined from (18): 

x(x-1)=1(1±1), 
P=-(-1)H'/. 

x- {1 
1+1 P=(-1)H'I •. 
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(20) 

The linear combination of the non-commuting opera­
tors (13) is diagonalized 

~Ko+AK,=Yp'-A'TKoT-'=2ym'-E'TKoT-' (21) 

with the aid of the "tilt" operator[71 

( i m'-E') 
T=exp TK,ln-k-,- . (21a) 

Consequently we obtain 

00 

WiMP (E) = 5 g-'dse"Te-·KoT-'. (22) 
o 

We have introduced here the dimensionless Coulomb 
parameter 

v=ZaEIY m'-E'. (23) 

VALUE OF THE INDUCED CHARGE 

We use the formula (22) obtained above to calculate 
the induced charge 

Q= 5 p dr= Sp p = + 1m Sp W(E) IE~ioo. (24) 

The trace is taken over all the variables, i. e., over 
the spectrum of j, M, P, Ko: 

. . 
Q=;t-' ~ (2;+1) ~ ~ 1m 5 s-' ds e,,-·(,+n' IE~ioo 

) P n=O 0 

00 

=,.c' ~ (2;+1) 1m f g-' ds e"-T'(1+e-') (1-e-')-'I._ i oo' (25) 

The factor (1 + e-S ) is the result of summation over the 
parity, while the fraction (1 - e-st1 is the result of sum­
mation over n. 

It is now convenient to take the limit as E- +i<Xl, since 
only II depends on E, with 11- +iZQ!. Putting 

11=1-iZa=]I (j+'I,)'- (Za)'-iZa, (26) 

we obtain 

(27) 

This expression must be renormalized; this is done, 
as is known, by subtracting the first terms of the Tay­
lor series, i. e., by replacing f(x) by the residual term 
of the series 

(28) 

The choice of the number of subtractions N and of the 
normalization point Xo is dictated by the actual condi­
tions. In our case it is necessary to subtract a linear 
polynomial, so that N = 1 and 

% 

e'~ S y(e')"dy=e'(x-l)-e"(xo-l). (29) 
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Thus, 

lOOt +e-' 
Q =-~ (2j+1) 1m S ds---[e-"'(-11s-l) +e-"'('1os+1) J. 

Jl j 0 8 (1-e-') 

(30) 

This integral, being written in the form 

(31) 

is evaluated by using the formulas (S.341), (S. 361), and 
(3.434) of the handbook[81: 

(32) 

The constant normalization 170 should be chosen such 
that the renormalized charge coincides with the experi­
mentally observed one. To this end it is necessary that 
expression (30) not contain the term - Za, which is al­
ready included in the charge. This requirement is 
easily satisfied: 

( 1) ( 1) iZa] +iZa j+--:! 11.' j+--:! - 2j+1 . (33) 

This elegant formula was obtained in[41, and its non­
vanishing term 

2(Za)3[ 7 n"] Q"'-- ~(3)+---- =-0.021 (Za) , 
3n 6 4 

(34) 

was obtained even earlier by Wichmann and Kroll. [31 
We note that the coefficients of the expansion in Za de­
crease slowly; the next term is equal to - O. 007 (Za)5. 

Conversely, the terms of the series (33) in j are 
greatly different: the term with j = t exceeds the sum 
of all the remaining ones by thirteen times. The con­
tribution of the Pl/2 wave is O. 72 (Za)3/31T, and the con­
tribution of the Sl/2 wave is 0.92(Za)3/31T, L e., terms 
with opposite parity cancel each other noticeably. 
Formula (27) offers a good explanation of the suppres­
sion of the contribution of the higher partial waves-it 
is due to the exponential e-Ys. Consequently, the reason 
lies in the increase of the centrifugal barrier, which 
lowers the probability of pair production near the po­
lariz ing center. 

We note that at Z = S2 (lead) it is possible, with 5% 
accuracy, to replace y by j +t, starting withj =%, after 
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which the contribution of all the waves with j ;;. % can be 
summed in explicit form 

2 SOO sin (Zas) - Zas 
Q ,= - ds e-2 , (2-e-') (2se-'+e-"-1) 

J .. " n 0 s(1-e-')' . 
(35) 

The suppression of the higher partial waves of the vir­
tual particles was noted earlier also in the problem of 
the Lamb shift. [91 

CONCLUSION 

The described method of calculating the polarization 
of vacuum is based essentially on the representation of 
the current in the form (5)-it is this which makes it 
possible to change over to a squared Dirac equation and 
to express the charge density in terms of the asymptotic 
form of the operator W(E). ' 

Another important item is the direct utilization of the 
0(2, 1, symmetry of the radial equation of the Coulomb 
problem, which leads to formula (22). It follows from 
this formula that W(E) is the Laplace transform of the 
finite-transformation operator in the 0(2,1) group, 
since Te-sKoT-1 is in fact such an operator. For the 
calculation of the induced current it is necessary to in­
vestigate the asymptotic behavior of the corresponding 
Wigner functions. 

It seems to us that the determination of all these re­
lations will make it possible once more to simplify the 
theory and to gain a deeper insight in the polarization 
of vacuum. 
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