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A microscopic quantum theory of a weakly ferromagnetic Fermi liquid is proposed. The spin-excitation 
spectrum, consisting of spin fluctuations of the paramagnon type and a transverse spin-wave branch, is 
determined. It is shown that at temperatures T< T J IEF (Te is the Curie temperature, EF is the Fermi 
energy) in the absence 'of a magnetic field (H = 0) the spin-density dependence S( T) is determined by the 
spin-wave contribution and is described by the law S(T)-S(O)- TlI2. In the region TJ/E~T< Tc the 
paramagnon contribution is dominant, leading to the formula S( T) = S(O) [1-(TITd /J j112. For Te< T<EF 
the susceptibility varies as x- T -4/3. The longitudinal susceptibility for T < Te , H..,...O diverges like H -[/2. 

The contribution of the spin excitations to the specific heat for 1> TJ IEF is proportional to Tin T. The 
calculations are performed by the methods of quantum field theory. 

PACS numbers: 75.1O.Dg, 75.30.Fv 

1. INTRODUCTION 

In most ferromagnets the magnetic order is the re­
sult of the exchange interaction. The Heisenberg model 
based on this mechanism gives an explanation of many 
properties of nonconducting magnetic systems, at both 
low and high temperatures. The interpretation of the 
properties of metallic ferromagnets follows from the 
consideration of ferromagnetic Fermi liquids. [1-3] 

A special place amongst ferromagnetic metals is oc­
cupied by weak band ferromagnets. The most well­
known of these are the inter metallic compounds ZrZ~ 
and SC3In. A characteristic feature of such systems 
is that their average magnetic moment per atom is 
found to be considerably smaller than its nominal value 
at all temperatures. The Curie temperature T e is well 
small compared with the Fermi energy Ep: Te« €p. 
The magnetic susceptibility as T- 0 is large compared 
with the Pauli susceptibility. The increase in magnetic 
moment that occurs with increasing intensity of the ap­
plied magnetic field does not cease, right up to the 
strongest fields that have been used in the experiments. 

The first attempt at a theoretical treatment of weak 
band ferro magnets was undertaken in the papers[4,5] of 
Edwards and Wohlfarth, who assumed that the main 
contribution to the thermodynamics of these systems is 
given by the thermal one-electron excitations. Despite 
the agreement of the theory of [4,5] with the experimen­
tal data on the magnetization in strong fields, the tem­
perature dependences stemming from the theory turned 
out to be substantially weaker than those observed ex­
perimentally. A result of this deficiency was, in par­
ticular, a considerable overestimation, by a factor of 
almost EF/Te, of the magnetic susceptibility in the pa­
ramagnetic region of temperatures. 

Murata and Doniach[6] pointed out that the principal 
temperature dependence of the quantities for a weak 
ferromagnet arises from the thermal excitation of spin 
fluctuations. However, they ignored the quantum ef­
fects, which are important because of the low-tempera­
ture character of the magnetic transition. In a sUbse­
quent paper by Murata, [7] the quantum effects were 
taken into account qualitatively by the introduction of a 
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cutoff in the integration over the wave-vectors of the 
spin fluctuations. In both papers[8,7] their authors 
started from a model classical Hamiltonian describing 
a one-component fluctuating field. 

In the present paper a microscopic quantum theory 
of a weakly ferromagnetic Fermi liquid is proposed. 
In Sec. 2 the spectrum of the spin excitations is found. 
It consists of spin fluctuations of the paramagnon type 
and a transverse spin-wave branch. In Secs. 3 and 4 
the thermodynamic properties of the system are con­
sidered. For T« T~Ep, in the absence of an external 
magnetic field (H= 0), the temperature variation of the 
spin density S(T) is determined by the spin-wave con­
tribution and is described by the well-known law 

8(T)-8(O)-T"'. 

In the region T~/EF« T< Te, H=O, the spin density is 
given by the formula 

8(T) =8(0) [t- (TITe) '''],,'. 

The susceptibility of the paramagnetic phase in weak 
fields for T e« T« Ep varies according to the law 

X-T-'I,. 

The longitudinal susceptibility for T< Te has a diver­
gence - H -1/2, due to the spin-wave contribution. The 
contribution of the spin fluctuations to the specific heat 
Cs of a weakly ferromagnetic Fermi liquid for T» T~/ 
ep is proportional to TInT. In Sec. 5 the limits of ap­
plicability of the theory developed are established. In 
the Appendix we give the derivation of a number of re­
lations for the vertex parts determining the interaction 
between the spin excitations. In treating the spin den­
sity and susceptibility we neglect the contribution of the 
thermal Fermi excitations, which is essentially small 
compared with the contribution of the spin excitations. 
We also disregard the influence of interactions of a 
magnetic nature that are small compared with the ex­
change interaction. 

It shoilld be noted that dependences for S(T) (T» T~ 
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eF), X and Cs analogous to those given above have also 
been obtained in the paper[7] by Murata. However, the 
classical model which he used did not give the possi­
bility of establishing the numerical coefficients in X and 
C. or of finding the quantitative relationship between 
8(0) and the parameters characterizing the system. In 
this sense, unlike ours, the results of Murata have a 
qualitative character. Because of the one-component 
nature of the fluctuations considered in his paper, [7] 

the effect of transverse spin-waves on the thermody­
namic properties of the ferromagnet was also taken in­
to accoWlt in m • 

2. SPIN-EXCITATION SPECTRUM 

The spectrum of the single-particle excitations of a 
Fermi liquid is given by the poles of the Green fWlc­
tion G .. B(p) [S] (p={e, p} is the {energy, momentum}: a, 
(3 are the spin variables). For e-O, Ipl-P., P. (P. 
and P. are the Fermi momenta of electrons with oppo­
site spin projections), the G-function has the form[Z]: 

(2.1) 

Here 5mB are the spin-t matrices, n is the Wlit vector 
in the direction of the total spin of the system, E.(P) 
=v.(lpl -P.) are the energies of the quaSi-particles, 
v. and v_ are their velocities, and a. and a. are renor­
malization constants. 

The wealmess of the ferromagnetism corresponds to 
the condition 

In the calculation of the spin-excitation spectrum the 
difference in the quasi-particle energies e.(p) and E_(P) 
is substantial only in the region of momenta I pi - P., 
P., where I E.(p) - eJp I ex: I E.(P) I. Inasmuch as the ve­
locity difference (v. -vJlv.ex: t:..jP. leads to relative cor­
rections to the difference e.(p) - E.(P) of the order of 
fllp.« 1, we shall put v. ~ v.~ v. For an analogous 
reason, we shall assume that a.~a.~a. 

By virtue of the fact that the difference in the volumes 
of the Fermi surfaces of electrons with opposite direc­
tions of the spin projection is relatively small, local 
variations of spin density lead to a redistribution of the 
Fermi quasi-particles only in the viCinity of the Fermi 
surfaces, where, because of the small damping, the 
concept of Fermi quasi-particles remains valid. 
Therefore, the spin oscillations in a weakly ferromag­
netic. Fermi liquid can be considered as collective ex­
citations in a system of Fermi quasi-particles. This 
means that the singularities of the two-particle vertex 
part I' that correspond to these excitations[S] are due 
to the same mechanism as zero-soWld in a nonferro­
magnetic Fermi liquid. [9] Namely, the source of the 
singularities of the function I'mBYO( p, p'; k) in the rno­
mentum transfer k={w, k}{p +k, p' are the four-mo­
menta of the quaSi-particles before the scattering, and 
p, p' +k are those after the scattering) is the diagrams 
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containing sections with two G-lines with momenta p 
+k andp. 

We first consider the singularities of the transverse 
(in the spin) component I'J.(p,p';k)= I' ... .(p,p';k) of the 
vertex part at zero temperature. In analogy, with the 
case of a nonferromagnetic Fermi liquid[9], with the 
aid of the equality (2. 1) we separate the singular ele­
ment of the diagrams for I'J.-the product G.(P+k) 
xG.(p)-into singular and regular terms: 

!I) 
G_(p+k)G.(p)=2nia'6(e)6(e(p» k + G_(p+k)G.(p). 

!I)-V~-V . 

(2.2) 
The first term on the right here corresponds to the 
singular (rapidly varying with w and k) contribution, 
arising from the integration over the vicinities of the 
Fermi surfaces, in the integral of the product of G­
fWlctions over p and E; e(p)=v(lpl -PF); PF=(P.+PJ/2. 
The regular term G.G. corresponds to the integra-­
tion over regions of e and p far from the Fermi sur­
faces. The decomposition (2.2) has been performed 
in such a way that the quantitiesG.G. and c::c:: coincide 
for w = O. 

We denote by rJ.(p, p'; k) the fWlction defined by the 
set of those diagrams for I'J. in which the singular sec­
tions G_(p +k)G.(p) are replaced by GJp +k)G.(p). 
When (2. 2) is taken into accoWlt the equation relating 
fJ. and I'J. has the form 

fT.J.(p, p'; k)=~.J.(p, p'; k)+v S d40 1 fT .J.(p, PI; k) : k fT .J.(p" p', k) 
n !I)-V -VI 

Here we have introduced the notation 

fT.J. (p, p'; k) =a'r.J. (p, p'; k) 1, •• --0, 

~.J.(p, p'; k)=a,r.J.(p, p'; k) 1.-.--0, 

(2.3) 

(2.4) 

v=P~/21J'2V is the density of quasi-particle states at one 
of the Fermi surfaces (their difference must be ne­
glected), Vl = vpt! I Pll, and dOl is the element of solid 
angle in the direction of the vector Pl. 

We now separate the function ?J.(P, p'; k) into isotropiC 
and anisotropic parts with respect to the variables p 
and p': 

~.J.(p, p'; k)=r.J.'(p, p'; k)+~.J.·(p, p'; k). (2.5) 

The anisotropic part ~t remains finite as w, k- O. In 
view of the fact that its (W, k) -dependence ariSing from 
the integration over regions far from the Fermi sur­
faces is much weaker than that in the kernel of Eq. 
(2. 3), in the low-frequency and long-wavelength limit 
the fWlction~f must be assumed to be independent of 
w and k: 

(2.6) 

As regards the isotropiC component if! of? J., it be­
comes infinite as k - O. This is connected with the fact 
that for w = 0 and k - 0 the isotropic part of the fWlction 
iTi., with which, according to (2.3), iTJ. coincides in this 
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case, behaves like l/k2 • This follows from the fact 
that the transverse component of the uniform static 
susceptibility, which is related linearly to ~, is equal 
to infinity in the absence of magnetic anisotropy. Thus, 
the quantity fj t can be written in the form 

ff".l.'(p, p'; k)=-""-·/b'k'. (2.7) 

Here b is a constant with the dimensions of length 
(- pi). The negative Sign of!'ff is dictated by the re­
quirement that the ground state be stable. The order 
of magnitude of the constant b is due to the fact that !'flo 
is determined by the properties of the system far from 
the Fermi surfaces, and, consequently, depends weak­
lyon their spin splitting. In principle, the quantity 
?ff could also contain dependence on the frequency w, 
but in solving Eq. (2.3) this must be neglected in com­
parison with the stronger dependence of the kernel of 
the equation. 

We shall seek the solution of (2.3) in the form 

(2.8) 

Analysis of Eq. (2.3), with allowance for the equalities 
(2.5), (2. 7) ,and (2.8) and the fact that we are inter­
ested in its solution near the poles of :TJ. in w and k, 
leads to the conclusion that, to within quantities of 
relative order b2 k 2, it decomposes into two equations: 

(2.10) 
The solution of (2.9) has the form 

frJ.·(k)=v-· [~ln( Ol-II(':Hlkl)+UI) -b'k']-' 6-+0.(2.11) 
2111kl Ol-v(~-Ikl)+ill ' 

The infinitesimal extra term io under the logarithm 
ensures, as usual, the correct choice of the imaginary 
part of the logarithm. 

In the region of wave-vectors I kl S A the function 
g-i(k) (2.11) has a real pole 

Ol.(k) "'211Iklb'k'/ln (~+Ikl ) 
~-Ikl . (2.12) 

It corresponds to the usual spin-wave branch, with a 
quadratic spectrum for I kl «A: 

(2.13) 

It follows from the expression (2.11) and from (2.12) 
that the quantity w s(k) - 0 as I k I-A. A more detailed 
analysis with allowance for the difference in the veloci­
ties of quasi-particles with opposite spin directions 
leads to the conclusion that the quantity ws(k) does not 
reach zero as I kl - A but tends to a finite limit w:la: 

where w:u. -V Ab2A2 is the maximum value taken by the 

1038 SOy. Phys. JETP, Vol. 43, No.5, May 1976 

frequency ws(k) for Ikl <A. 

For Ikl >A the pole of !Ti(k) becomes complex. In 
the region Ikl »A it is found to be pure-imaginary. In 
this case fri(k) has the form 

v-· 
fr.l.'(k)=- b'k'-inOl/211Ikl' Ikl>':\. (2.14) 

This expression describes the paramagnon branch of 
spin fluctuations, the "dispersion law" of which is 

(2.15) 

The solution of Eq. (2.10) can be sought by expanding 
the quantities appearing in it in spherical harmonics. 
Here it must be remembered that, in accordance with 
the definition of the function iT f, the isotropic harmonic 
(l = 0) is absent in its expansion. The frequencies of 
the spin oscillations determined by the poles of the so­
lution of (2.10) remain finite as k- 0 and are equal to 
vA in order of magnitude. Those oscillations for which 
the corresponding frequencies w,(O) < vA have a spec­
trum that falls off with increasing I k I. For I k I - A 

For I k I > A the poles of the function !'f f that corre­
spond to these branches are complex with real and 
imaginary parts that are equal in order of magnitude. 
The important point is that both parts are much larger 
than the paramagnon frequencies (2.15). The aniso­
tropic spin-wave branches, for which w,(O) >vA, have 
an increasing spectrum. At I k I »A they emerge into 
the linear dispersion law characteristic of spin-waves 
of the zero-sound type. [9] 

The treatment of the longitudinal spin component of 
the vertex part, 

is analogous to that of the transverse component. The 
singular sections of the graphs for r ll, unlike those for 
the transverse component, consist of G-functions with 
the same direction of the spin projections. Therefore, 
in going over from rJ. to rn in formula (2.2) and, cor­
respondingly, in the equation of the type (2.3), we must 
put A = O. If, as we did for !'flo' we separate the func­
tion!'f" analogous to it into isotropic and anisotropic 
parts (?f~, ?~, then, in view of the regular character 
of iT~, its dependence on the argument k can be omitted 
and, to within quantities - (A/py)2, we can put it equal 
to iT 1. The symmetric part T ~ of the function !'fll , be­
ing related to the longitudinal susceptibility, is anom­
alously large in a weak ferromagnet. The relative dis­
placement A of the Fermi surfaces plays the role of 
the inverse correlation length in the case of longitudinal 
spin fluctuations. Therefore, for Ikl »A, the func­
tions iff\ and iF", being determined by regions of inte­
gration far from the Fermi surfaces, should COinCide, 
and, consequently, with allowance for the equality (2.7) 
the quantity fTff can be written in the form 
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(2.16) 

After this, the function :T;I(P, p'; k), defined analogously 
to ~(P, p'; k) (2.4), can be decomposed into a sum of 
isotropic ru and anisotropic!f': components, which, in 
analogy with the case of !f'1 and !f'f, satisfy two inde­
pendent equations of the type (2.9), (2.10), to within 
quantities of relative order - (O! + b Z k Z). The solution 
for the symmetric part frtt has the form 

V-I 

fry' = - a:+b'k'-mm/2vlkl . 
(2.17) 

It determines the longitudinal paramagnon spin-fluc­
tuation branch with the "dispersion law" 

(2.18) 

For Ikl »~ the frequencies of the longitudinal (2.18) 
and transverse (2.15) branches of the fluctuations coin­
cide. 

The poles of the anisotropic part ~ of :Til divide into 
two groups. One of these determines the spectrum of 
longitudinal spin-waves of the zero-sound type, with 
frequencies -viti. The second corresponds to com­
plex poles, the real and imaginary parts of which sub­
stantially exceed the frequencies of the paramagnon 
branch. For this reason, as in the case of the trans­
verse modes, the anisotropic spin fluctuations at tem­
peratures T« "'F give a negligibly small contribution 
to the thermodynamics of a weak ferromagnet. 

In the folloWing we shall need expressions for the 
Green functions constructed from the spin-density op­
erators S,{x): 

Here S,(x) =$:(x)S!s$s{x); $: and $s are electron crea­
tion and annihilation operators; x={r,t} is the space­
time coordinate; ( .•. ) is the symbol for averaging over 
the ground state; T is the time-ordering operator; S, 
= (S,(x» is the average value of the spin-moment den­
sity of the system. The retarded Green function DfJ 
corresponding to D'J determines the linear response of 
the spin density to an external magnetic field. 

According to the general rules of the diagram tech­
nique of [8], the Fourier transform D i./(w , k) of the func­
tion D'J(x-x /) is expressed by the equality 

dip { . 
. D'I(oo,k)=-i S (2n)' Sa~'G~T(p+k)G'a(P) 

d' , 
X [8T,I_i S (2~)' r "".(p,p', k)Goo·(p'H)S: .•. G •.• (p') ]}. 

Dividing the integration over the momenta into regions 
lying in the viCinity of and far from the Fermi surface 
and taking into account the equalities (2.2) and (2.4), 
Eq. (2. 3) and the equality 

which follows from the conservation of the total spin, 
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we obtain 

V' 
D .. (oo, k) = D •• (00, k)=T[fr J.'(oo, k)+rJ.·(-OO, k) I, 

v' 
D •• (00, k)=-D .. (oo, k)=-t'4[fr J.·(m,k)-fr J.'(-fIl, k) I, 

V' 
D,,(oo,k)=-fru'(oo,k); D .. =D,,=O, t+l:. 

2 
(2.19) 

(The z-axis is chosen in the direction of the resultant 
spin of the ferromagnet.) Taking into account the 
eq~ities (2. 11)-{2.16) and going over from the func­
tion D'J to the retarded Green function D1J' defined in 
the usual way, [8] from (2. 19) we obtain 

H _ R __ 00. (k) . ( 0) 
D .. (oo,k)-D .. (oo,k)- S (m+ill)'-oo.'(k), Ikl<~, 2.2 

V 1 
D .. R(oo,k)=D./(oo,k)=- 2 b'k'-inoo/2vlkl' Ikl>~; (2.21) 

V 1 
D.: (00, k) = -"'2 a:+b'k'-inoo/2vlkl (2.22) 

In deriving formulas (2. 19)-{2. 22) we have taken into 
account that the absolute magnitude s= 181 of the av­
erage spin-density vector is determined by the semi­
difference of the volumes of the Fermi surfacesUO] and 
is equal to 

(2.23) 

Up to now it has been assumed that an external mag­
netic field does not act on the system. The switching­
on of a static uniform magnetic field of intensity H 
leads primarily to dependence on H= I HI of the relative 
displacement ~ of the Fermi surfaces that appears in 
the above formulas. In addition, the magnetic field 
leads to renormalization of the quantities ?J. and ~I' 
Inasmuch as the longitudinal magnetiC susceptibility 
- 6"", besides the appearance of a dependence of the 
constant O! on H in (2.16) and (2.22) the possibility of 
the appearance of a term - HI ~ in the denominator of 
?1 (2.7) is not ruled out. In fact, this happens, and 
follows from the formula (A. 9) obtained in the Appendix: 

S 
limD .. R(O, k)= lim D ... (0. k)= ---, 
'_0 ,_0 2jJ.oH 

where lJ.o is the Bohr magneton. Hence, taking into ac­
count the first formula (2.19), the equalities D1J(0, k) 
== D'J(O, k) and !f'1(0, k) = F'1(0, k), and formula (2.7), we 
obtain the expression for the function g"'1 in the pres­
ence of a magnetic field: 

frJ.· = - b'k'+2110H/v~ 

Correspondingly, formula (2.11) for the function!11 ac­
quires a term -2IJ.oHlv~ in the denominator of the 
right-hand side when the field is switched on, and the 
formula for the spin-wave spectrum for J kJ «~ (2.13) 
takes the form 

(2.24) 

The formulas (2.20)-(2.22) for DfJ(w, k) preserve their 
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form when we go over to the case H* O. Here it must 
be recalled that the spin-wave frequency appearing in 
(2.20) is determined by the equality (2.24), and the 
quantities ~ and Cl! are functions of the field strength H. 

Formally, the results obtained are not changed when 
we go over to nonzero temperatures, under the condi­
tion T« f F • Because of the small size of the contribu­
tion of the thermal Fermi excitations the modification 
of the formulas (2. 20)-{2. 22) for Dfj(w, k) for T * 0, 
W - T consists only in taking into account the tempera­
ture dependence of the quantities ~ and Cl!, and this will 
be considered in the next section. 

In the paramagnetic temperature region (T > T c) for 
H=O the function DfJ becomes isotropic: DfJ=DRoiJ" 
The quantity DR coincides in form with the function D:. 
(2. 22) in the ferromagnetic temperature region. Thus, 
the low-frequency spin fluctuations at T > Tc reduce to 
three degenerate paramagnon branches. 

3. SUSCEPTIBILITY AND SPIN DENSITY FOR T=I=O 

The longitudinal differential susceptibility to a static 
uniform magnetic field is determined by the equality 

X=-(21l0)'lim D,,"(O, k; T)=-(21l0)'0,,(0,0; T). (3.1) 

Here 0 ij(iwn , k; T) is the spin Green function, corre­
sponding to D iJ, in the Matsubara representation[S]; Wn 

= 21l"n T. To find the temperature dependence of the 
function 0 ij we shall use the method described in the 
book[S] for calculating the temperature corrections. 
Since the principal temperature dependence arises on 
account of the thermal spin excitations, the main con­
tribution to .0 •• (0,0; T)-0 .. {0, 0, 0) will be given by 
those diagrams which contain internal lines .0iJ{iwn, k; 
T) with frequencies W - T. Instead of summing over 
the frequencies of these lines (T~) we must apply the 
operation 

Integration is performed over all the remaining fre­
quencies. 

We shall start the calculation from the paramagnetic 
temperature region T>Tc, for H=O. We introduce the 
quantity $, which is obtained from q) •• (0, 0; T) by elimi­
nating the temperature-dependent contribution of the 
thermal spin fluctuations. If we neglect the contribu­
tion of the thermal Fermi excitations the quantity fb is 
a temperature-independent constant. After Singling 
out one internal Ql-line with frequencies W - t from the 
graphs for 0 •• (0, 0; T), we obtain the following dia- . 
grammatic expression for ?15-1 -q);!{O, 0; T): 

z z 

(3.2) 

The wavy line corresponds to the function 0,,,,. The 
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slash indicates that the operation 

T~-S~· 2n 

should be applied to this function. The blob on the 
graph denotes the four-point vertex riJ'''' of the inter­
action of the spin fluctuations. At temperatures T 
much lower than the temperature To defined by the 
maximum spin-fluctuation frequency, the dependence 
of the quantity -riJ'''' on the frequenCies, wave-vectors 
and temperature must be neglected. With neglect of 
relativistic magnetic interactions, the tensor structure 
of the quantity riJ'm has the form 

(3.3) 

When we take this equality into account the analytic ex­
pression of the equality (3.2) takes the form 

(3.4) 

~ (T) = - ~ (T ~ - S ~:)S (::) , (0" (iro, k; T) +20.,(iro, k; T». 

(3.5) 
Except in the region T - T c of critical spin fluctua­

tions (the corresponding conditions will be found be­
low), diagrams for 215 -1 - £l) ;~(O, 0; T) with more than one 
internal Ql-line with W - T have a small statistical 
weight for T c > T > To and can be omitted. We note that 
the quantity ii5 does not coincide with 0 .. (0, 0; T) for T 
= 0, H = O. The reason for this is the appearance of the 
spontaneous spin moment as we move into the region 
T< Tc. 

Going over to the ferromagnetiC temperature region 
T< T c, on an equal footing with the temperature cor­
rections arising on account of the spin excitations we 
shall also take into account the temperature dependence 
due to the spontaneous spin moment S( T):; (o5.(x». Here 
it is convenient to regard the quantity SeT) as the con­
densate of the field oS.(x). A small value of seT) allows 
us to confine ourselves to taking account of graphs with 
the smallest number of condensate lines. The simplest 
graph of this type for $ -1_ 0;;(0,0; T) has the form 

(3.6) 

The jagged lines correspOnd to the condensate. The 
four-point vertex here denotes the vertex part that is 
irreducible with respect to internal cuts through one 
®-line. To within higher orders in the temperature 
and powers of the spin density, it COincides with the 
quantity y •••• appe~ring in the equality (3.2). 

Of the diagrams that are more complicated than (3.2) 
and (3.6), those containing sections with two 0-lines 
in the horizontal direction merit special treatment for 
T < T c. The simplest of them has the form 

(3.7) 

Owing to the pole character of the functions 0"", and 
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q)yyfor w=O, k-O (cf. (2.20), (2.24», this graph di­
verges like H -1/2 in the limit H - O. This means that, 
besides (3.7), it is formally necessary to sum all dia­
grams with an arbitrary number of sections with two 
q)-lines, as a result of which (3.7) is replaced by the 
diagram 

~, (3.8) 

in which the circle denotes the effective three-point 
vertex that takes into account the temperature correc­
tions arising from the arbitrary number of intermedi­
ate singular sections. 

In order to simplify the analytic expression for the 
graph (3.8), we shall make use of the identity (in which 
the vertical q)-line corresponds to w = 0, k - 0) 

z 

.~ 
£ J 

(3.9) 
j 

This follows from the fact that its left-hand side can 
be obtained from the function f!l)iJ by Singling out one 
condensate line from the graphs for it and then replac­
ing this line by an insertion for the interaction with the 
field S. for w= 0, k- O. Comparing (3.8), (3.9), (3.2) 
and (3.4), we arrive at the conclusion that the analytiC 
expression for the diagram (3. 8) is equal to 

(3. 10) 

Collecting now (3.4), (3. 6) and (3. 10), we obtain the 
final expression for the quantity q; -1_ q);~(0, 0; T) for 
T<Tc: 

(3. 11) 

We can convince ourselves that, at temperatures not 
too close to T c, the diagrams not taken into account by 
this expression have a small statistical weight; we have 
therefore discarded them. 

For H = 0, T > T c, the spin density vanishes lind the 
expression (3.11) goes over into (3.4). Inasmuch as 
the interaction of the magnetic field with the system 
occurs directly through the field S., the equality (3.11) 
is also valid for the paramagnetic temperature region 
in the presence of a magnetic field,when S '" O. 

It should be noted that those divergences in the dia­
grams which are due to transverse spin-waves do not 
have the fundamental character inherent in the diver­
gences induced by the critical fluctuations as T - T c' 
The point is that the exact vertices for the interaction 
of transverse spin-waves with each other, which take 
into account also the exchange of virtual fluctuations of 
the longitudinal spin-component, vanish in the long­
wavelength and low-frequency limit for H = 0 (see 
formula (A. 17», As a result, the divergences asso­
ciated with the transverse spin-waves cancel. 
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Further transformation of the expression (3. 11) is 
necessary to determine the equilibrium spin density 
S=S(T,H). With this purpose we shall consider the 
function itT,S), which is obtained from F(T,H), the 
free energy per unit volume of the system, defined in 
the usual way, by changing to the variables T, S: 

F=F+2~oSH. 

The function itT, S) satisfies the condition 

of(T, S)/oS=2~oH. (3.12) 

The quantity itT, S) is determined by the set of closed· 
connected diagrams containing, in particular, the inter-' 
action with the condensate field S. The functions 
itT, S) and :l>u(O, 0; T) are connected by the obvious re­
lation 

o'F(T, S) 
aS' = (2~O)'')C'=_f!l)" -I (0, 0; T). (3.13) 

Substituting the equality (3.11) into this, and then com­
paring (3.13) with (3.12), we obtain 

(3. 14) 

Taking into account that i3 -.0 as T- 0, from (3.14) we 
obtain 

(3.15) 

When this equality is taken into account, the relation 
(3. 14) takes the form 

1/'1S3_'/'1So'S+1S~ (T) =2~oH. (3.16) 

Using the condition S - 0 for H = 0, T - T c - 0, from 
this we find 

(3.17) 

At T = 0 the quantity i3 and its derivative with respect to 
S vanish. Therefore, it follows from (3.16) that 

XoSaX(T=O, H=O) =3(2~.)'/'(S.'. (3.18) 

USing the equalities (3.17) and (3.18), we can rewrite 
Eq. (3.16), relating the quantities S, Hand T, in the 
form 

(3.19) 

We next study the calculation of the function i3(T) ap­
pearing in the last equality. Changing in·formula (3.5} 
from the summation to an integration 

n S aOl Ol T l -+ -cth-
.... 4ni 2T' . 

over a contour enclosing the poles of the function 
coth(w/2T), and then, as usual, [8] deforming the inte­
gration contour on to the real axis of the variable w, 
we obtain 
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S~ dw 1 S dk 
~(T)=- -2 ~1 -(? ),Im[D,,"(w,k)+'/,D,,R(w,k)]. 

1£ e - ... n , 
(3.20) 

The main contribution to the integral here arises from 
frequencies w- T. At such frequencies and at tem­
peratures not too close to T c, diagrams of the type 
(3. 7) and (3. 8) give a negligibly small contribution. 
Therefore, in place of the function D fJ in (3. 20) we 
must substitute the expressions (2. 20)- (2. 22) in which, 
according to (3.11) and (3.15), the quantity a is equal 
to 

(3.21) 

Using the relation (3. 16), we can show that in the 
limiting cases 2JLoH «yS3(T, 0)/6 and 2JLoH »S3(T, 0)/6 
the quantity a (3.21) is equal to 

o.='/,vyS', 2fJ..H«.'/.lS'(T, 0); 

n='/.v1S', 2fJ..H:»'/'lS'(T,0). 
(3.22) 

In accordance with the existence of the two types of 
spin excitations, we separate the quantity (3(T) (3.20) in­
to a spin-wave contribution (3sw and a paramagnon con­
tribution (3p: 

In the calculation of (3..., the term D : .. in (3. 20) must be 
omitted, and in place of D:" we must substitute the ex­
pression (2. 20) and limit the integration over k by the 
condition 1 k I < a: 

1 S dk 1 ~.".(T)=-S . 
3 (2n)' exp(w.(k)/T)-l 

(3.23) 

At temperatures T «a3 / 2 vb -1 the paramagnon contribu­
tion (3p(T) is proportional to T 2 and thereby turns out to 
be indistinguishable from the T 2 contribution of the 
Fermi excitations that we have neglected. Therefore, 

(3.24) 

In the temperature region T» T *, in (3.20) we can, 
with a sufficient degree of accuracy, assume that D:" 
=D: .. and extend the integration over k to the whole 
space: 

5 m 1 dk 
~p(T)=--;;-S dw WIT_IS -(? )' [mD,,"(w,k), 

d:'1 0 e ... Jl 

T:»T'. 

Substitution of formula (2. 22) into this and calculations 
give 

~p(T)"" 5f('~')"~~'/') v~o (~) 'I" 
3f>.'T'Y,{ b To 

(3.25) 

To=2n-'vb-', T:»T', 

where rex) is the gamma function and I; (x) is the Rie­
mann zeta-function. The terms discarded in (3.25) 
have relative order (T * /T)1/3. The contribution of the 
spin waves for T» T * corresponds to the same order. 
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Therefore, 

~(T)""~p(T), T:»T'. (3.26) 

We now calculate the spin density in different limit­
ing cases. For H = 0, from (3.19) we find 

SeT, 0) =S.(1-~(T)/~c)"·. 

Hence, using formulas (3.15), (3.17), (3.23) and 
(3.24)-(3.26), we shall have 

f dk 1 
S(T,O)=S.- T<T'; 

Ik~<' (2n) , exp(w.(k)/T)'-1 

S(T,O)=S.[l-(T/Tc)'I,]\ T·<T<Tc. 

(3.27) 

(3.28) 

(3.29) 

When the expression (2. 13) for the spin-wave spec­
trum at H = 0 is taken into account, the formula (3.28) 
leads to the well-known T 3/2 law for the temperature 
dependence of the spin density for T «T *: 

S(T,O)=So- C('/.) (_T_)'h. 
8n" vllb' 

From formulas (3. 17), (3.25) and (3.26) we obtain an 
expression for the spin density at T, H = 0: 

S.' 5f('I,) ~ ('I,) vT. (.!i) 'I, . 
6n'1'3 b' T. 

(3.30) 

With the assumption that the energy corresponding to 
the vertex l' and also To = 21T-1vb -1 are of the order of 
e p, we find from (3.22) and (3. 30) the estimates: 

T"=o."vb-'-Tc'/e" H=O; 

II (T=O, H=O) "" 2v-'So _ (!.:..) ,/, . (3.31) 
PF Ep Ep 

The second of these estimates leads to the conclusion 
that w:- -vab 2a2, the maximum spin-wave frequency 
at T = 0, H = 0, has the same order of magnitude as T *. 

We shall consider now the case H ~ O. In weak mag­
netic fields, satisfying the condition 

2fJ.,H«.'/.lS'(T,0), 

taking into account the expression (3.23) and the weak 
dependence of the quantity (3p(T) on H, we obtain 

1 -
SeT, H)= S(T,0)+-xH-6S.w. 

2fJ.o 
(3.32) 

Here we have introduced the notation: 

_ 3 (2fJ..) , (2fJ.o) , 
X = l S .(T,O) 21 (~c-~ (T» , (3. 33) 

6S = S ~[1 1'] 
oW "'<, (2n)' exp(w,(k,H)IT)-1 exp(w.(k,0)IT)-1 . (3.34) 

In the limiting cases 2JLoH «T and 2JLoH»T, we ob­
tain for the quantity 5S &W the expressions 

liS =_ 1 
oW 4nb' 

T(2fJ..H)'" 

(vll)'" ' 
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1 T ) ", ( ( 2/LoH ) ( 3 )) 
68,.=- g,,'I'b' (-;;;\ exp --T- --~ T ' (3.35) 

T«2!l,H. 

In the limit of strong magnetic fields, satisfying the 
inequality 2J.LoH» yS3(T, 0)/6, according to (3.16) the 
spin density is described by the expression 

(3. 36) 

We return now to the question of the magnetic sus­
ceptibility. According to (3.1), (3.11) and (3.15), 

(3.37) 

In the limiting case of weak fields, 

2/LJI<.'f.,,8'(T, 0), T<Te, 

using the relation (3.16) and the obvious identity 

a~ _ 2 _, d~ rs- /LoX dH ' 

we rewrite (3. 37) in the form 

_ 6/Lo d~ 
x=x~s dH' (3.38) 

The quantity X is defined by formula (3. 33). In the dif­
ferentiation of /3 with respect to H we must take into ac­
count only the contribution of the spin-waves to which 
the Singularity of the diagram (3. 8) corresponds. With 
the aid of formula (3.23), with the supplementary con­
dition 2J.LoH «T, from (3.38) we find 

(3.39) 

We recall that the quantity v A is related to S by the 
equality S = !IV A/2. It follows from (3. 39) that the 
longitudinal susceptibility becomes infinite as H - O. 
The second term in (3. 39) becomes the main contribu­
tion for 

Te"'T' 8 
2!LJi <. --'/'--8 . 

8, 0 

For T «2J.LoH «yS3/6 the second term in (3.38) can 
be neglected and then 

x=i..: 3(2110)' , T«2/LoH«'/.,,8'(T,0). 
,,8'(T,0) 

(3.40) 

In the case of strong magnetic fields (2J.LoH» yS3(T, 0)/ 
6), according to (3.37) and (3.16) the susceptibility ac­
quires the form 

X 
2(2/Lo)' 

,,8'(T,H) , 
(3.41) 

We shall now consider the paramagnetic temperature 
region T > T c. It follows from Eq. (3. 16) and the 
equality (3.17) that, in weak magnetic fields 2J.LoH «y(/3 
- (:lc)S/2, the spin density is linear in the field: S 
= (2J.Lor1xH. In this case the susceptibility is equal to 
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(3.42) 

For T > T c the condition T» T * <= (l3/2 vb -1 is fulfilled 
and, therefore, the function /3(T) is determined by the 
paramagnon contribution. Using formulas (3.25) and 
(3. 42) we obtain 

(2110)' 
x= ,,~cf(T/Tc)'/'-l] 

~ = 5r(·/.)~(·/.) vTo (~) 'I •. 
C 36,,'13 b' T, 

(3.43) 

In the temperature region T c «T « £1' the formula 
(3. 43) takes the form 

x"" (2/Lo)' (~) '/, . 
"~e T 

In the case of strong magnetic fields 2J.LoH» y((:l 
- /3c)S/2, the formulas for the spin density and sus­
ceptibility for T > T c reduce to (3. 36) and (3.41). 

4. SPECIFIC HEAT 

The contribution of the spin excitations to the tem­
perature-dependent part of the free energy F per unit 
volume for T «To is given by the expression 

1 ( "\' S dOl \S dk -6F'=T T ~ - I;'J (2,,)' Spln[-!l)-' (iOl,k; T)]. (4.1) 

The symbol Sp (<= Tr) refers here to the indices labeling 
the components of the function f!l)IJ' After the change 
from the summation over discrete frequencies to inte­
gration the equality (4.1) acquires the form 

S~ dOl 1 S dk A 

6F.= -;-ewIT_1 (2,,),ImSp ln[-D"-'(0l,k)]. 
o 

(4.2) 

Substituting the expressions (2. 20)- (2. 22) for the func­
tion D fJ into this and performing the integration over 
wand k, we obtain the following expression for the spe­
cific heat due to the spin excitations: 

1 T To 
6"b'T,lny., T<.T' 

(4.3) 
1 T T, 

6"b'T,"lny, T>T'. 

In calculating C 3 we have neglected the spin-wave con­
tribution, which is small compared with (4.3) (- T 3/2 

for T «T*), and the nonlogarithmic terms -b-sT/To' 

5, CONCLUSION 

In the preceding sections we have developed a theory 
of a weakly ferromagnetic Fermi liquid under the as­
sumption that the interaction between the spin fluctua­
tions weakly renormalizes the initial quantities. This 
assumption is certainly violated in the critical region 
T - T c. In order to find the criterion for applicability 
of the theory we shall consider the renormalization of 
the four-point vertex of the interaction of the spin fluc­
tuations, defined by the constant y, The simplest 
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graph describing the temperature correction to I' is 
the following: 

(5.1) 

Inasmuch as the phase-space volume corresponding to 
the spin-waves tends to zero as T- T a, the intermedi­
ate 0-lines in the graph essentially correspond to pa­
ramagnons. With the aid of the expressions (2.21) and 
(2. 22), we find that the relative correction to I' arising 
from (5. 1) has the order /I 2.,v -3T a a-1 / 2. In order that 
it be considerably smaller than unity it is necessary 
that a» (Ta/eF)2. In the limit T-Ta, according to the 
equalities (3.22) and (3.29) the quantity a is equal to 
(Ta/To)4/31 TI in order of magnitude (T= (T- Td/Td. 
Therefore, the condition for the renormalization of the 
quantity I' to be small takes the form 

(5.2) 

(As earlier, we assume that the energies corresponding 
to 1', To and e F are of the same order.) The condition 
(5. 2) corresponds, in essence, to the Ginzburg crite­
rion[Ul as applied to a weakly ferromagnetic Fermi 
liquid. 

APPENDIX 

We shall study the proof of a number of relations be­
tween the vertex parts determining the mutual scatter­
ing of spin excitations. With this purpose we shall con­
sider the responses, of different orders, of the spin 
density of the ferromagnet to an additional external sta­
tic uniform magnetic field of intensity liH. We shall 
assume that for liH= 0 the system is in a constant uni­
form magnetic field H. 

To within quantities IliHI4 the spin-density change 
liSj induced by the field liH can be written in the form 

f 1 
{)S,=-0,/jYe; + 20 .. {)YeJ~Ye, - 3I!Zl'J, .. 6Yte;liYe,6Ye .. , 6Ye,=2!J.,6H,. 

(A. 1) 
where /.Lo is the Bohr magneton. The quantity !ZljJ de­
termines the linear response and obviously coincides 
with the retarded Green function D fJ (w, k) in the limit 
w= 0, k- O .. If we take into account that the Hamilto­
nian of the interaction of the system with the magnetic 
field has the form 

9",= S drS,(x)Ye, 

(S; is the Heisenberg operator of the spin density), the 
quantities !ZljJh !Zlji/m expressing the second- and third­
order responses have the following graphical represen­
tation: 

(A. 2) 

(A. 3) 
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The wavy lines on the graphs depict the quantitY!»jJ. 
The blob in (A. 2) and the square in (A. 3) respectively 
denote the three-point I'm and four-point yUl", vertices 
for the interaction of the spin fluctuations. The fre­
quencies and wave-vectors, on which these quantities 
depend in the general case, are equal to zero. 

To determine 1'(3) and 1'(4) we note that the quantities 
0jJ, 0jJl and !1{)ijllll appearing in the equality (A. 1) can 
be expressed in an obvious way in terms of derivatives 
of the spin density Sj with respect to the quantity Ytej 
= 2/.LoH j: 

(A. 4) 

By virtue of the exchange character of the interaction, 
the total spin of the ferromagnet is oriented along the 
external magnetic field: 

Differentiating Sj with respect to <161 and then substitut­
ing into the equality (A. 4), we obtain 

S 
0;; = -~6ijJ.-8'n,nj, (A. 5) 

S ' 
!Zljjl = (Ye) (1i,/n,+6,,"-nj+6 j ,Ln,)+8"n;n;n,, (A. 6) -

1 8 ' 8)" !Zlij/ .. = - Ye (em) (6,/6, .. J.+6,8i;mJ.+6'mJ.6;,J.)- (Ye (Ii,/n,n .. 

+6i /njn.". +6jl..J..ninm +6im J...njnZ+6jmninl+6Im J..ninj) _Sill njnjnZnm • __ 

(A. 7) 

Here the prime denotes differentiation with respect to 
the quantity Ye; litJ is the two-dimensional unit tensor 
in the plane perpendicular to the vector Jie: 

(A. 8) 

From the equality (A. 5) it follows, in particular, that 

8 
lim D=8(ro,k)= lim D •• 8(ro,k)=-__ 

fIl=O, k-+o .=0, It._a 2JJ.oH 

(the z-axis is assumed to be directed along H). 

(A. 9) 

In view of the fact that there is one singled-out di­
rection in the problem, the quantities y(3l and 1'(4) ap­

. pearing in (A. 2) and (A. 3) have the follOWing tensor 
structure: 

1'\~) ='/'111(~ (6,/n,+6"J.n;+6i/J.n ,) +lll(;Jn ,n;n" (A. 10) 

1 ,\~~=' l'l~i (6,/li, .. .L+li"J.6;m J.+6'm J.1l;/) +, I.y~': (Ii,/n,n .. · 

+6"J.n;nm+6;,J.n ,n .. +6, .. J.n;n,+6j .. J.n ,n,+6, .. J.n ,n;) +Yu(:Jn,n;n,n... (A. 11) 

Using the formulas (A.5)-(A.7), (A.I0).and (A. 11), 
from the graphical equalities (A. 2) and (A. 3) we find 

(') Jf(J" (8)' 
lliJ. =-3 8'8' ~ , (A. 12) 

('J 1" 
11111 =-y,8, (A. 13) 

(A. 14) 
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(') d6' (S)" 
lL II =-fI S'S" ~ 

(') 1 S'" YII--8'" . 

(A. 15) 

(A. 16) 

With neglect of the magnetic interactions, these re­
lations are completely general, being independent of 
the temperature and of the assumption that the ferro­
magnetism is weak. It follows from the equality 
(A. 14), in particular, that the exact four-point vertex 
of the interaction of transverse spin excitations vanish­
es as H- 0: 

lim '11'1. =0. (A. 17) 
Il~O 

This conclusion is natural if we take into account that 
the energy of a ferromagnet does not depend on the 
orientation of its resultant spin for H = O. For nonzero 
wave-vectors {kj } of the spin-waves being scattered, 
the vertex corresponding to them should be proportional 
to the product of the k j • This statement can be gen­
eralized without difficulty to the case of mutual scat­
tering of an arbitrary number of transverse spin-waves. 

We note that, whereas the three-point vertex ",(3) has 
no sections with one !l>-line, by definition, graphs for 
.,,<4> do contain such sections, generally speaking. They 
can be separated by means of the obvious equality: 

(A. 18) 

The blob with four entry pOints for !l>-lines denotes 
here the four-point vertex :Yi1:m that is irreducible with 
respect to q)-lines in any direction. In order to es­
tablish the relationship between the vertices 5imm and 
iiW in the case of a weak ferromagnet, we shall use an 
expression for the free energy i, introduced in Sec. 3, 
at T = 0; this can be written in the form 

1 1 
F(S)= F(O)-"2lS'+T!YS" (A. 19) 

where land", are constants. The thermodynamic­
equilibrium condition i'(S)= ~ leads to the equation 

-lS+'/.yS'-3W=O, (A. 20) 

Hence, for the derivatives of S with respect to 16 we 
obtain the following relations: 
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1/S'=-l+'/,yS', 
8"=-'1SS", 

S"'=-'18"+3'1'S'S". 

(A. 21) 
(A. 22) 

(A. 23) 

Substitution of (A. 20) and (A. 21) into the equalities 
(A. 12) and (A. 13) gives 

and, consequently, when formula (A. 10) is taken into 
account, the three-point vertex has the form 

(A. 24) 

As a result of substituting the equalities (A. 14)-
(A. 16) into (A. H) and then (A. H) and (A. 24) into the 
diagrammatic relation (A.18), after Simple calcula­
tions with allowance for (A. 21)- (A. 23) we arrive at an 
expression for the four-point vertex y(4) irreducible 
with respect to !l>-lines: 

(A. 25) 

We note that formula (A. 24) can be obtained from 
(A. 25) by means of the diagrammatic relation 

= ~ . (A. 26) 

The jagged line corresponds to the condensate S. 
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