
gation described he~e can serve as an example of the 
use of CRNO as a new method for studying the vicinities 
of singular pOints of non-Singly-connected Fermi 
surface of polyvalent metals. The results of similar in­
vestigations can be used to verify Fermi-surface cal­
culations. 
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We formulate some dynamic percolation theory problems whose solution may be of interest in studies of 
the dynamic properties of disordered systems such as strongly developed doped semiconductors, 
ferroelectric semiconductors with a diffuse phase transition, island films, and other objects with a 
nonuniform conductivity and (or) inhomogeneous permittivity. Some of the problems are simulated by 
means of networks consisting of capacitors and resistors with randomly broken bonds and nodes. The 
results obtained by such simulation and also the theory of effective media developed in the paper, as well 
as some considerations based on percolation theory, indicate that the static permittivity of the sample 
should become infinite for the metal-dielectric transition. This result is used to interpret qualitatively the 
"polarization catastrophe" observed in the metal-dielectric transition in n -silicon. 

PACS numbers: 72.60.+g 

1. INTRODUCTION 

The methods of percolation theory are widely used to 
describe the static conductivity of disordered systems, 
static hopping conductivity, etc. (see, e. g., [1,2]). In 
this paper we formulate percolation-theory problems 
whose solutions can be of interest to the study of the 
dynamic properties of disordered systems, strongly­
doped semiconductors, ferroelectric semiconductors, 
and other physics objects with inhomogeneous conduc­
tivity and (or) inhomogeneous dielectric constant. Some 
of these problems will be investigated experimentally 
by simulation with a network made up of capacitors and 
resistors. For an analytic description of the results 
we use the effective-medium theory, which is a gen­
eralization of the theory developed in [3-5]. 

We use the results, in particular, to interpret experi-
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mental data that point to a "polarization catastrophe" 
(wherein the static dielectric constant becomes infinite) 
in the metal-dielectric transition in n-type silicon. [6] 

The results obtained for the flat (two-dimensional) case 
can be used to interpret the results of experiments with 
so called island films (see, e. g. , [7]). 

2. FORMULATION OF PROBLEM 

We recall first the formulation of one of the standard 
problems of percolation theory. Consider an infinite 
network made up of identical resistors. We open in 
random fashion a fraction x of the nodes (sites) of this 
network (the site problem, see, e. g. [1]). Then at a 
certain critical value x = Xc the network becomes open 
("percolation" of the current over the network ceases). 
Percolation-theory methods make it possible to estab-
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FIG. 1. Small-scale equivalent circuit of the lattice used in 
the simulation. a) Node in which the resistors are disconnect­
ed; b) node in which. the capacitors are disconnected; c) node 
in which both the capacitors and the resistors are disconnected. 

lish the topology of the resistance network (the topology 
of the "infinite cluster"), the behavior of the conductivi­
ty, the correlation radiUS, and other physical quantities 
near the percolation threshold xc' By analog simulation 
and computer calculation it is shown that as (x- xc )- 0 
the conductivity and all other physical quantities depend 
on (x-xc) in power-law fashion. Just as in the theory 
of phase transitions, it is customary to call the expo­
nents of the different physical quantities the critical ex­
ponents. The critical exponents seem to depend little 

. on the type of percolation-theory problem (i. e., on 
whether the bonds or the nodes are misSing, or whether 
some continual models are consideredU,Z]). The rela­
tions between the critical exponents are analogous to the 
Similarity relations in the theory of phase transi-
tions. [8,9] 

To describe the dynamic properties, i. e., the fre­
quency dispersion of the different disordered physical 
systems in terms of percolation theory, we propose to 
examine various types of lattice problems of percolation 
theory, assuming that each element of the lattice (each 
bond in the lattice) is a network comprising a capacitor, 
inductor, and active resistor connected in parallel. (A 
similar generalization can be proposed also for the con­
tinual problems of percolation theory.) By specifying 
different missing fractions xi> xc, and Xli of inductors, 
capacitors, and resistors and also by choosing different 
relations between the values of L, C, and R, it is pos­
sible to simulate various frequency properties of dif­
ferent disordered systems. 

We confine ourselves in this paper to a network in 
which each bond consists of a resistor and capacitor 
connected in parallel. Such a system, as will be shown 
below, can be used, for example, for the interpretation 
of the "polarization catastrophe" in the metal-dielectric 
transition. Other possible applications of this problem 
can be the investigation of the phase transitions in ferro­
electric semiconductors. 

3. EXPERIMENTAL PROCEDURE 

We used for the analog situation a square lattice con­
Sisting of 512 bonds (256 sites). Each bond comprises a 
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resistor R = 300 and a capaCitor C = O. 5 IJ.F connected 
in parallel. Each of the two opposite sides of thiS lat­
tice was connected to a metallic busbar (Fig. 1). The 
capacitance and conductivity of the lattice between these 
busbars was measured with an alternating current bridge· 
in the range of frequencies from fL = 150 Hz to fN = 8 
kHz. The chosen frequency band satisfies the condition 
2rrfL « l/RC« 2rrjN' satisfaction of which, as we shall 
show later on, makes it possible to trace the frequency 
dispersion of the conductivity and of the capacitance of 
the lattice in all the investigated cases. 

Three problems were simulated experimentally. 

1. The capacitor connections were not disturbed, so 
that the capacitors formed a regular rectangular net­
work. The resistances at the nodes were removed in 
random fashion with a specified removal probability x 
for each node, as shown in Fig. 1 (node a). The value 
of x was varied from 0 to 1 in steps of O. 1. For each 
value we measured the frequency dependences of the 
capacitance and of the conductivity of the lattice. Such 
a problem simulates the frequency characteristics of 
an inhomogeneous system consisting of components hav­
ing different conductances but identical real parts of the 
dielectric constant. 

2. This problem differs from the first in that the con­
nections between the resistors are left alone, and the 
capacitors are disconnected from the nodes with proba­
bility x in random fashion, as shown in Fig. 1 (node b) • 
This problem simulates the frequency characteristics 
of an inhomogeneous system consisting of components 
with different real parts of the dielectric constant and 
with identical conductivities. 

3. The connections of the capacitors and of the re­
sistors at the nodes were broken in random fashion. 
Thus, in this problem the lattice contains nodes of type 
a, nodes of type b, as well as nodes from which both the 
resistors and the capacitors are disconnected (nodes of 
type c in Fig. 1). 

In all three problems, the procedure of determining 
the coordinates of the nodes in which the connections 
were broken was standard: a random-number genera­
tor and a BESM-4 computer were used to set in corre­
spondence with each node a random number y having an 
equal probability density distribution from zero to unity. 
The node was broken at y 'x and remained intact in the 
opposite case. 

4. FORMULAS OF THE EFFECTIVE-MEDIUM THEORY 

To interpret the experimental results we have de­
veloped an effective-medium theory, which is a general­
ization of the theory developed in[3-5]. The results of 
the calculation are as follows: 

Bm/B.=[ (A'+B') 'h+A ],"+e, 

omio,=[ (A'+B')"·-AJ"·f+s. 

Here Em and am are the effective values of the dielectric 
constant and of the conductance of the medium made up· 
of components with dielectric constants El and EZ and 
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with conductances a l and az, 

1 [S' g ] A = 2 e' - F'- ~k-~ F' ' 

i[ ~ ] 1 k B=- es+-(k+g) , e=-[{1+~)p-pl--[(1+p)p-lI 
F 2 2 2 ' 

1 g 
s = 2[ (1+~)p-~I-2[ (1+~)p-1], 

k=EZ/E l , g=aZ/a l , and F= clW/al is the dimensionless 
frequency. 

The quantities {3 and P depend on the type of problem. 
For a problem with a continuous medium having random­
ly distributed components we have {3 = t for the three 
dimensional case and {3= 1 for the two dimentional case, 
while P is equal to the fraction of the volume occupied 
by the phase with the parameters ~ and a l • 

For the lattice bond problem (i. e., for a lattice in 
which bonds with parallel-connected resistor Rl and 
capacitor Cl alternate randomly with bonds having pa­
rameters Rz and Cz) we have 

~=2/(z-2), (2) 

where z is the number of bonds that are connected to a 
single node (i. e., the number of nearest neighbors). 
In this case {:J is independent of the dimensionality of 
space. For the bond problem, the quantity P is equal 
to the probability in which a connection with the parame­
ters Rl and Cl is encountered. In these cases it is nec­
essary to assume in the foregOing formulas 

[i'=(jjC.R" k=C,/C., g=R.IR" 
(3) 

where Sm and em are the ratios of the conductance and 
capacitance of the lattice to the conductance and capaci­
tance of a lattice made up entirely of the elements Cl 

and R l • Un the planar case (square lattice) the- con­
ductance and the capacitance of the lattice made up of 
the elements Rl and Cl are equal respectively to Ril and 
Cl • In the three-dimensional case (cubic lattice), the 
conductivity and capacitance of such a lattice are equal 
to nRi l and nCl , where n is the number of elements in 
the edge of the cube. ) 

Formulas (3) are valid for the lattice site problem. 1) 

For the site problem of interest to us, in a two-dimen­
sional square lattice, [4] we have 

p=(n-2)/2. 

In this case P= (1- x)Z, where x is the fraction of the 
nodes to which the bonds with parameters Rz and Cz 
converge. For other lattice problems, the value of {3 
can be found in[5]. 

(4) 

It can be verified that in the case when the medium 
consists of components of one sort (say resistors only), 
formulas (1) go over into the usual formulas of the ef­
fective-medium theory[l·4.5]: 
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Per is the percolation threshold calculated within the 
framework of the effective-medium theory. 

Greatest interest attaches to the effective-medium 
formulas that follow from (1) in the limiting cases of 
very low (F-O) and very high (F- 00) frequencies. For 
problem 1, in which g= Rtf Rz = 0 and k = Cz/ C1 = 1, we 
obtain from (1) as F- 00: 

(6) 

For F- 0 there are three cases. At P> Per= (3/(1 + (3), 
when the percolation over the resistors is not blocked, 
we obtain 

=(HM (- )+ PPer(l-p) F' 
8m P Per (P-Pcr) 3 

(this coincides with (5) at F= 0), and 

(1-~)p+~pcr 
e,,= 

At P = Per we have 

(8) 

(9) 

We note that at the percolation point the capacitive 
susceptance Fem has exactly the same absolute value as 
the active conductance sm' At P<Per we have 

(10) 

Formulas (7), (8), and (1() are valid at F« (P-Per)2. 
Formulas (9) are valid for (p- Per)2«F« 1. 

It is seen from (8) and (10) that the effective-medium 
theory predicts that the effective capacitance (i. e., the 
effective dielectric constant of the medium) becomes in­
finite in the low-frequency limit as the percolation con­
duction threshold is approached (polarization catas-

. trophe). As seen from the expressions for sm and em 
(9), at the percolation point (p = Per) there is anomalous 
dispersion of the conductance and of the lattice capaci­
tance (i. e., of the condu"Ctivity and of the dielectric con­
stant of the medium): 

dSm I de .. I _ _00 _ _00 

dF F_' ' dF F_' . 

The physical meaning of these results will be discussed 
in Secs. 5 and 6. 

We note that although the effective specific capaci­
tance em of the system becomes infinite at the percola­
tion point as F- 0 (see (9)), the capacitive susceptance 
tends to zero like -IF as F- O. 

For problem 2, in which k = CZ/C1 = 0 and g= R1/R2 = 1, 
we have at F= 0 

(11) 

As F - 00 and at P > Per = (3/(1 + (3), when the percolation is 
over the capacitors, we have 
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FIG. 2. Dependence of the relative conductance Sill on the di­
mensionless frequency F=wCtR! (a) and on the probability of 
finding a disconnected node (b) for problem 1. Solid curve­
results of calculations within the framework of the effective­
medium theory; experimental pOints: A for realization I, D­

for realization 2. In Fig. b, the experimental pOints are shown 
for the values F = 0.15 and F = 8. 

(1-p)P+~Pcr 
Sm= 

P-Pcr 
=(1+")( _ )+PPcr(1-p) 

em ~ P Pcr (P-Pcr)'F' . 
(12) 

At P = Per' just as for problem 1, we get 

(13) 

At P<Per 

e = PPcr(1-p) 
m (Pcr-p)'F" 

pcr 
Sm=--. 

Pcr-P 
(14) 

Formulas (12) and (14) are valid at F(p - Per)z» 1. For­
mulas (13) are valid at l/{p - Per)z» F» 1. 

A comparison of formulas (6)-(10) and (11)-(14) shows 
that when em is replaced by sm and F is replaced by l/F, 
the corresponding formulas for problems 1 and 2 coin­
cide. It can be shown that with such a substitution, the 
initial formulas (1) also coincide for problems 1 and 2. 
This agreement is the consequence of the electrostatic 
analogy and should be a property not only of the effec­
tive-medium theory but also of the exact solutions of 
these problems. 

5. RESULTS AND DISCUSSION 

Problem 1. (The connections between the capacitors 
are undisturbed, and the resistances are disconnected 
in random fashion, Cz = Ct , Rz = 0.) The experimental 
results obtained for this problem are shown in Figs. 2 
and 3, in which they are compared with the results of 
calculations within the framework of the effective-me­
dium theory (see Sec. 4). It is seen from the figures 
that at all the investigated values of x and F the experi­
mental data for both sm and e", are in very good agree­
ment with the results of the calculations, despite the 
relatively small size of the investigated model system 
(16X 16 nodes). 

It is ~een from Fig. 2a that, as follows from expres­
sion (6), at F» 1 the dimensionless conductivity is Sm 

= p = (1- X)2. Thus, measurements of the conductance 
of the disordered system at frequencies that are larger 
than Maxwellian can yield information on the concentra­
tion of the conducting phase. 
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As shown in Sec. 4 (see the formulas for e", (8) and 
(10), the effective-medium theory predicts the onset of 
a "polarization catastrophe" at the percolation point. 
As seen from Figs. 3a and 3b at x = O. 4 (which coin­
cides, at the accuracy determined by the finite dimen­
sions of the lattice, with the percolation threshold Xc 

= O. 3972 of this problem), the effective lattice capaci­
tance indeed increases sharply with decreaSing fre­
quency. 

It should be noted that the predictions of the effec-
ti ve-medium theory may turn out to be incorrect near the 
percolation point Per' . inside the so called critical re­
gion (IP - Per ISO. 1 [1, Z]). Thus, for example, in the 
analysis of the Hall effect in the two-dimensional case, 
the theory of the effective medium predicts correctly 
the behavior of the Hall constants both inside and out­
side the critical region: [10] In the three dimensional 
case, the theory of the effective medium, while de­
scribing well the behavior of the Hall constant outside 
the critical region, leads to a qualitatively incorrect re­
sult for the critical region: According to this theory, 
the Hall constant should change by not more than a fac­
tor of two at the percolation point, [11] whereas percola­
tion theory, in qualitative agreement with experiment, 
points to a divergence of the Hall constant at the perco­
lation point. no] However, even outside the critical re­
gion (at P - Per ~ O. 1), i. e., in the region of applicability 
of the formulas of the effective-medium theory, they 
point to a considerable increase (by a factor of four) of 
the effective dielectric constant of the inhomogeneous 
medium. In addition, as will be shown in Sec. 6, quali­
tative considerations based on percolation theory also' 
point to a divergence of the effective dielectric constant 
of the medium as the percolation point is approached. 
In contrast to the effective-medium theory, however, 
within the framework of which the character of the di­
vergence does not depend on the dimensionality of space, 
percolation theory shows that in the three-dimensional 
case the divergence should be much weaker than in the 
two-dimensional case. 

Our results can be used for a qualitative interpreta-

em 

1.6 

0.8 

I.J 2 
f x 

FIG. 3. Dependence of the relative capacitance e", on the di­
mensionlessfrequency! (a) and on x, (b); solid curves--results 
of calculations within the framework of the effective-medium 
theory. In Fig. a the experimental points are shown for x = O. 8 
and x = O. 4, while in Fig. b the points .. and. pertain to the 
frequency F=O.15. 
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x x 

FIG. 4. Dependence of the relative capacitance e", of the lattice 
(a) and of the relative conductance of the lattice s'" (b) on x. 
Solid lines-results of calculations within the framework of the 
effective-medium theory. In Fig. b, the experimental points 
"and.pertaintol/F=O.25, while o pertains to l/F=O.1. 

tion of the experimental data obtained in [6], where a 
"polarization catastrophe" was observed in the metal­
dielectric transition in silicon. The abrupt increase of 
the dielectric constant at low frequency when the transi­
tion point was approached was interpreted as a result of 
polarization of the donors and was described quantita­
tively with the aid of the Clausius-Mosotti relation. 
However, on approaching the transition point, the di­
electric cOnStant increases more rapidly than predicted 
by the Clausius-Mosotti formula. As noted in[6], this 
may be due to the inhomogeneity of the system. Our re­
sults illustrate the mechanism with the aid of which the 
inhomogeneity of the system can cause or enhance the 
divergence of the dielectric constant near the metal­
transition point. An example of physical objects of 
practical value to which our results pertain in the two­
dimensional case is provided by island films. [7] 

Problem 2. (The connection between the resistors is 
not broken, the capacitors are disconnected randomly, 
Rl = R2 , C2 = 0.) The experimental data compared with 
the calculations within the framework of the effective­
medium theory in Fig. 4, confirm the arguments ad­
vanced in Sec. 4 concerning the analogy of problems 1 
and 2. We note, however, that in this problem, at the 
percolation point, the active conductance of the system 
increases without limit (c:c -IF, see (13)). From the 
mathematical point of view, thE! reason for this increase 
of (J is that at the percolation point the capacitive sus­
ceptance Fe"" which increases in proportion to F, is 
equal to the active conductance (see, (13)). A physical 
explanation of the increase of the dielectric constant in 
problem 1 will be presented in Sec. 6 with the aid of 
percolation theory. The explanation of the increase of 
the conductance in problem 2 can be obtained in the 
same manner, by using the electrostatic analogy men­
tioned in Sec. 4. 

Thus, the results obtained for problem 2 indicate a 
sharp increase of the losses at the percolation point at 
high frequencies. Among the real physical systems that 
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can be set in correspondence with our model system, 
we can mention ferroelectrics with diffuse phase tran­
sitions and with composition fluctuations. 

Problem 3. (Independent opening of the connections 
of the capacitors (C2 =O) and of the resistors ~=O) at 
the nodes). This problem is a particular case of the 
more general problem in which the capacitances and 
resistances are independently disconnected with equal 
probabilities (1- Pel and (1- Ps)' This problem can be 
used to simulate the behavior of complicated mixtures 
made up of components with different values of the con­
ducti vity and of the dielectric constant. For this prob­
lem it is also possible to construct an effective-medium 
theory, but since the corresponding formulas are too 
cumbersome, we confine ourselves to a qualitative ex­
amination of the main features of the behavior of sys­
tems of this type. Such a system has three percolation 
thresholds, for percolation over the resistances, for 
percolation over the capacitances, and an overall per­
colation threshold when neither active nor capacitive 
current can flow through the system. The size of this 
overall threshold can obviously be obtained by solving 
the percolation problem in a lattice in which each bond 
is a parallel junction of two conducting bonds of differ­
ent "color," say "blue" and "green." Assume that the 
probability of breaking the "blue" bond (1- Ps ) and the 
probability of the breaking of the "green" bond (1- Pel 
are given. Then the probability of breaking the double 
bond is (1- Ps){l- Pel. The overall percolation threshold 
occurs when the following condition is satisfied: 

(i-p.) (i-pe) =i-Pcr' (15) 

The foregoing arguments are illustrated in Fig. 5. The 
curves separating the region 4 from region 5 in this 
figure is described by expression (15). 

FIG. 5. Diagram characterizing percolation in the problem 
with capacitors and resistors that are independently discon­
nected with different probabilities (I-Pe) and (I-Po); I-re­
gion with percolation over the resistors but not over the 
capacitors, 2-region with percolation over the capacitors but 
not over the resistors, 3-region with percolation over both 
the resistors and capacitors, 4-region in which there is cur­
rent percolation but not over the resistors and capacitors 
separately, 5-region in which there is no percolation. The 
dashed lines correspond to the separate thresholds of perco­
lation over the resistors and capacitors. The solid diagonal 
lines correspond to the case Ps=Pe, which was experimentally 
investigated in problem 3. 
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starting from qualitative considerations based on 
percolation theory, we can expect to observe in this 
system, near the capacitance and resistance percola­
tion thresholds, effects that are analogous to those de­
scribed above in the discussion of problems 1 and 2. 
Let for the sake of argument P. <P., i. e., the resis­
tances are disconnected with large probability. Let 
the quantity P. be close to the resistance percolation 
threshold P. cr' The capacitor network is in this case 
farther from the percolation threshold Pe er' Then, in 
accordance with the concepts concerning the structure 
of the "infinite cluster," developed intl2 • 21, we can 
qualitatively visualize the system in the form of two 
networks-a resistance grid with characteristic mesh 
dimension L s and a capaCitor network with characteris­
tic dimension L e, where L. is the correlation radius 
for the capacitors and L. is the correlation radius for 
the resistors. Since the resistor network is closer to 
the percolation threshold, it is of much greater mesh 
(L.» Le). This gives rise to a situation qualitatively 
similar to problem 1, and one should expect at low fre­
quencies divergences of the effective specific capaci­
tance (the effective dielectric constant) of the system 
(see also Sec. 6). Analogously, ifP.>Pe-Peer, then 
at high frequencies one should expect the effective con­
ductivityof the system to increase with frequency. 

The experimental results obtained by us for problem 
3 confirm these considerations. We have observed that 
if the percolation over the resistors ceases before the 
percolation over the capacitors, then at low frequen­
cies the function em(xs) has a sharp maximum at the 
point corresponding to the cessation of the percolation 
over the resistors (here x. is the fraction of the discon­
nected resistors). Such a maximum is observed even 
when the fraction of the disconnected capacitors is only 
slightly smaller than the fraction of the disconnected 
resistors. 

6. QUALITATIVE ANALYSIS OF THE EFFECTS OF 
DIVERGENCES NEAR CRITICAL POINTS IN TERMS 
OF PERCOLATION THEORy2) 

For the sake of argument we consider only problem 
1, in which only the resistors are disconnected and the 
effective capacitance of the system diverges at low fre­
quencies. (The analysis for problem 2 at high frequen­
cies can be carried out in perfect analogy.) Let P < P cr, 

i. e., assume no percolation over the resistors, and 
(Per - p)/Pcr« 1. In this case the system contains in­
dividual finite clusters of interconnected resistors. 
The characteristic dimension of these clusters is equal 
to the correlation radius L, [12.2) which increases like 
(Per-P)"" as P-Pcr' The critical exponent v of the 
correlation radius was calculated inUl. In accordance 
with the universality hypothesis, it does not depend on 
the type of problem or on the character of the system, 
and is determined only by the dimenSionality of the 
space. [8,9) 

At low frequencies (F- 0), which are the ones at 
which the effective capacitance diverges, the suscep­
tance wel of one bond is small in comparison with the 
conductance Ri l of the bond. The system in question 
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can therefore bel'egarded qualitatively (at low frequen­
cies) as "metallic" finite clusters (resisters) separated 
by a dielectric (capacitors). In order of magnitude, 
the effective specific capacitance of such a system em 
is equal to the specific capacitance of a capacitor grid 
Cf (Cf is the mutual capacitance of two neighboring fi­
nite clusters) with cell dimension L. Thus, in the two­
dimensional case em = Cf/Cl , and in the three-dimen­
sional case em = Cf / LCl • 

We stop now to estimate the effective capacitance C/. 
The resistors belonging to the neighboring finite clus­
ters are separated by different distances in different 
places. At some pOints, the average number of which 
we shall deSignate by N, they are separated by only one 
bond with disconnected reSistors, i. e., they are con­
nected only by one capacitor Cl • These points obvious­
ly make a contribution CJ on the order of NC l to the 
capacitance Cf' There are also points in which the 
neighboring clusters are separated by 2, 3, 4, etc. 
periods of the initiallattlce, and all these places also 
contribute to Cf' We estimate here, however, only the 
contribution C~ from those pOints at which the neigh­
boring finite clusters are closest to one another (sepa­
rated by only one bond), and thus obtain a lower bound 
for the capacitance Cf' 

Let the resistors be disconnected with a probability 
1-P > 1 - Per. We connect mentally each of the discon­
nected resistors in such a system, with probability 
(Per-P)/(1-p). Then the total fraction of the connected 
resistors becomes P + (1 - P )(Per - P )/(1 - p) = Per, i. e., a 
critical situation arises, wherein the finite clusters 
merge into one infinite cluster. Each two neighboring 
finite clusters will have at the point P=P er on the average 
one common bond. This means that out of the N points, 
at which the ends of the finite clusters were separated 
from one another by one bond, one will be connected on 
the average with probability unity, i.e., N(Per-p)/(1 
- p) -1, whence N-1/(Per - p), and consequently CJ 
-C1/(Per -pl. Thus, em~ 1/(Per -p) for the two-dimen-
Sional case and ell! ~(Per-P)"Cl-") for the three-dimen­
Sional case. 

Thus, qualitative considerations based on percolation 
theory predict a power-law divergence of the effective 
dielectric constant of disordered systems on approach­
ing the percolation pOint, at frequencies much lower 
than Maxwellian: ell! -1/(Per - p)q, where q is a new 
critical exponent, the exact determination of which we 
consider to be an independent important and interesting 
problem. 

The authors are grateful to B. I. ShklovSkil and to 
A. L. Efros for numerous useful discussions. 

UIn this case the lattice site problem can be formulated in the 
following manner. Consider a lattice made up of bonds com­
prising the elements CI and RI in parallel. The bonds 
emerging from each site are replaced, with probability x, by 
bonds made up of elements C2 and R 2• 

2)The content of this section is fully based on ideas advanced 
by B. I. Shklovskii in a discussion of the experimental re­
sults reported above. 
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