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The surface wave spectrum in liquid crystals is investigated. Sections with linear dispersion are obserVed 
to appear in the presence of a weak external magnetic field as a result of the anisotropy of the surface
tension coefficient. 
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1. The problem of surface waves in liquid crystals 
has attracted much attention in recent years (see, 
e. g. ,U.21). The reason for this interest is that the 
scattering of light from structures produced by surface 
waves makes it possible to determine exactly the ma
terial parameters of liquid crystals. In addition there 
is also a more general interest. It is frequently stated 
in the literature that a liquid crystal is merely an op
tically anisotropic medium. An investigation of the 
surface oscillations, however, shows that in a certain 
sense liquid crystals are also elastically anisotropic 
media. The coefficient of surface tension in such sys
tems is anisotropic (it depends on the angle between the 
molecule orientation vector on the surface and the nor
mal). The anisotropy of the surface-tension coefficient 
can be connected, for example, with van der Waals 
forces. [31 In view of the symmetry requirement n- - n 
(n is the director vector), however, a dependence of 
this type must of necessity be quadratic in the devia
tions of n from the equilibrium direction. In the ab
sence of external actions, therefore, the changes in
troduced by the anisotropic surface tension make no 
contribution to the linearized hydrodynamic equations 
that describe the propagation of small-amplitude waves. 
The role of the external action reduces thus to devia
tion of the director from the orientation connected with 
the minimum of the surface energy. An external action 
of this type may be, for example, a magnetic field ap
plied at an angle to the equilibrium orientation. A sim
ilar role is played simply by different boundary condi
tions on the surfaces of the liquid crystal. To be spe
cifiC, we consider only the first case. We encounter 
therefore a definite linear elastiCity connected with the 
deviation of the molecule orientation (of the director). 
If the surface tension were anisotropic the orientation 
of the molecules in the course of the oscillations would 
always remain at a certain angle to the surface that is 
bent by the oscillations (just as in the absence of the 
oscillations). On the other hand the anisotropy (or the 
magnetic field) causes the orientation to lag somewhat 
and results therefore in a new type of dispersion. This 
distinguishes our study fromU' 21, where the surface 
tension was assumed to be isotropic. The difference 
between the nematic phase and an isotropic liquid has 
thus been reduced only to the onset of anisotropic damp
ing. This circumstance can be explained without any 
calculations. In the nematic phase the relaxation time 
connected with the motion of the liquid 

-"f-pit]q', 
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and with the motion of the director 

differ by many orders of magnitude (p is the density, 11 
the characteristic viscosity, K Frank's elastic modulus, 
and q the wave vector of the wave). At values q _103 

cm-1 typical of experiments on light scattering, and also 
atp-1g/cm3, 11-0.1 cm, aooK-10-6 erg/cmwehave 
Td/Tf -10\ Therefore the fluctuations of the flow are 
fully independent of the elastic fluctuations of the orien
tation. Thus, the surface-wave spectrum, just as in an 
isotropic liquid, is given by 

(1) 
fi) = ( aq') 'I. +i flq' . 

p 2p 

Here a is the surface-tension coeffiCient, and the ef
fective viscosity 11 depends on the geometrical charac
teristics and is a definite combination of the Leslie vis
cosity coefficients. In addition, in formula (1) we have 
neglected for the sake of simpliCity the influence of the 
force of gravity, something perfectly justified for the 
experimental situation mentioned above. 

2. In this entire analysis, however, no account was 
taken of a very important circumstance. The point is 
that liquid crystals are an unusual example of a liquid 
system with an anisotropic surface-tension coefficient. 
Therefore a is actually a function of the angle () be
tween the director and the normal to the surface. As 
already indicated, a relation of this type can result, for 
example, from allowance for the van der Waals 
forces. [31 In the most general case, with allowance for 
the symmetry n - - n (n is the director), we can write 

a=ao+aa cos' e, (2) 

a. is the anisotropic part of the surface-tension coef
ficient. In formula (2), the sign of a o is fixed (ao >0), 
and a. can have any sign (depending on the equilibrium 
orientation on the surface). For the sake of argument 
we assume that the equilibrium orientation is parallel, 
i.e., a.<O. 

It follows from (2) that the boundary conditions on the 
surface of a system with such surface tension differ 
from the conditions on the surface of a viscous isotropic 
liquid. As is well known, [41 when the surface tension 
varies along the surface it is necessary, to maintain 
mechanical equilibrium, to compensate for not only the 
normal (Laplace) pressure but also for the tangential 
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force. The latter condition makes it mandatory to take 
into account the dissipative part of the stress tensor 
(i. e., the viscosity), for only in this case can the 
change of a! along the surface be offset by tangential 
components of the stress tensor. 

We consider for simplicity only two-dimensional solu. 
tions. If the x axis is directed along the surface and the 
z axis is normal to the surface, this means that there is 
no dependence on the coordinate y. The aforementioned 
boundary conditions then call for 

( a'u) 
(jzz=a. -a 2 ' 

X :=0 
(3) 

( aa.) a·x = - . 
~ ax :=0 

(4) 

Here (Jik is the stress tensor in a nematic liquid crystal, 
u is the vertical displacement of the surface, and 

v.=aulat. (5) 

In addition, we consider in the usual manner small dis
placements (small wave amplitudes u), so that the 
boundary conditions (3) and (4) pertain in the linear ap
proximation to a surface that is not bent. In an iso
tropic liquid the right-hand side of (4) would be equal to 
zero. 

Before we proceed to write down and solve the hydro
dynamiC equations for which (3) and (4) are the bound
ary conditions, let us discuss condition (4) in greater 
detail. It follows from (2) and (4) that a!" <0, when the 
equilibrium value is 0=0, the right-hand side in (4) is 
proportional to the square of the fluctuations of O. 
Therefore, in the linear apprOXimation, the condition 

. (4) causes no changes in the usual results for surface 
oscillations. For the corresponding force linear in the 
deviations of n to appear, it is necessary that the orien
tation differ from the condition (2) for the minimum en
ergy. As already indicated, this can be done with the 
aid of a magnetic field. Thus, we consider a liquid 
crystal having a thickness that is large in comparison 
with the length of the surface waves (see below). The 
surface energy is given by formula (2), and a magnetic 
field H is applied along the x axis. The geometry of 
the problem is shown in Fig. 1. The orientation of 
the molecules depends on the coordinate z and on the 
surface we have z = L and 0 = 00 "* o. In weak fields 00 

- H. The corresponding formulas for 00 are given in 
the Appendix. Taking the foregOing into account, the 
boundary condition (4) in a magnetic field becomes 

(as) . ozx=-alt -. - Sln 2eo• 
ax %=0 

(6) 

We write down now the hydrodynamic equations for liq
uid crystals. For simplicity we assume the liquid to be 
incompressible: 

divv=O, 

av, aCJio 
P iii = --;:;;: 

(v is the velocity of the liquid). 
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(7) 

(8) 

It is necessary to add to (7) and (8) the equation of 
motion of the director. Before we write down this 
equation, let us discuss the expression for the stress 
tensor. In liquid crystals 

(9) 

Here p is the pressure and IIkJ is the part of the stress 
tensor connected with the Oseen-Frank elastiCity, 

(10) 

F is the free Oseen-Frank energy, and the comma de
notes differentiation with respect to the corresponding 
coordinate; (J~J is the diSSipative part of the stress ten
sor 0 In liquid crystals (J ~J is determined generally 
speaking by five Leslie coefficients. In nematic liquid 
crystals, however, some of them are small and some 
can be neglected when small deviations from equilib
rium in the surface oscillations are considered. Thus, 
for the problem of interest to us we have 

CJij'=2/-1A,j+2(/-/-I) (Ai.6j.+A.j6,.)+GA .. 6i.6j., 
A'j=1/2 (v,.j+Vj. ,). 

(11) 

As to the elastic part (10), it is quadratic in the orien
tation and can be omitted. 

The equations of motion (7) and (8) of the liquid now 
take the form 

!.:2-!..!!...+J(~+ a'v.) +"( a'v. =0, 
at az az ax ax~ az' 

av._ ap +2/-1 {i'v. +/( {J'v. +~) =0, 
at ax ax' az' ax az 

av. + av, =0 . 
ax az 

We have put in (12) for convenience p'" 1 and y = 4 J 
- 2J.L +G. We seek the solution of (12) in the form 

(12) 

v. = L, Aj exp(iqx+m;z-icot) , 
; 

~ m· v.= 4..liAj~exp(iqx+mjZ-icot), 
. q 
, (13) 

p= L,C;exP(iqx+m;z-icot). 
; 

Substituting (13) in (12) we obtain ·the connection of mj 

with q and w, and also an expression for Cj in terms 
ofAJ : 

_ [ -iCO-/(q'+ml )+,"(m/1A cj - J, 
mj 

(14) 

.' = [-iCO+(2/-1+21-"()q.] ± [( -ico+ (2wf.,2/-"() q' )' -+ icoq'+lq' )'" 
m, 21 21 1 

(15) 

.. f 
I 

FIG. 1. 
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There are two different roots, which are given in the 
long-wave limit by the expressions 

m.==q, m.-[q.- IfJl ]'1. 
" 211+21-1' 

(16) 

Thus, the solution is determined by two constants: A1 

andA2 • 

To determine these constants (and also the connec
tion between w and q) it is necessary to substitute the 
solutions in the boundary conditions. However, the 
boundary conditions contain also the director orienta
tion, which is itself determined in terms of the velocity 
distribution. This connection is given by the equation 
of motion for the director: 

ali, a , 
I-+-II'i+g,+g, =0. at ax; 

(17) 

Here [is the moment of inertia of the molecules; gj 
= SF/ani; g~ is the dissipative force: 

g/ =In,+y,N,+l,nfi;<; 

. an, 
n'''''Tt+ vVn,; 

(18) 

y is an arbitrary scalar determined from the condition 
n,n =0; Y1 and Y2 are the viscosity coefficients (Y1"" - Yz 
in nematic liquid crystals); 

Neglecting the moment of inertia of the molecules 
themselves ([=0) and multiplying (17) by n" we obtain 

a . 
1--11< -a IIu-n,g,-n,<y. (N ,-nfi'i)' 

Xi 
(19) 

Substituting (19) in (17) and designating the mOlecular 
field in terms of 

aF a aF h,------an, ox; an'.i' (20) 

we obtain the equation of motion of the director: 

Introducing small deviations from the equilibrium ori
entation <p 

n.=cos a-q> sin a, n,=sin a+q> cos a (22) 

and recognizing that at the Significant values of the pa
rameters the last two terms of (21) can be neglected, 
we obtain 

aq> aa. avo aVe 
-a +-a v'+-a +ctga.sin'a.-

t z z ax 

+ I ( avo av.) avo cos a. -+- + sin a. cos a.-. -=0. az ax at (23) 

Substituting the solutions (13) in (23) we obtain an ex-
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pression for cp. Substituting this expression in the 
boundary condition (6) we obtain the dispersion of the 
waves. The corresponding manipulations are straight 
forward but very cumbersome. We shall not present 
all of them. We write down only the answer for the dis
persion law at small values of the magnetic field (80 « 1, 
and the answers are accurate to ~). In addition, we 
have introduced the effective viscosity '1/=2j.1. +2J - Y. 

At q < a:~p/ ao'1/2 we have 

l/lola. 1\ fJl=-q+i-q'. 
1] P 

(24) 

Thus, in this region there are weakly -damped waves 
with linear dispersion. 

At q > <lfJ8 op/'1/2 the dispersion differs little from the 
usual capillary waves, but there is additional damping 

1m lil-const·1 CI:. I 'l'p_'I'q';'. (25) 

At a:8~p/<l0'1/2<q< <lfJ8 0p/'1/2 we obtain the usual law 
(1). 

3. The formulas obtained in Sec. 2 for the linear dis
persion in the nematic phase call for a certain explana
tion. The fact that the diSSipation '1/ enters directly in 
the real part of the dispersion law is connected with 
the presence of two components (the velocity and the di
rector orientation cp). Each of these quantities relaxes 
when the equilibrium is disturbed, but at certain pa
rameter values the sign of the determinant is reversed 
and we have a propagating mode. A similar phenomenon 
takes place, for example, in chemical oscillations. [1] 

Estimates of the obtained quantities are quite difficult . ' SlDce the value of the anisotropic part of the surface 
tension is unknown. We note here also that the formu
las obtained in the Appendix make it possible in prin
ciple to determine the value of <lfJ from the change of 
the Freedericsz field. If it assumed that <lfJ -10 erg/ 
cm2 and '1/-0.1, then to satisfy the inequalities (24) in 
fields -100 G we need q« 103 cm-1• Such extremely 
long waves cannot be realized in light-scattering ex
periments. InCidentally, difficulties of the same kind 
are encountered also in the case of the usual capillary 
waves in liquid crystals. We note also that similar 
phenomena should take place also in the cholesteric 
and smectic phases. The main difference is that in 
these phases the stress tensor IIunk,J already contains 
terms linear in the deviations, and it must therefore 
be taken into account in the hydrodynamic equations. 
In our entire analysis, the field strength H (and the 
sample thickness) determined only the width of the re
gion in which linear dispersion exists. In rather strong 
fields Xalf» (loti, however, a linear spectrum appears 
and is connected simply with the magnetic restoring 
force: 

fJl= (xJl'/p) 'I'q. 

These are ordinary Rayleigh waves. However, by vir
tue of the smallness of XfJ -10-7 cgs esu, they can hard
ly be observed in experiment. 
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The author is grateful to I. E. Dzyaloshinskil for 
numerous useful discussions of the work and for criti
cism. 

APPENDIX 

We consider for the sake of argument the influence of 
the magnetic field on the orientation of a liquid crystal. 
This calls for minimizing the total free energy of the 
system. For simplicity we assume identical boundary 
conditions at z = ± L. The surface energy is anisotropic: 

F sur =a. cos' 6. (A.1) 

In addition, there is a volume energy (Oseen-Frank and 
magnetic): 

K L 1 L 

F=T S dz(V6)'-TX.H' J cos' 6 dz. (A.2) 
_L _L 

The surface energy does not enter in the Euler-La
grange equation: 

d'6 1 
- +-sin 26=0, 
dz' 2~' 

(A.3) 

~ =H .1(K/ X.)1/2 is the magnetic coherence length. The 
fact that the conditions on both walls are identical 
means that 

6(L)=6(-L)=6., 
d Ii 
-6(L)= --6(-L). 
dz dz (A.4) 

Actually, however, the values of O!. at z =± L are dif
ferent, so that the conditions (A.4) are not satisfied. 
However, the changes in the final formulas (A. 11) and 
(A. 12) are negligible. It is merely necessary to sub
stitute for each boundary its value of O!.. In addition, 
there are also boundary conditions on the stress tensor: 

(A. 5) 

(A.6) 

" is the normal to the surface, and aj and bi are the cor· 
responding external forces. Equation (A. 5) gives an 
orientation-dependent increment to the pressure. As 
already indicated in the text, this increment is qua
ratic in the fluctuations of 8 and can therefore be left 
out in the linear approximation. On the other hand, the 
condition (A.6) leads to vanishing of the total torque. 
The corresponding force bl is due to the dependence of 
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the surface energy on the orientation. The expanded 
form of (A.6) is 

oa of ------v;=o o (n.v.) on,.; , 

whence 

2~' ( d6 ) ± ex. sin 26.=0. 
dz ~L 

From (A. 3) we have for z > 0 

L-Z=~[ F (~) -F(~:)], 

(IP) s" du 
F 6m 55 (i-k'sin' u)'" ' . 

(A.7) 

(A.8) 

(A.9) 

F is an elliptic integral of the first kind, 8m is the max
imum value of 80, 

k' "" sin' 6m , 
. sinS 

SIn cp EO -.-- , 

sm8m 

From (A.9) at z =0 we have 

_~=F(lt/2)_F(IPO ). 
" 6m B", 

, sin 6, 
sm!po=--. 

sinBm 
(A. 10) 

(A. 11) 

The condition (A. 11) gives the dependence of 8m on the 
field H at fixed 80 • Taking (A. 8) and (A. 11) into ac- . 
count, we have two relations from which we determine 
80 : 

..i x.H'= (1 - k sin' Bo) 'I. tg B •. (A. 12) 
a. 

For weak fields it follows from (A. 11) and (A. 12) that 
80 -H. As already noted in the main text, the same role 
as the magnetic field is assumed simply by a boundary 
condition at z = - L which does not coincide with the con
dition of the minimum of the surface energy at 1/ = L. 

!)The author thanks G. V. Ryazanov for pointing out this cir
cumstance. 
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