
Vortex-lattice vibrations in a rotating helium II 
E. B. Sonin 

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR 
(Submitted December 9, 1975) 
Zh. Eksp. Teor. Fiz. 70, 1970-1981 (May 1976) 

The spectrum and attenuation of the vibrations of a vortex lattice in an unbounded rotating superfluid 
liquid are investigated with allowance for the rigidity of the lattice. The attenuation of waves propagating 
in a direction perpendicular (Tkachenko waves) or almost perpendicular to the vortices turns out to be 
quite weak because of strong dragging of the normal liquid by the vortices. The vibrational spectrum of the 
vortex lattice is also studied with allowance for compressibility. It is shown that the compressibility does 
not lead to the attenuation of the Tkachenko waves. The boundary-value problem of vortex-lattice 
vibrations in a cylindrical vessel is also solved. A relatively simple equation is derived for the 
eigenfrequencies of the cylinder with allowance for the pinning of the vortices to the bottom of the vessel. 
An analysis of Tsakadze's recent experiments on the basis of this equation shows that the eigenfrequency 
observed in these experiments is primarily determined by the pinning of the vortices, and not by the 
transverse lattice rigidity, which determines the velocity of the Tkachenko waves. 

PACS numbers: 67.40.Cs 

The character of the vibrations of a vortex lattice in 
a rotating He II significantly depends on the direction of 
propagation of the vibrations. On the basis of this cri
terion, we can distinguish two types of vibrations. The 
first type is waves propagating along the vortices and 
connected with their flexural rigidity. They have been 
quite well studied theoretically and experimentally. [1-41 
Their existence does not depend on whether or not the 
vortices form an ordered lattice. The second type is 
Tkachenko waves propagating in a direction perpendicu
lar to the vortices. They are due to the existence of a 
regular triangular vortex lattice, and constitute trans
verse sound in such a lattice. [51 

The attenuation of Tkachenko waves owing to the fric
tional force acting on the normal component[61 has been 
considered by Stauffer. [71 He assumed the normalliq
uid to be stationary, and obtained appreciable attenua
tion. However, as has been shown by Tkachenko, [81 
allowance for the dragging of the normal liquid by the 
vortices reduces this attenuation appreciably. 

The Tkachenko waves were used to interpret the 
even periodic changes in the period of rotation of pul
sars. [91 Furthermore, the experimental observation of 
these waves in rotating He II has recently been re
ported. [10,111 

In the present paper we consider the spectrum of the 
vortex-lattice vibrations during their attenuation for an 
arbitrary direction of the wave vector relative to the 
axis of rotation. Such a problem is of interest, since 
because of the interaction of the vortices with the bot
tom of the vessel, any attempt to excite Tkachenko 
waves in it is always accompanied by the flexure of the 
vortices. In determining the attenuation, the trans
verse frictional force between the vortices and the nor
mal liquid was taken into account. This force, accord
ing to[121, significantly exceeds the longitudinal force, 
which was used in Tkachenko's paper, [81 and makes the 
adhesion of the normal liquid to the vortices even more 
effective and the attenuation of the Tkachenko waves 
weaker. 

We investigate the effect of the compressibility of the 
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liquid on the spectrum of the lattice vibrations. As 
has been pointed out by Reatto, [131 such an effect be
comes appreciable for Tkachenko waves of very long 
wavelengths. However, the results obtained in the 
present paper differ from Reatto's results: the form of 
the spectrum is different and there is no damping. This 
difference is due to the imperfectness of the model used 
in[131 (see Sec. 2). 

We also consider the boundary-value problem of the 
natural vibrations of a vortex lattice in a cylindrical 
vessel. We obtain effective boundary conditions at the 
bottom and at the wall of the vessel. The solution of . 
the boundary-value problem enables us to derive for the 
determination of the eigenfrequencies of the vibrations 
an equation which is more general than Ruderman's 
equation[91 and which takes the pinning of the vortices 
to the bottom of the vessel and the related flexure of the 
vortices into account. A comparison of the eigenfre
quencies obtained from this equation with the experi
mentally observed valuestlOl allows us to obtain the 
magnitude of the cohesive force that pins the vortices 
to the bottom of the vessel. 

1. THE EQUATIONS OF TWO-VELOCITY 
HYDRODYNAMICS FOR A ROTATING SUPER FLUID. 
THE SPECTRUM OF THE LATTICE VIBRATIONS IN 
THE INCOMPRESSIBLE LIQUID 

We shall use the following equations of the two-veloc
ity hydrodynamiCS of a rotating fluid: 

~-oVT+...!.VP+x EJ[dR;XvL (R;)]6(R-R;)=O, (1) 
at P j . 

avo + ~oVT+..!. V P+v rot rot v. 
at p. P 

+[2nXvnl+~x 1:, J [dRj (v.(R j)-vL (R;»]6(R-Rj )=O, (2) 
p. j 

where x =h/m is the circulation quantum, n is the 
angular velocity vector, vL(RJ) is the velocity of an 
element, dRJ, of a vortex filament of radius vector RJ, 

and the rest of the symbols have the same meanings 
as intl41. The integration in (1) and (2) is performed 
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along the vortex filaments of index j, over which the 
summation is then carried out. 

Equations (1) and (2) can be derived in the following 
manner. From the standard equations of two-fluid 
hydrodynamics in the inertial frame of referenceC14l we 
must go over to a rotating coordinate system and take 
into account the fact that in the rotating reference frame 

rotv.=-20+x rJ dR,<'I(R-R;), 
I 

that each vortex exerts on the superfluid component a 
frictional force 

and that the same force, but with opposite sign, acts on 
the normal component. Then in the equations thus ob
tained we discard all the nonlinear terms, including all 
those that are quadratic in the velocities Vs and vn. 
These terms are either not at all important in the lin
ear theory of the vibrations (for example, terms of the 
type [curlvnxvn], vn' divvn), or they lead to weak scat
tering of the acoustic waves by the vortices (terms of 
the type iv~, vs' divvs, etc.), which scattering is, for 
the purpose of our paper, of no interest to us. 

The Eqs. (1) and (2) have, of course, a definite phys
ical meaning only outside the vicinity of the vortex 
lines, near which two-velocity hydrodynamics is, strict
ly speaking, inapplicable. On the other hand, the 
singular terms, which are different from zero along the 
vortex filaments, play the role of pseudopotentials 
whose magnitude is determined by the momentum fluxes 
from the vicinities of the vortex filaments. A more de-

'tailed computation of these fluxes confirms the correct
ness of the Eqs. (1) and (2). [12] 

In order to obtain a closed system of equations, we 
must add an equation determining the vortex velocity v L' 

InC12 J, it is shown that in both the phonon and roton re
gions the vortex velocity is, to a high degree of accu
racy, equal to the mean-mass velOCity, i. eo, that 

(3) 

Such an approximation implies the neglect of the 
longitudinal frictional force, which is small compared 
to the transverse frictional force, i. e., to the Lif
shitz-Pitaevskii force for rotollsC15l and the Iordanskii 
force for phonons. Hel 

For the subsequent analysis it is convenient to sepa
rate the superfluid- and normal-velocity fields into 
their longitudinal parts, satisfying the equations curlvsII 
=0 and curlvnll =0, and the transverse parts, for which 
divvs.L =0 and divvn.L =0. On account of the fact that the 
vortex lattice vibrations are fairly slow, the principal 
role is played by the transverse degrees of freedom. 
However, as the wavelength of the Tkachenko waves in
creases, the longitudinal degrees of freedom neverthe
less become important (see the following section). 
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In this section we shall consider only the transverse 
motion, i. e., we shall consider the liquid-both the 
superfluid and the normal components-incompressible, 
and, for brevity, we shall henceforth drop the index 1 

on the velocity symbols. The superfluid velocity is de
termined in this case by the location of all the vortices 
at the moment of time under consideration and, in the 
rotating system, is equ'al to: 

v (R.)=- [nXR.) + ~ ~J [dB.. (RI-R.) 1 
• I I 4.; 4n IR;-R.I'· 

(4) 

Let the vortex lines execute small vibrations charac
terized by the two-dimensional displacement vector 
rL(R) lying in the xy plane (the z axis is directed along 
the axis of rotation). Let us consider a plane wave of 
wave vector Q propagating obliquely to the z axis: 

rL=u(Q) exp (iQR;}=u(Q) exp (ipzl+iqr;) , (5) 

where zJ and r J are the components of the radius vector 
HJ along the z axis and in the xy plane, while p and q 
are the corresponding components of the vector Q. In
troducing the displacements uq and ut parallel and per
pendicular to the two-dimensional vector q, and linear
izing the Eqs. (4), we obtain 

v .. (RI) =(a(Q)u.+ (O+~(Q) )u,)exp(iQRI ), 

vot(RI ) = (- (O-"{(Q) ) u.-a (Q) u,) exp(iQRI) , 

where 

(6) 

a(Q)= L :n (:.. -p'K,(prl) exp (iqrl cos CPI») sin2cp;, (7) 
I 

~ x ( 2 cos 2cpJ • ) 
J)(Q)= 4-. 4;]; --r-;,-+(p-K,(prl) + cos 2cp;p'K.(prl»exp(iqr;cos cp;) , 

, 
~ x ( 2cos2cpI 

"(Q)= 4-.-4 ---,-+(-p'K,(prl) 
;]; rl 

+ 'cos 2CPIP' K, (prl» exp (iqrl cos CPI) ) . 

Here f{JJ is the angle between r J and q; Kn(prJ } are Mac
donald functions; vsq(Rj} and Vst(RJ} are the components 
of vs(Rj} parallel and perpendicular to q in the xy plane. 

At T =0 there is no normal component, and the vor
tices move with the superfluid velocity, i. e., 

Bu(Q) 
VL (RI) =v. (RI) = -- exp (iQR) , 

Bt 
(8) 

and the Eqs. (6) and (9) constitute a closed system of 
equations describing vortex-lattice vibrations with the 
spectrum 

(9) 

For the case of long waves, i. e., for qa« 1, where 
a = ('K/n..f3 )1/2 is the distance between nearest vortices 
in the triangular lattice, we obtain 

a=O, 
'(10) 

E. B. Sonin 1028 



where rc is the radius of the vortex core, while rn is 
the smaller of the two lengths: a and l/p. The first 
terms in the formulas (10) for (3 and yare obtained on 
replacing the sums in the formulas (7) by integrals, 
i. e., on replacing the vortex lattice by a continuous 
distribution of curlv •• [171 

From the Eqs. (9) and (10) we can obtain the spectrum 
of the vibrations for p» q[1-4] 

(11) 

which we shall call longitudinal vortex waves, as well 
as the spectrum of the waves for p« l/a, 

I 

CJl'= (2Q)' ,P+ ' + CT'q', 
P q 

(12) 

which we shall henceforth call transverse vortex 
waves. 1) Here CT =..JxO!81f is the velocity of a Tka
chenko wave, which is a particular case of the trans
verse vortex wave for p =0. 

In order to determine the corrections due to the 
presence of a normal component at T > 0, let us derive 
from (2) equations for the components vnq and Vnt of the 
transverse normal velocity vn averaged over the unit 
cell: 

However, the normal velocity vn(RJ) in the vicinity of a 
vortex, which enters into Eq. (3), can be appreciably 
different from the mean velocity v., owing to the vis
cous drift. [6] The relation between them for the in
compressible normal liquid can also be obtained from 
(2): 

vn(R;)=Vn (14) 

where l is the mean free path of the quasiparticles, r m 

is the smaller of the two lengths: the lattice constant 
and the viscous length. [12] 

The Eqs. (3), (6), (13), and (14) constitute a closed 
system describing all possible vortex vibrations in an 
incompressible liquid. 2) We shall not give the complete 
dispersion equation for this system, because of its un
wieldiness. Among its solutions is a solution corre
sponding to a transverse vortex wave whose spectrum 
now has, without allowance for damping, the form 

, 
CJl'- (20)' _P-+.£!. CT'q'. 

p'+q' p 
(15) 

In such a wave, in the limit as w/20 - 0, the normal 
and superfluid components, as well as the vortices, 
move with approximately the same velocity v L that is 
transverse with respect to the wave vector Q and that 
lies in the xy plane. The small relative velocity be
tween the vortices and the normal component gives rise 
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to weak damping of the vibrations. For a Tkachenko 
wave (p =0) and small values of the parameter Ew/20, 
we obtain 

~=_~~(Vq' +_CJl_) 
CJl 2 p CJl E20' 

(16) 

where 

Under normal conditions this attenuation is weak. 

Vortex lattice vibrations giving rise to vortex dis
placement and flexure could, in principle, lead to an 
appreciable destruction of the order of the vortex lat
tice. But this does not occur, since, according to esti
mates based on the vibration spectrum (12), the ratio 
of the root-mean-square displacement of the points of 
the vortex filaments, .6.r -..J aT! px2 , to the intervortex 
distance a is sufficiently small. 

2. VORTEX-LATTICE VIBRATIONS IN A 
COMPRESSIBLE LIQUID 

Let us consider a compressible rotating superfluid 
at T =0 (Pn =0). Allowance for the compressibility im
plies allowance for the longitudinal degrees of freedom 
of the liquid. Let us retain in Eq. (1), averaged over 
the unit cell of the vortex lattice, only the longitudinal
to the vector Q-terms. Solving the equation thus ob
tained simultaneously with the equation of continuity for 
the liquid, we find the values of the components of the 
superfluid velocity VII connected with the longitudinal 
degrees of freedom of the liquid: 

(17) 

where the indices z, q, and t correspond respectively 
to the components along the z axis, the vector q, and 
the vector [Oxq]; and C is the velocity of sound. 

The velocity VII should be added to the right-hand side 
of Eq. (3) for the vortex velOCity, i. e., 

(18) 

where vs(Rj) is determined, as before, by the Eqs. (6), 
(7), and (10) for the incompressible liquid. Finally, we 
obtain for the two-dimensional vector u (see (5» an 
equation that has solutions at frequenCies satisfying the 
following dispersion equation: 

CJl'- (2Q+~~ln~) (2Q CJl'-C'P' + 'KP'ln~+~) =0 (19) 
4n r, ro'-c'Q' 4n r, 20 . 

This equation has two solutions for w2, one of which 
corresponds at large Q to ordinary sound. Let us con
sider the case when p =0. One of the solutions to Eq. 
(19) corresponds to the Tkachenko wave: 

ro=CTq[ 1 +(20) 'Ic'q'j-'I,. (20) 

Equation (20) shows that the compressibility essen-
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tially alters the spectrum of this wave at small q « 20/ c, 
making it parabolic: w =CTCq2/20. The spectrum (20) 
for the Tkachenko waves differs from the spectrum ob
tained by Reatto. [13] In particular, according to Reatto, 
the compressibility leads to the damping of the Tkachen
ko waves. The incorrect results obtained by Reatto are 
due to the imperfectness of the model used by him. In 
this model the compressibility was allowed for by in
troducing a time lag between the displacement of some 
vortex and the corresponding-to the displacement
change in the superfluid velocity at some point of the 
liquid. In other words, in the formula (4) for vs(Rj) the 
value of Rk was taken not at the moment of time t, but 
at the moment t -IRj -Rkl/c. 

The wavelengths - c/20 at which the compressibility 
changes the spectrum of the Tkachenko waves are very 
long, and can be realized only in astrophysical objects. 
However, in this case another effect arising from the 
finite compressibility-a change in the denSity of the 
liquid due to the centrifugal forces-may turn out to be 
important, since at a distance c/20 from the axis of 
rotation the velocity of the liquid becomes equal to the 
velocity of sound c. 

3. VORTEX-LATTICE VIBRATIONS IN A 
CYLINDRICAL VESSEL 

Let us now proceed to the consideration of the bound
ary-value problem of vortex lattice vibrations for a 
superfluid contained in a cylindrical vessel of radius R 
and height L. We consider low frequencies w« 20. 
Therefore, only transverse vortex waves for p« q can 
be excited. The oscillations of the liquid are assumed 
to be axisymmetric, i. e., all the variables depend only 
on r and z. Then to the dispersion equation (15) corre
sponds a velocity field in the form of a sum of the solu-

. tions J1(qr)e IPz over all possible q and p, where the 
J1(qr) are Bessel functions. The indices q, t, and z 
used above now correspond to the radial and azimuthal 
components of the velocities, as well as to the compo
nents along the z axis. In the limit as w/20- 0 the 
principal component of all the velocities is the azi
muthal component. It is the same for the normal and 
superfluid velocities vn and Vs' as well as for the vor
tex velocity v L, and will be denoted by the quantity Vt, 

which is equal to v t =vnt =vst =vLt. The remaining 
components are small in the limit as w/20-0_ 

Let us now derive the boundary conditions for the 
transverse vortex wave. 

At the boundary of the liquid we have for the super
fluid and normal components and the vortex displace
ments a whole set of boundary conditions that cannot be 
simultaneously satisfied by one transverse vortex wave. 
This means that along with it should arise other types 
of waves allowed by the dispersion relation for the vi
bration equations for a given vibration frequency w. 
However, all the types of waves, except the transverse 
vortex wave, have complex wave vectors at low fre
quencies w« 20 and attenuate rapidly with distance 
from the boundaries. Therefore, their presence' can 
be allowed for by the proper choice of an effective 
boundary condition for the transverse vortex wave. Let 
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us derive such a boundary condition first for the bottom 
of the vessel (the plane z =0). There the following 
boundary conditions, which we give for the case Pn« p, 
should be fulfilled: 

2Q 1 0 1 0 
Vu = --.----__ (rvu)=O, 

too Q' oZ r or 

°oV; - b(VL- [ncxr))+b'ffi X(vL -[ncXrl~ =0, 

v.1 T- [no Xrl =0 , 

(21) 

(22) 

(23) 

where Oc is the amplitude of the oscillations of the an
gular velocity of the vessel, vn I T is the tangential com
ponent of the normal velocity at the bottom of the ves
sel, and the action of the operator Q2 = p2 +;l amounts 
to the multiplication of each of the terms of Jo(qr)eIPI< 
in the expansion in terms of cylindrical waves by the 
number p2 +q2. Therefore, the operator Q-2a/az is the 
operator Q-2 a/az for the transverse vortex wave if 
p «q and the operator - f dz for the rest of the waves 
arising at the bottom of the vessel and for which p» q. 
The relation, used in (21), between the normal-to the 
surface of the bottom-component, vSI<' of the super
fluid velocity and the azimuthal velOCity v Lt follows 
from two equations: the equation of continuity for the 
superfluid, connecting V SIl and vsq, and the Eq. (1), av
eraged over the unit cell of the vortex lattice, in which 
only the transverse-to the wave vector Q-terms are 
retained. 

The coefficients b and b' in Eq. (22) are different 
from zero if the vortices interact with the irregulari
ties of the surface, i. e., if there is vortex pinning. [18] 

Such an interaction does not vanish as Pn - O. 

In all, we have five boundary conditions, since in 
Eqs. (22) and (23) figure two-dimensional vectors in 
the plane perpendicular to the vortices. The dispersion 
equation for the lattice vibrations for given q and w has 
five roots for p2. One of them corresponds to a wave 
with the spectrum (15). Two roots, which are identical 
in the limit as w/20- 0, correspond to two damped-in 
the liquid-longitudinal vortex waves: 

p'=-k,' = _ 8nQ 
x in (r.lr,) 

(24) 

They can be obtained from the dispersion equation 
(11).3) Finally, two more values of p2 correspond to 
two viscous waves in the normal liquid: 

, 2Q 1 
p=----. 

\I E±i 
(25) 

Constructing from the five indicated waves a linear 
combination that satisfies all the five boundary condi
tions (21)-(23), we find that the transverse vortex wave, 
which is the only wave that is not appreciably damped 
as it propagates away from the surface, should satisfy 
the following effective boundary condition: 

ov, 
a.(q)Tz-(v,-Q,r) =0, 

where 

E. B. Sonin 
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k b" a;(q)=~(b+k.+--) 
q! b+k, 

X b+----- - E [ b'! p. too ( Q )'/' '( l'E'+1-E )"']-' 
b+k, p. 2Q v E'+1 . 

(27) 

On the free surface (the plane z = L) the two factors 
responsible for the pinning of the vortices to the sur
face (pinning proper for b, b' >0 and the interaction with 
the normal component, which are responsible for the 
appearance of terms - Pr.l P in (27)) are absent, and, 
therefore, the effective boundary condition has a sim
pler form: 

fJv,lfJz-O. (28) 

Let us now derive the boundary condition at the lat
eral walls. In order to consider all the types of waves 
arising at the walls, we must find all the solutions to 
the dispersion equation, treating it as an equation for 
q2 for given w and p. There are four of such solutions: 
two of them are transverse vortex waves (see Eq. (12» 
and the other two are viscous waves with wave numbers 

, 2Q E 
q. - - --;- E'+1 ' 

2 iw 
q, =-. 

v 
(29) 

There exist four boundary conditions for these solu
tions. Two conditions for the adhesion of the normal 
component to the walls are similar to (23). The re
maining two conditions, which are for the superfluid 
component, are: 

2Q 1 o'vu 
V .. q =--;:---=0, 

im q' oz' 
OVL • -~!..=O or R • 

(30) 

(31) 

Undamped in the linear combination constructed from 
the four waves are the two transverse vortex waves, 
whose sum satisfies two boundary conditions, one of 
which has the same form as (30), while the second is: 

(32) 

where 

I ~~...!..[ 2Q(E'+1) ]¥', 00 
16n p. 1m vE E 2Q <: 1, 

a;, = " p Q [2m ]'1. Q) 
----- - E->1 
8n(1+1) p. 00" v ' 2Q . 

Below we shall solve the problem for the case when 
Clc =0. The transverse-vortex-wave velocity field that 
satisfies the boundary conditions at the free surface 
and at the walls (Eqs. (26), (28), (30), and (32» can be 
represented in the form 

( z)-Q D{ I,(qr) + {1 AJ ( ) cOS(P.(Z-L»} (33) 
v, r, ... I, (qR) ~ • q.r cos (P.L) . .-. 

The first term, which is a Tkachenko wave, satisfies 
the boundary condition (32) for Clc =0. The condition 
(30) is satisfied identically at P =0. The sum over n in 
(33) is a general solution to the problem with homo-
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geneous boundary conditions (i. e., in (32), ncR =0). 
Therefore, the wave numbers qn are determined from 
the conditionJ1(qn R ) =0. 4) The numbersPn are chosen 
such that all the terms in (33) correspond to waves of 
one and the same frequency, i. e., 

• 
oo'=cr'q'=(2Q)' P', +CT'q.!. 

q. . 
(34) 

The coefficients An in (33) are chosen so as to also 
satisfy the effective boundary condition (27) at the bot
tom of the vessel. Using the orthogonality condition for 
the functions J1(qnr), we obtain that 

2q' 1 
Aft = 2 2 RI ( R) 1 () L . q -q. q. ! q.-a; q. p. tg p. 

(35) 

The equation determining the frequencies of the lat
tice vibrations in the vessel is found from the condition 
for the conservation of angular momentum during the 
period of the vibrations: 

1,(qR) + -(i ( 2tg(p.L) f q' )+1..-0 
qRI,(qR) ~ p.L(f-a;(q.)p. tg(p.L» (q.R)' q'-q.! 4 - , n_' 

(36) 

where /3 is the ratio of the moment of inertia of the 
vessel to the moment of inertia, 1TpLR4/2, of the liquid. 

Ruderman's formula is obtainable from (36) if /3=0 
and either L - co, or Cl - co, i. e., either the vessel is 
very long, or there is no cohesive force that pins the 
vortices to the bottom of the vessel. In the other limit
ing case, when L - 0, the velocity ceases to vary along 
the z axis, and the sum over n in (33) is the expansion 
of the velocity nc(r -RJ1 (qr)/J1 (qR» in terms of the 
orthogonal functions J1(qnr). Determining the angular 
momentum for such a velocity field, and using its ex
pansion in terms of the Bessel functions J1(qnr), we ob
tain the exact relation: 

f I. (qR) ~ 2q! 
4"- qRI,(qR) = ~ (q.R)'(q'-q.!) 

(37) 

With the aid of this relation, the condition (36) can be 
rewritten in the following form: 

where 

tg(p.L) 
"t. = p.L(1-a;(q.)p. tg(p.L» 

or, ifPnL«1, 

a; (q.)p.'L 
1-a;(q.)p.'L· 

0, (38) 

1, (39) 

(40) 

According to (27), Cl(q) =A/q2, where A does not de
pend on q. Then the relation (37) allows us to sum the 
series in (38) for Pn L« 1 and obtain, as a result, the 
following condition for the eigenfrequencies: 

1+~ __ q'_(~_ I,(R'I~) ) =0 
4 q'-u' 4 R'I q'-u' I, (R'I q'-u') , 

(41) 
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where 

For p. L« 1, we can also sum the series in the formula 
(33), so that in the volume the velocity of the liquid is 
determined by the expression 

v,(r,z)=Q, r--- r-R . [ q' ( I, (rf q'-u') )] 
q'-u' I, (Rf q'-u') 

(42) 

It follows from (41) that, as AL decreases in the case 
when the inequality u» l/R is fulfilled, the fundamental 
frequency approaches from above the value 

(43) 

Simultaneously with this decreases the spaCing. be
tween the low-lying eigenfrequencies, so that the dif
ference between the fundamental and the next eigenfre
quency becomes equal to 

Cr z z crz 
I\oo=--(X, -x, )=37--

2uR' ' OOoR" 
(44) 

where Xl = 6.38 and X2 = 9.76 are the two smallest roots 
of the equation 

'/,-/,(x)/x/, (x) =0. 

Another distinctive feature of the u» 1/R case is the 
fact that,. according to (42), the velocity in the volume 
can by far exceed the liquid velocity at the lateral walls, 
this velocity coinciding with the linear velocity of the 
walls themselves. 

The formula (43) for the fundamental frequency re-
. mains valid in the limit as ALa/R - 0 and for nonzero 
values of o!c in the boundary condition (32) at the walls. 
Into the equation, which is a generalization of Eq. (38) 
to the o!c *0 case, also enter the coefficients y.. For 
AL- 0, only a fairly high frequency, at which y.-1, 
can be a root of such an equation. This condition leads 
to (43). 

Let us now turn to Tsakadze's experimentstlO ) (T 
=1.46 OK, 0=6 rad/sec, R=3.2 cm, andL=5 cm). In 
this case the error introduced by the assumptions, p. L 
«1 and o!c =0, made in deriving (41) and (42) is small, 
since, according to estimates, 

(pnL)' <~~=0.12 
3 12 ex' (2Q)' ' 

a;,R=0.05. 

In the experiment were observed damped vibrations 
corresponding to the complex frequency w = (0. 2 -
0.025i) sec-l , which significantly exceeds in absolute 
value the theoretical value given by Ruderman's for
mula. [9) Besides this, as Dzh. S. and S. Dzh. Tsakadze 
have informed us, it was observed in the experiment 
that the vibration frequency is independent of the radius 
of the cylinder, which is in agreement with the formula 
(43); in a number of cases there also arose in the' vi
brations beats with frequency close in order of magni
tude to the values given by the formula (44). All this 
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indicates that the u» 1/R (i. e.~ the small AL) case 
was realized in the experiments in question, and with 
the aid of the formula (43) we can determine the values 
of A corresponding to the experimentally observed fre
quencies. Equation (27) determines the connection be
tween the quantity A = O!(q )q2 and the coefficients b and 
b', which characterize the interaction of the vortices 
with the bottom of the vessel. It can be verified that 
the contribution made by the normal component to this 
effect is small (the terms - p,,/ p in the formula (27»; 
furthermore, it is usually assumed in the interpretation 
of experiments on the interaction of vortices with the 
surface of a vessel that b' =0. [1,19) Then we obtain from 
the formula (27) that the value b = (25 - 6i) cm-1 corre
sponds to the frequency observed by Tsakadze, [to) 

whereas according to Hall's experiments[ll b= -100i 
cm-1• Gamtsemlidze et al. [19) have determined the 
imaginary contribution to the coefficient b that is pro
portional to w, i. e., according to their experiments, 
b = - iw/a, where a =0.1 cm/sec, which gives for the 
vibration frequency in Tsakadze's experiments the val
ue b = - 2i cm-1 • 

Thus, the previously observed values of the coeffi
cient b can fully explain the vibration frequencies of the 
cylinder that were found to obtain in Tsakadze's experi
ments. On the other hand, the measurement of the 
eigenfrequency of the vibrations at small values of AL 
is of little use for the determination of the rigidity of 
the vortex lattice, i. e., for the determination of the 
velocity, CT' of the Tkachenko waves, since for AL- 0 
the fundamental frequency does not, according to (43), 
depend on CT at all. This means that in the spectrum, 
(12), of the transverse vortex waves excitable in the 
vessel, the first term is more important that the sec
ond, which is connected with the transverse rigidity of 
the triangular vortex lattice. A judgment can be made 
about the magnitude of the rigidity of the vortex lattice 
only from the frequency of the beats that can arise in 
an experiment (the formula (44», or from the results of 
measurements of the liquid-velocity field inside the 
vessel (the formula (42». 

In conclusion, the author expresses his gratitude to 
A. G. Aronov, V. L. Gurevich, Yu. G. Mamaladze, 
G. E. Pikus, V. K. Tkachenko, as well as Dzh. S. 
and S. Dzh. Tsakadze for extremely useful discussions 
of the results of the paper. 

IISuch a wave without allowance for the contribution made by 
the rigidity of the vortex lattice 0. e., with CT"" 0) has been 
considered by Hall. III 

2lFor q = 0 this system is equivalent to the set of hydrodynamic 
equations given in the paperl3J by Andronikashvili et al. if 
the coefficients a" and 13. in them are chosen in accordance 
with the assertion made above about the magnitude and di
rection of the frictional force exerted by the normal com
ponent on the vortices (see the text after Eq. (3». 

3lThe indicated three solutions for p2 for given w and q (one 
transverse and two longitudinal vortex waves) exhaust all the 
possible oscillations of a superfluid with Pn = 0 and at low w. 
The more general spectrum (19), which allows for the com
pressibility ofthe liquid, does not give rise to new solutions. 
One of the two longitudinal vortex waves continuously joins 
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the acoustic branch p2 = w2/ c2 as the frequency w increases. 
(lIn the more general boundary-value problem in which o!c '" 0, 

we should have in Eq. (33) in place of the single Bessel func
tion Jt(qnr) the combination of two Bessel functions AJt(qnr) 
+BJt(q;r), where q;2=q2_q; is the second root of the bi
quadratic equation (34) for q~. However, for o!c = 0 such a 
combination satisfies the homogeneous boundary conditions 
(30) and (32) for O.,R = 0 only if A or B vanishes. 
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The temperature dependence of the conductivity in the microwave region and the magnetic susceptibility 
in the l.S-300"K temperature interval are studied for the organic metal tetraselenafulvalene
tetracyanoquinodimethan (TSeF-TCNQ). The conductivity is maximal at temperatures 3S-4O"K at which 
it is from 7 to 20 times greater than at 300"K. The dielectric constant is 3·10' at T = 4.2"K. The gap 
calculated from the conductivity at low temperatures is identical with that derived from the susceptibility 
data. At high temperatures the resistivity can satisfactorily be described by a quadratic function of T. 

PACS numbers: 72.30.+q, 72.1S.Eb, 75.30.Cr 

Great interest has been advanced recently in the study 
of organiC salts based on tetracyanoquinodimethan 
(TCNQ), which have properties of quasi-one-dimen
sional metals. [1,2] These properties are determined 
principally by the compoSition and symmetry of the cat
ion. It can now be regarded as established that such 
metallic properties are possessed by TCNQ salts of two 
types: the first type[3-71 are TCNQ salts with asym
metric cation, in which the Peierls instability of the 
one-dimensional metallic state is suppressed by the 
structural disorder, and the second type[S-lll comprises 
TCNQ salts with symmetrical cation, having conductivity 
along the cation and anion stacks. The suppression of 
the Peierls instability in salts of this type is apparently 
greatly weakened by the fact that the Peierls distortions 
are not commensurate with the period of the initial lat
tice, a situation resulting from the unequal distribution 
of the electrons among the cation and anion stacks. 

Studies of TCNQ salts of the second type are present-
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ly diligently pursued, the symmetrical cation employed 
being tetrathiofulvalene (TTF)[1O, 11] and tetrathiatetra
cene. [8,9,12] In these complexes, the metallic state is 
stabilized in a wide temperature interval. The dc con
ductivity of the salt tetraselenafulvalene-tetracyano
quinodimethan (TSeF-TCNQ), which is isostructural 
with the salt TTF-TCNQ, [13] was recently investigated. 
In this study we investigate the temperature dependence 
of the conductivity of the same salt in the microwave 
band, as well as its magnetic susceptibility. The 
chemical formula of the salt is 

The temperature dependence of the conductivity was 
measured at a frequency 1010 Hz by the contactless 
method described in[1t], in the temperature interval 
4. 2-300 OK. For the conductivity measurements we 
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