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A linear theory of ultrasonic propagation in helium II at low temperatures is developed for the case in 
which only phonons are responsible for the kinetic phenomena. The pressure range considered is such that 
the phonons have a decay spectrum. The ultrasonic frequency 00, is assumed to satisfy the condition 
Tjji>W,>"f1', where Tn andTl are the longitudinal and transverse phonon relaxation times, respectively. 
Expressions are obtained for the absorption coefficient and for the corrections to the sound velocity in this 
particular frequency range. 

PACS numbers: 67.40.Tr, 67.40.Ca 

1. INTRODUCTION 

The aim of the present work is the construction of a 
theory of ultrasonic absorption in He II at low tempera­
tures in which only phonons are responsible for the ki­
netic phenomena, and rotons are not excited. The the­
ory of acoustic phenomena in He II has been developed 
in detail in the works of Landau and Khalatnikov, Cll 

Andreev and Khalatnikov, [2] Khalatnikov and Cherni­
kova, [3] Pethick and Ter Haar[4J (see alsoC5,8]). Two 
limiting cases have been studied in these researches: 
1) w. T» 1 (ws is the ultrasonic frequency, T is the char­
acteristic relaxation time of thermal phonons), when, in 
particular, the sound absorption coefficient rat liws« T 
is determined by a formula of the Landau-Rumer typeC7] 

and is proportional to Ws; 2) WsT« 1, when the propaga-. 
. tion and absorption of the sound are described by the 
equations of hydrodynamics and r- w!. 

The slight difference of the phonon spectrum from a 
linear spectrum leads to the existence of two character-
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istic phonon relaxation times in He II: the longitudinal 
time Til, which characterizes the fast relaxation of pho­
nons propagating along the given direction, and the 
transverse relaxation time T J. » Til, which characterizes 
the slow relaxation of phonons propagating at an angle 
with respect to one another. Landau and Khalatnikov 
first pointed out the existence of these two relaxation 
times. [1] They assumed the phonon spectrum to be un­
damped. The transverse relaxation time is determined 
here by four-phonon processes and the corresponding 
collision operator has a complicated integral character. 

In the present work, we want to determine how the ab­
sorption is affected by the recently discovered experi­
mental factca-11l that the phonon spectrum is a decay 
spectrum, at not too high pressures • 

Two widely differing relaxation times define three 
characteristic frequency intervals: 

(1.1) 
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With the help of the analytic theory of transverse phonon 
relaxation, which was developed by us, [12] we have suc­
ceeded in considering the first and the second of these 
intervals. In the first frequency region, our calculation 
is equivalent to the calculation of the viscosity coeffi­
cient with account of transverse relaxation of the pho­
nons, recently performed by Benin. [13] In the second 
region, the results obtained in the present work are 
new. 

The possible effect of the decay character of the pho­
non spectrum on acoustic phenomena in He II has been 
discussed in great detail by Maris, [10.14] and also by 
Meier and Beck. [15] The kinetic equation for phonons, 
the distribution of which is perturbed by the sound wave, . 
has been solved numerically in Refs. 10, 14, and 15. 
In a recent work of Wehner, [16] an analytic approxima­
tion of the transverse relaxation operator was proposed 
in the form of an integral operator with a Gaussian ker­
nel which, in our view, enables one to get only an order­
of-magnitude answer. 

The results of olir work are formulas for the absorp­
tion coefficient and the change in the sound velocity in 
the second frequency interval: T~l« Ws «T~l. It turns 
out that the coefficient r has the same frequency and 
temperature dependence in the second interval as in the 
third. However, the corresponding constant coefficients 
in the formulas for r differ by a factor of six. A cor­
responding difference in the coefficients has a com­
paratively simple semi-quantitative explanation. We 
shall give it at the end of Sec. 3. 

The change in the sound velocity Dc in this frequency 
interval is proportional to lnws TJ.' This result thus dif­
fers from the corresponding expression of Ref. 4 in the 
third frequency interval, not only in the coefficient in 
front of the logarithm, but also in the argument of the 
logarithm. 

Unfortunately, our results are difficult to compare 
with the existing experimental data for the second fre­
quency interval, since the data are scanty in this re­
gion. Therefore further experimental work is neces­
sary in this area. 

2. DERIVATION OF THE GENERAL EXPRESSIONS 
FOR THE ABSORPTION COEFFICIENT AND THE 
SOUND VELOCITY 

We shall start out from the following set of equations, 
which describe the dynamiCS of nonequilibrium He II (see 
the work of Landau[17] and the book of KhalatnikovU8]): 

iJl'/iJt+div j=O, 

iivjut+gl'ad (!l+v.'l2) =0, 

iiEliit+div 0=0, 

iij,! iiHiiII;./ iix,=O. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Here Vs is the superfluid velocity, P=Pn+Ps is the densi­
ty of He II, j = jo + pv s is the mass flux denSity, 

(2.5) 

is the energy denSity, Q is the energy flux denSity, 
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(2.6) 

is the momentum flux density (vn is the normal velocity, 
p is the pressure and Til is the viscous stress tensor). 

Since the nonequilibrium state is conSidered, the 
quantities Pn and vn must be so defined as to go over in 
the equilibrium case into the thermodynamic values. 
We setll 

4 d'k 
p. = ----S ttkN--

::leo (Po) (2n)"' 

d'k 
jo=p.(v.-v.)= S ttkN (2n)' ' 

(2.7) 

(2.8) 

where N is the phonon distribution function, w is the 
phonon frequency, and k is the wave vector; 

c,'=pd!lldp (2.9) 

is the sound velocity at T= 0, P-o= dEo/dp (EO and P-o are 
the energy density and the chemical potential, respec­
tively, of helium at T= 0). 

The following quantities are also expressed in terms 
of the distribution function N: the energy in a system of 
coordinates moving with the superfluid velocity vs: 

d'k 
E,=8o(p) + J ttooN (2n)" 

the "chemical potential" 

S 1)00 d'k 
!l=!lo(p)+ tt iip N (2n)' ' 

the energy flux density 

the pressure 

the viscous stress tensor 

where w1=w+k. (va-vn). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

We confine ourselves to the case in which the veloci­
ties Vs and vn are small in comparison with co, which 
allows us to neglect nonlinearities of the hydrodynamic 
type: 

v.lc<1, v.!c¢:1. (2.15) 

Moreover, we assume the temperature T to be so small 
that 

(2.16) 

Making use of the linearity of the phonon spectrum, 2) 

we can transform Eqs. (2.2)- (2.4) to 

(2.17) 
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3 Op. . 1 8Vd 
--+P.dlVV,,+--:;-TI;-O-=O 
4 at c~ x, 

Here 

c,'=co'[ 1+ (U+3/4W)P"/P J 

is the adiabatic sound velocity, 

P dc. 
n=--

c, dp , 
p' d'c. 

w=~ dp' . 

Equation (2.14) can be rewritten similarly as 

( 1 d'k 
T,,= S xix;-TIi,I) fiwN (2it)" 

where 
x=klk 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

By virtue of the inequalities (2.15) we can neglect the 
variable components in the quantities Pn, Ps ' and T iJ , 

which enter as coefficients in the derivatives of vn and 
vsinEqs. (2.1) and (2.17)-(2.19). However, the con­
stant parts of these quantities are generally not deter­
mined by the thermodynamic formulas, since the con­
stant part of the phonon distribution function in the non­
linear regime can deviate Significantly from equilibri­
um. S) 

The system (2.1), (2. 17)- (2. 19) must be supple­
mented with the equation for the phonon distribution 
function N, which we write out in the next section. 

For the set of Eqs. (2.1), (2.17)-(2.19), we trans­
form to the set of equations for the functions P and Pn, 

which are similar to those which describe the propaga­
tion of first and second sound in He II in the weakly non­
equilibrium case (see the work of Landau[l7J and the 
book of Khalatnikov, tl8J Sec. 20): 

~p 1 d~ 
-;;-:;-=c,'V'P+-4 co'(I+3u)\'p,,+-o a' , (2.23) 
ut~ Xi x] 

O'P. 4 p,," co', 4 a'Ti; 4 oj 'p (2 24) 
-=-(Hu)-c.-V'p+- v p" +---+-Tij--. • 
Ot' 3 p 3 3 Ox/ix; 3p fix,axi 

We shall be interested only in the first sound, whose 
velocity is close to co. Then, with the assumed accura­
ry, we can set a2p"/at2=c~v2p,, in the second equation. 
Then, eliminating p" from the given system, we obtain 
the following equation for p: 

O'p ., 3 O'Tlj, 1+3u a'p 
--;-= C,\-p+-;;-(I+u)--T-?-Ti;-.--. 
at _ Ox/ix, _I' ClxiOXI 

(2.25) 

where the square of the low-frequency sound velocity in 
HenC181 is 

c,'=c,'+1/2co'(l+u) (1+3u)p"/p. (2.26) 

We shall further assume that the sound wave is purely 
sinusoidal and does not contain higher harmonics. (For 
the linear problem considered below, such an assump­
tion does not need a special justification. In the nonlin­
ear case, the question as to when the nonlinear effects 
do not lead to the formation of higher harmonics needs 
special consideration.) Then the following expressions 
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are obtained from (2.25) for the absorption coefficient 
(in power) r and the change in the sound velocity 6c 
=c- C2: 

3 ••. 
r=--q(1+u)lm~ 

2co' Ip' I' ' 
lic 3 .J.. T~/p" 1+3u 
-=-4 ,(1, u)Re-I-·-I,-, +-2--' Tn, 

C Co p - PC,-

(2.27) 

(2.28) 

where the primes denote the alternating parts of the 
corresponding quantities, which are described in com­
plex form, q is the sound wave vector, and the x axis is 
its direction of propagation. 

As is shown in our paper, U2J the phonon distribution 
function N is expressed in terms of the effective phonon 
temperature e()(), which depends on the direction of ,,: 

N=ndfickI8(x) J. (2.29) 

where no is the Planck function. Substituting (2. 29) in 
(2.22) and integrating, we have 

(2.30) 

where the integration is carried out over the entire solid 
angle. 

Thus the problem is reduced to setting up and solving 
the equation for e(x). 

3. CALCULATION OF THE ABSORPTION 
COEFFICIENT AND THE SOUND VELOCITY 

We consider the case WsTtI« 1, in which Ws is the fre­
quency of the ultrasound, Ttl is the time of longitudinal 
relaxation of the phonons. In the hydrodynamic approxi­
mation, the interaction of the phonons with the sound is 
taken into account by the addition of 

p' 
~w= (u + cosft)ck-~k~c (3.1) 

P 

to the phonon frequency. 

Multiplying the kinetic equation 

ON Ow ON Ow aN 
a;-+ Ok. Tx----a; Ok. =/{JV} (3.2) 

by Iicr:/lsdk/(2rr)3 and integrating over k from 0 to "", we 
obtain an equation for the density of the phonon energy 
in the given direction g(e) = (rr/120)e4/(nc)s: 

OB OB a~c ( OB) rOB] -+c.cosft--- -4Bcosf}+sinf}- = -
Ot ax ax Of} Ot coil 

(3.3) 

where {') is the angle between the direction of :Ie and the 
x axis. The calculation for the right side of (3. 3) was 
carried out in a work of the authors. [12J 

We further restrict ourselves to the study of only the 
linear approximation, in which 

8=(HZ)T, (3.4) 

where T is the mean temperature of the helium and 
IZI«1. 
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In the linear approximation, (3.3) takes the form 

OZ OZ Ollc 1, 
-. +cocostt-+-costt=--l'(l +2)Z, 
Ot Ox ax 4T.:. 

(3.5) 

where [2 is the angular part of the Laplace operator; 
the expression for the time 7".L is given in Ref. 12. 

In (3.5), az/at=-iwsZ, andaZ/ax=(iq-r/2)Z. The 
estimates which we give below show that the quantity r 
on the left side of Eq. (3.5) can usually be neglected in 
comparison with its right side. With the same accuracy 
we can set the sound velocity equal to Co in the first 
term on the left side. Then (3. 5) is rewritten in the 
form 

[1-cos I'i+i (4"" TJ.) -'1'(1'+2) jZ= (p'/p) (u+cos it )cos {to (3.6) 

By virtue of the symmetry of the problem, Z depends 
only on ~ and the given equation must be solved under 
conditions of the absence of energy and momentum 
sources at the points ~ = 0, T. These conditions are 
formulated as follows: 

, d (1 d, d )_' sml'i- ----smtT-+2 Z(tI) 1._0,,=0, 
dtT sin tT dtl dt} 

sinJtT~_l_dZ \ =0. 
dtT sin tI dt} '~O,' 

(3.7) 

In the calculation of the viscosity coefficient in Ref. 12, 
we have assumed that Z does not contain the zeroth and 
first spherical harmonics, which describe the change in 
the temperature and the drift velocity of the phonon sys­
tem as a whole. Here we shall assume that Z repre­
sents its complete response to the sound perturbation, 
i. e., it contains all the spherical harmonics (including 
the zeroth and first, which, naturally, do not make a 
contribution to the absorption). 

The quantity 7""" (2.30) in the expressions for the ab­
sorption coefficient and the corrections to the sound ve­
locity takes the following form in linear approximation: 

:t'T' 
T.u= 43(lic),f (3cos'tI-1)Z(t})sinl'idl'i. (3.8) 

We have succeeded. in solving Eq. (3.6) in two limit­
ing cases: 1) Ws 7".L« 1 and 2) Ws 7".L»·1. In the first case, 
we have the solution Z(~) in the form of a series in 
spherical harmonics. It turns out that the coefficients 
for the zeroth and first spherical harmonics are of 
zeroth order in the small parameter Ws7".L' and the coef­
ficient in the case of the second spherical harmonic, 
which determines the absorption is first order in Ws 7".L' 

In addition, with increase in the numbers of the harmon­
iCS, the power to which the parameter Ws 7".L is raised 
also increases. The first three terms of this expanSion 
have the form 

[ l+u 1+3u ", .. r.l. ] P' 
Z(t})= -+--costl-i--(1+u) (1+3 cos 21'1) -. 

2 2 24 p 
(3.9) 

Substituting (3.9) in (3.8J, and (3.8) in (2.16), we ob­
tain the well known (see Ref. 18, p. 175, and Ref. 19) 
expression for the sound absorption coefficient which, 
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as it should in the hydrodynamic limit, is expressed in 
terms of the viscosity coefficient 1]: 

r=3 (1 +u) '1]Ul.'/ pc,", (3.10) 

where 

(3. lOa) 

(see Refs. 12, 13). 

At Ws 7".L» 1, the relaxation term in Eq. (3.6) exists 
only in a small range of angles ~«1. Outside this in­
terval, 

Z(t})=t.. (u + cos tt)cos tt . 
p l-costt 

(3.11) 

On the other hand, at ~«1, Eq. (3.6) can be Simplified 
by setting cos~ = 1 on the right Side, putting on the left 
sWe -

1 d d 
l'=--{t-

{t d{t d{t 

and neglecting the term 2 in comparison with [2. In­
troducing the dimensionless variables 

Z(1'I) =2·6-"(p'/p) (1+u) (2Ul,TJ.)'S'I·Z(S), 

we get the following equation for z(~): 

d 
[\i+i(D'-'/,,)'jz(s)=s'!., D=s ds . 

(3.12) 
(3.13) 

(3.14) 

Let (ws7".L)-1/6«~1« 1. Then Z(~) at ~ >~1 is determined 
by the expreSSion (3.11) and at ~ < ~1 by the expreSSion 
(3.13). As ~ - 0, the function z(~) should satisfy the 
boundary conditions 

s-'I'(D-'/,) (D+'/,)'z(s) =0, 
s'J.(D'-'/ .. )z(S) =0. 

(3.15) 

In the region ~- ~ 1 the functions (3.11) and (3.13) should 
be identical. For this to happen, it suffices for z(~) to 
have the asymptotic form as 

z (5) -5-'''. (3. 16) 

Substituting (3.11) and (3.13) in (3.8), we get 

2n'T' ' 
p (1+u)l, 

T"" = -13=-=5-:-Ch""c""',)':"', p 

where 

8Ul,TJ. 1 st. d'S 
l=ln---9+1n-+ z(s)-

81 51 0 S'I. ' 

(3.17) 

(3.18) 

~1 = 2.6-4 Ws 7".L~~» 1. For the calculation of I, we need 
to solve Eq. (3. 14). The solution of the equation is 
given in the Appendix, and it turns out that 

(3.19) 

where C is Euler's constant. 
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The following final expressions are obtained from 
(2.27) and (2. 28) (with account of (3. 17) and (3. 19» for 
the absorption coefficient and for the correction to the 
sOWld velocity: 

:TI' (t+u)'T' 
r = 90 pli'co' q, 

6c = n' (Hu)'T' [In(72ffi,T.c)+4C-9]. 
Co 90 pli'co' 

(3.20) 

(3.21) 

The difference of the coefficient 1/90 in Eqs. (3.20), 
(3.21) from what would be obtained under the assump­
tion that the collision operator in the kinetic equation is 
written down with the help of a constant which has the 
meaning of a relaxation time can be made clear in the 
following way. 

The integral (3.8) is logarithmically large. This en­
ables us to determine both the coefficient before lnws T J. 

and its imaginary part without solving the Eq. (3.6). 
It can be shown that for this it suffices to replace the 
operator Z2 in (3. 6) by 1/iJ2• Then 

(3.22) 

If the transverse relaxation operator were a constant, 
then the factor ,'3-4 in the second component in the de­
nominator would be absent. We would then have 

1=3 (In ffi,T.c -in/2). (3.23) 

In fact, 

(3.24) 

We must now take into consideration the fact that Eq. 
(3.23) is calculated under the assumption that the dis­
persion of the thermal phonons is less than their damp­
ing. In the opposite limiting case, the imaginary part 
of the integral is twice as large (hence the sixfold in­
crease discussed above), and the quantity Wlder the 
logarithm in the real part is proportional to the disper­
sion of the phonons. 

4, CONCLUSION 

We now elucidate the limits of applicability of the 
given theory. To be able to use the transverse phonon 
relaxation operator, it is necessary that the charac­
teristic range of angles 

in which the phonon distribution function is significantly 
perturbed be larger than the quantity eil2-the charac­
teristic value of the angle between the wave vectors of 
the phonons taking part in a single elementary act: 

(4.1) 

Here e(k) > 0 is a function which characterizes the de­
parture of the phonon dispersion law 

m(k) =c.k[H~(k)] 
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from linearity, and F' T = ~ (T /nc); the fundamental ap­
proximation, which is at the basis of the theory of trans­
verse phonon relaxation, tl21 has the form 

(4.2) 

We rewrite the inequality (4.1) in the following way: 

(4.3) 

However, we now conSider a special interval, Ws Tn « 1. 
Further, as has been pointed out in Ref. 12, TJ./TII - ~-l. 
It is then clear that the inequality (4. 1) is always satis­
fied. 4) 

Another inequality on which the thaory is based calls 
for the possibility of neglecting the quantity r in com­
parison with the sum of the remaining components in the 
left side of (3.5), which is equal to q{J2 in order of mag­
nitude. It has the form 

(4.4) 

and can be rewritten as 

(4.5) 

The condition that the inequality (4. 5) be satisfied for 
all frequencies Wo of the allowed frequency interval is 

(4.6) 

This inequality thus imposes an upper bound on the al­
lowed temperature interval. 

If the quadratic approximation were valid for the func­
tion ~T' ~T='Y(T/nc)2, then the inequality (4.6) would be 
rewritten in the form 

T<[ l'pcl(1+u) 'h] "q" (4.7) 

where To = (pli3cg)1/4 is the characteristic temperature, 
equal approximately to 7 OK. In the case 'Y = (4-10) 
• 10-17 cm2 , the dimensionless coefficient on the right 
side of (4. 7) is of the order of unity. In this case, the 
inequality (4. 7) would impose no limitation on the al­
lowed temperature interval. 

The fact is, however, that the function ~T increases 
with increase in T more slowly than according to a 
quadratic law at temperatures of the order of 0.5 OK; 
particularly at sufficiently high temperatures. There­
fore, if the frectuency of the ultrasound is sufficiently 
high, cases are possible in which the inequality (4.5) is 
violated. 

We now make clear the conditions under which it is 
possible to neglect the nonlinear corrections to the lin­
ear theory constructed above. First we must estimate 
at what sound intensities S4C the inequality 

!Z!<l (4.8) 

is satisfied. Making use of the expression (3. 13) for 
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Z(,9) and assuming the function z(~) in this expression 
to be of the order of unity, we obtain 

(4.9) 

However, as we can easily establish, this condition is 
not avery strong limitation on the sound intensity. The 
inequality (4.8) is a condition on the alternating part 
(with frequency ws ) of the phonon distribution function. 
At the same time, the nonequilibrium contribution to the 
constant part of the phonon distribution function must 
satisfy a similar condition (the disequilibrium is due to 
the sound absorption). 

The range .of angles in which the sound perturbs the 
constant part of the distribution function is a quantity 
of order (wSTol)-1I2. However, in the process of sound 
propagation, a broadening of this angular interval oc­
curs due to processes of transverse relaxation. If the 
"length" of the sound absorption 

1 pn'co' 
r (1+u)'T' q 

(4.10) 

is lnuch greater than the distance COTol over which the 
transverse relaxation takes place, then the nonlinear 
effects become important when the sound intensity is of 
the order of Pnc~-the maximum energy density which 
can be transferred by the phonon component at the given 
temperature, i. e., the condition of applicability of the 
linear theory is5) 

(4.11) 

If the sound absorption length is small in comparison 
with the length of transverse relaxation, then the "in­
crease" of the normal component of the ultrasound takes 

. place in a small interval of angles ~~, which is deter­
mined from the condition COrTol(~1l)4_1. Consequently, 
the criterion of applicability of the linear theory is 

(4.12) 

In conclUSion, we shall now point out the range of tem­
peratures and frequencies in which the effects consid­
ered here can be observed. Using a very rough esti­
mate for l/TII , 

1 (1+u)'T' 
-"'" 10' ft' 5 ' 
"til P c 

(4. 13) 

we find that at T= O. 6 OK (i. e., at the upper boundary 
of the allowable temperature range) Til '" 10-10• Thus, at 
T= O. 6 OK, the inequality ws« 1010 sec-1 should be satis­
fied. The range of allowed frequencies decreases rapid­
ly upon decrease in the temperature. Thus, at T 
= O. 3 OK, we have ws« 108 sec-1• 

The lower boundary of the considered frequency in­
terval is determined by the condition ws» 1irol' To es­
timate the time at high temperatures, for example, at 
T=0.6°, it is not convenient to use the expression (4.3) 
of Ref. 12, since the values of k of importance in the 
corresponding integral are those for which the quadratic 
approximation of the function ~Ck) is unsuitable. For 
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this purpose, however, we can use the experimental 
value of the viscosity coefficient 7], which is connected 
with Tol by the relation (3. lOa). Using the data of the 
experiments of Whitworth, [20] we have at T= O. 6 OK and 
at saturated vapor pressure of helium, T~l = 1.2 X 105 

sec-1• Thus the lower frequency boundary of applica­
bility of the theory at T= O. 6 OK is given by the inequal­
ity ws« 105 sec-1• Upon a decrease in the temperature 
(or an increase in the pressure) T~l falls off and the cor­
responding inequalities do not impose real limitations on 
the allowed frequency interval. 

From what has been said above follows the curious 
conclusion that in the region of temperatures where the 
kinetics in He II are determined only by individual pho­
nons, the region of applicability of the hydrodynamic 
theory of sound absorption (in which r- w~) is almost 
absent. This means that, of the three frequency inter­
vals enumerated in the Appendix, only the second and 
third can actually be realized. In both intervals, the 
absorption coefficient is a linear function of frequency, 
but the absorption is six times larger in the third inter­
val. The two linear parts are joined by a transition re­
gion (the numerical calculations of which have been car­
ried out in the work of Maris for several tempera­
tures[14]). 

The authors are very grateful to I. M. Khalatnikov for 
interesting discussions of the work and valuable sugges­
tions. 

APPENDIX: DETERMINATION OF THE·FUNCTION z(~) 

An equation of the type (3. 14) has been studied by 
Barnes[21l and in greater detail by Meyer. [22] However, 
they have considered only the nondegenerate case, in 
which the differential operator on the left side has the 
form ri(D- Pi)' where all the parameters Pi are dif­
ferent. For our purposes, a more detailed asymptotic 
form is necessary than in Refs. 21, 22. Here we shall 
study the degenerate equation and the asymptotic be­
havior of its solutions. 

The calculations have a very Simple and symmetriC 
form, if we consider the more general equation 

(A. 1) 

in place of (3. 14). This equation has the boundary con­
ditions 

xP(D'-p')z(p, x)-+O at x-+O, 

x-P(D-p) (D+p)'z(p, x)-+O at x-+O. 

In our case, P = 1/6 and x= ~eir/2. 

(A. 2) 
(A. 3) 

It is not difficult to obtain a particular solution of 
(A. 1) in the form of the following series: 

n;:! 00 X,,+lil 

zo(p,x)=e-'"i/'-_~ . 
cos' np ~ r'(n+3/,-p) f'(n+3/,+p) 

n=O 

(A. 4) 

The linearly independent solutions of the corresponding 
homogeneous equation have the form Zl(±P,X) and 
Z2(± p, x), where 
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DO ,x11+f' 

z,(p,x)=.E f'(n+1+2p) (n!)" 
.,=ll 

~ ¢(n+1)+1j:(n+1+2p) 
z,(p,x)=-z,(p,x)lnx+2 ~ P(n+l+2p) (n!)' x'+P, 

1/=0 

(A. 5) 

(A. 6) 

and where l/I(x) is the logarithmic derivative of the r 
function. 

It is not difficult to establish the fact that the functions 
Z2(±P,X) do not satisfy the boundary conditions at x=O. 
Thus the problem is to construct such a linear combina­
tion of the solutions zo(p, x), Zl (p, x) and Zl (- p, x) which 
would have the asymptotic behavior (3.16) as x- 00. 

To obtain the asymptotic representations, it is con­
venient to write out these series in the form of Barnes 
contour integrals (we shall not require the integral for 
the function za here, but we write it out, keeping in mind 
its possible future application): 

n' 1 J x·tgnsds 
z,(p x)=e-"i/l--- , 

, COS':lP 2:1i L r' (s+1-p) r' (s+1 +p) 

1 S r(~s+p)cosn(s-p) d 
z,(p,x)= 2J1i

L 
f'(s+p+1)r(s-p+1) x' s, 

__ 1_J r' ( -8+p) x' ds 
z,(p.x)-~. r'( -'--'-1) 

_;"fl 1. s , r . 

(A. 7) 

(A. 8) 

(A. 9) 

where the contour L begins at the point + 00, goes around 
the origin in the negative direction and returns to the 
initial point. It is also convenient to introduce the func­
tion 

(J) (p. x)=(J)(-p,x)= ? 1; J r'(-s-p) r'(-s+p)x' ds 
_:'1. 

(A. 10) 
L 

which has a Simple asymptotic behavior. That is, by 
the method of stationary phase we can obtain 

(J) (p,x) -(2n')'hx-'" exp (-4X'f.) at I arg xl <4n. (A.n) 

With the help of the relation r(s)r(l- s)=lT/sinlTS, 
we can write the integrals (A. 7)- (A. 9) in the form 

e-J:l i /,* {cos"'np 
z,(p,x)=--.,- --.-J r'(-s-p)r'(-s+p)tgas·x· ds 

JI cos- np 2m L 

(A. 12) 

i 
z, (p, x) =- '16;3 [ <D (p,xe'·i) -<D (p, Xe-'·i) -2e-'"'P<D (p, ;l'e"') 

+2e'·'P<D (p, xe-'·') -2i sin4np<D (p, x)], {A. 13) 

Z,(p,X)=--41 ., [e"i'<D(p,xe'·i)+e-"ir<D(p,xe-,"i)-2<D1i).X)}. (A.14) ,,-
Not all the functions <I> in Eqs. (A. 12) and (A. 13) 

satisfy the condition I argxl < 4lT. In order to obtain the 
asymptotic representation of the function <I>(p, xe4 lT1 ) we 
can use the relation 

z,(p, xe'·in ) =e,,'np[z,(p, x) -2ninz, (p, x)], (A. 15) 
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which is a consequence of (A. 5) and (A. 6). We note that 
the formulas (A. 13)-(A.15) enable us to obtain an 
asymptotic series for Zl(±P,X) and za(±P,x) at all values 
of argx and thus to determine all the Stokes coefficients 
(cf. Ref. 23). 

Since argx= IT/2 in our case, the functions <I>(p,x~l'l) 
and <I> (p,x e-41'1) increase exponentially as Ixl - 00, while 
the functions <I>(p,x) and <I>(p,xe-al'l) fall off exponentially. 
In the first term in (A. 12), the integral can be carried 
out over a contour parallel to the imaginary axis. Shift­
ing the contour into the left halfplane, we obtain the fol­
lowing asymptotic representation for the integral which 
enters into this term: 

_1_. J r'(-s-p) r'(-s+p)tg ns·x' ds 
2n'L 

=_~ ~ r'(n-'/,+p)~(n-'/.-p) +O(X-N-'f,). 
n ~ ,xn-,I 

n_' 
(A. 16) 

Using these results, we find that the solution of Eq. 
(A. 1) having no terms that increase exponentially as 
Ix 1- 00 is given by 

or 

n' 
z(p,x)=zo(p,x)-e-33i" 2 ' [z,(p,x)+z,(-p,x) J 

cos np 
in! 

-e-'""'-. -2-[Z'(P,x)-z,(-p,x)], 
Sin np 

1 +'-
z(p,x)=?- J g(sH'ds, 

.... :tl _I x 

where 

g(s)- ~ P(-s+p)r'(-s-p) [cos'nptgnse"n.,.-•• /U 

(A. 17) 

(A. 18) 

(A. 19) 

It is not difficult to demonstrate that the principal term 
of the asymptotic expansion of z(p,x) has the form 
(3.16) as Ixl - 00. 

To calculate L it is convenient to introduce the func. 
tion 

-(s)= (8)+ r(-8+p) 
g g r('j,+p) 8+'/,' 

Then 

,-'I. & 
z(p, ,) =z(p,~) + r('1 + ) J e-"1lp-'f'dTj, 

• p • 

where 

1 +'-
z(p'~)"'-. J g(s),'ds. 

2;t1_i~ 

At ~1» 1, we have 
I, • 

J ;m~-'f'ds "" J z(p. ~H.-'f'ds+ln £,-1\'(p+'/.) , 
, . 

(A. 20) 

(A. 21) 

(A. 22) , , 

(A. 23) 

The first integral in (A. 23) is calculated with the help 
of the Mellin inversion formula and is equal to g(-j). 
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As a result, 

(A. 24) 

which transforms into (3.19) at p=t. 

°The velocity Co is a variable quantity: it depends on the den­
sity p. The definition (2. 7), however, contains the constant 
quantity co(po), where Po is the mean density of Hell. With 
such a definition, small departures OPn from the equilibrium 
value of Pn are proportional to the small departure Os from 
the equilibrium value of the entropy density S, and oPn/ Pn 
= (4/3)0 sis. 

2)The deviation of the phonon spectrum from linear is taken 
into account only in the calculation of the transverse relaxa­
tion operator for the phonons. 

3)In particular, the last term in (2.19) can differ from zero 
for this reason. In this case, we mean by TiJ a constant 
quantity (in contrast, for example, to the nonlinear term in 
Eq. (18.7), of Ref. 18, where TiJ denotes the complete vis­
cous stress tensor). 

4)To make estimates of such a type more precise, we must 
keep it in mind that the characteristic value e T of the quantity 
e(k), which determines the rate of transverse relaxation in 
the system of phonons, must, as noted in Ref. 12, be of the 
order of HAT/nc), where A is a number of the order of 10. 

S)If this condition is violated, then the constant part vn can be 
of the order of c, which violates the limits of applicability of 
the initial equations (2.17)-(2.19) themselves. 
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The effect of a strong ac field on the dynamical nuclear 
resonance frequency shift in magnetically ordered crystals 
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We use the example of strong stationary NMR saturation in magnetically ordered crystals to show that 
due to the change in the interaction between spins the magnitude of the dynamical frequency shift (DFS) 
depends not only on the average value of the z-component of the nuclear spin, but also on the relation 
between the detuning and the amplitude of the strong ac field. We show also that for an appropriate choice 
of the parameters of that field there may be no DFS. 

PACS numbers: 76.60.-k 

It is well known[1,2) that the hyperfine interaction be­
tween nuclear and electron spins in magnetically ordered 
materials leads to the occurrence of a strong indirect 
interaction between the nuclear spins (Suhl-Nakamura 
interaction [3)). This interaction determines the first 
and second moments of the NMR line. We have 1If1 

»..jM2 even at high temperatures (fiw/kT« 1). [4) The 
first moment of the line or, alternatively, the dynami­
cal frequency shift (DFS) depends linearly on the aver-
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age value of the z-component of the nuclear spin (in 
temperature terms: on the reciprocal temperature of 
the nuclear spin system). This fact leads to a change 
in the resonance frequency for NMR saturation. 

So far[5,6) the effect of a strong ac field on the mag­
nitude of the DFS has been considered solely in terms of 
the change in the z-component of the magnetization. 
However, if the ac field is sufficiently large, it changes 
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