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1. INTRODUCTION 

The singularities of the magnon spectrum in a ferro
magnet with magnetic impurities were investigated in a 
number of studies. [1-3] It was shown that local levels, 
namely bound states of magnons on the impurity, are 
produced in the case of antiferromagnetic interaction 
between the impurity spin S' and the matrix spin S. 
Physically this means that an antiparallel "Neel" align
ment of S' relative to the direction of the total magne
tization Mz is energywise favored. 

In a paper by Yaks and one of us, [4] henceforth cited 
as I, it was shown that allowance for the magnon-mag
non interaction makes the 2S' + 1 levels of the impurity 
non-equidistant at S' >t. This' circumstance in turn 
causes distinctive oscillations of the magnetic suscepti
bility X and of the heat capacity C with changing exter
nal magnetic field. Neglecting the relativistic interac
tions that do not conserve the total moment M z , all the 
2S' + 1 levels of the impurity spin are strictly local at a 
temperature T = 0, i. e., they have no width. There
fore in the approximation linear in the concentration c, 
when no account is taken of the interaction between the 
impurities, these oscillations have a Ii-function char
acter at T = 0 (see I). With increasing c, however, and 
also with increasing T, the Singularities should become 
smeared out, and this raises the question of the possi
bility of experimentally observing these oscillatory phe
nomena. 

In this paper we determine the concentration broad
ening of local impurity levels and the range of concen
tration values in which susceptibility oscillations can be 
observed. The analysis is carried out within the frame
work of the Heisenberg model with nearest-neighbor 
interaction, and principal attention is paid to the case 
of weakly-coupled impurities. 

Our problem is close to that of the density of states of 
a particle in a random impurity field. [5] Thus, if the 
spin-wave approximation[l] is valid for the impurity 
spins, the magnon-magnon interaction can be neglected 
and the problem is fully equivalent to the usual one. [5] 

However, if all the 2S' + 1 local levels are considered 
(S' >t), it is precisely the magnon-magnon interaction 
which leads to their non-equivalence (see I). Therefore 
in this case, in contrast to the case considered by 
Lifshitz, [5] we are dealing with a many-particle prob
lem. 
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The concentration broadening is calculated in the pair 
approximation, i. e., the contribution made to the mag
non spectrum by the interaction of not more than two 
impurities is taken into account. The region of applica
bility of this approximation is well known from the the
ory of concentration broadening of local levels of pho
nons and the electrons in crystals with impurities, [5] 

and its application to our problem will be discussed be
low. 

2. SINGLE-MAGNON LOCAL LEVELS AT TWO 
IMPURITIES 

Just as in I (see also [1]), we consider a Heisenberg 
ferromagnet with cubic lattice with spin S and nearest
neighbor interaction J. Let two substitution impurities 
with spin S' be located at the pOints r = Rt and r = Rz, 
and let their interaction with the matrix spin be equal 
to J' . The gyromagnetic ratios for the spins of the ma
trix and the impurity will initially be assumed to be 
equal, g = g'. 

For the wave function CPr of the single-magnon state 
we have the equation (I. 5) (the notation is the same as 
in I): 

E(j),+ L,S,.J". «(j),-(j),') =0, E=E,-gH (1) 

" 
with the normalization condition (I. 4). Here E1 is the 
energy of the single-magnon state reckoned from the 
energy of the fully aligned state. From (1) we obtain 
for the wave function CPr in the case when the impurities 
are not nearest neighbors (R=Rl-Rz*~), 

(j),=SJ L, {[pG(r-R,-A)-6G(r-R,) 1 «(j)R.-(j)R.+&)+ ... }. (2) 
A 

The second term of (2), which has not been written out, 
is obtained from the first by making the substitution 
R1 - R z• In formula (2), ~ stands for the distance be
tween the nearest neighbors and z (the lattice constant 
is assumed equal to unity), and 

S'l' J' elk' 
p=1 +sr' 6=1 +" G(r)~ L, E-CJh' (3) 

k 

where wit is the same as in (1.6). 

Putting r =Rl> R1 +~, Rz, Rz +~, in (2), we can ob
tain a closed system of 14 equations for the energy lev
els E 1• In the general case, however, an investigation 
of such a system is difficult. In this paper we are in
terested only in the low-lying most symmetrical so-
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called s states, [1] and mainly in the case J'« J. If we 
confine ourselves at the same time to large distances 
between impurities (these are precisely the values of R 
we need) the determination of the energy levels becomes 
much easier. 

We first derive a formula useful for the determination 
of these energy levels. To this end we put r=R l in (2). 
We then write an equation for IPBl+A and sum it over A. 
Using the second equation to eliminate the term with 
IPaz+A from the first, we obtain ultimately 

E i '(1 cpa.+& 
--(i-6)(i-Ijl,), Ijl,--~-. 
z81 z & '1'_. 

(4) 

The term with IPBl+A can be eliminated in similar fash
ion. Here again we obtain formula (4) with the substitu
tion R 1 - Ra. Since the energyE should not depend on 
the choice of lJil> the equality lJil = lJia should be satisfied. 

Let us find the energy levels at large distances be
tween impurities, R» 1, in the form of an expansion in 
powers of l/R: 

E=E(Ol+E(O + ... , 1jl,=1jl:O) +1jl:0 + ..• 

Determining lJi~O) from the equation for 'Pal and substi
tuting it in (4), we obtain the usual equation for the s
state energy with one impurity (1.6). In this, zeroth ap
prOximation lJi~O) = lJi~O) is an identity. In the next approx
imation in l/R we must put in the equation for 'Pal 

inasmuch as in the s state the wave function of the mag
non at an isolated impurity is symmetrical (see I, and 
also [1]). As a result we obtain an equation for lJiP) in 
terms of the unknown ratio IPa/'Paa' 

A similar procedure is used to determine lJi~1>. From 
the equality lJi~ 1> = lJi~ 1) we obtain 'Pa/ (,Oaa = ± 1, so that in 
this approximation the energy levels are split and take 
the form 

E(O) 
E(1)=-0(1-6) (p-6-p-;sT) GO(R) / { (pG,O-6Go') , 

+(1-6) [ a;(O) (pG,o-Wo') n. (5) 

a=± 1. Here Go=G(O), Gl =G(A), R=Rl-R a and GO(r) 
is given by expression (3) with E =E(O). 

In the case of weakly-coupled impurities J'« J, which 
is of greatest interest to us, using the expression for 
E(O) from I and the asymptotic form of the function G(R), 
we obtain ultimately 

(I')' n e-Kll I' 
E,'=8,-08R, 8R=z8'-I- 4,,; T' x'=nT' (6) 

Here £1 is given by (I. 7a), and n is equal to 6, 2, and 3, 
respectively for the primitive cubic, BCC, and FCC 
lattices. We note that the relation between R and 1/ x 
in (6) is arbitrary. For (6) to be valid it suffices to 
satisfy the condition R » 1. 

From (2) with allowance for the normalization condi
tion (1.4) it is easy to obtain the wave function (J" «J) 

• 1 «1) (I) cp, =-= '1', +0'1', ) , 
1'2 

0=±1, (7a) 
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(0 (28') '/ [8'1' G 1] ( ) '1', "" -, ST (r-R')+z81 6',R, . 7b 

It is seen from (7) and (6) that, as expected, the sym
metrical state 'P; corresponds to a lower energy E; 
=£l-£B' 

The character of the energy correction of next order 
in l/R is of interest. To calculate this correction it is 
necessary to know the function IP(R,+A) with higher ac
curacy. As a result, we arrive at expression (6) with 
£B replaced by (l+J'/J)€B' i.e., the next-order cor
rection is small in terms of the parameter J'/J« 1. 

We note expression (6) can be obtained also by another 
more standard method. [6] To this end it is necessary 
to express the magnon wave function in the form (7), 
i. e., as a symmetrical and antisymmetrical combina
tion of the wave functions for the isolated impurities, 
and substitute in (1). We then arrive at the result (6). 
The next-order corrections, however, are incorrectly 
described in this approximation and must be discarded~ 

3. MANY·MAGNON LOCAL LEVELS AT TWO 
IMPURITIES 

We consider now many-particle states with m mag
nons, with m '" 4S' • At m = 4S' the spins of both impu
rities are antiparallel to the magnetic moment of the 
system, so that this is the ground state. 

The equation for the m-magnon wave function 'Prl". rlll 

=' 'Pl ••• ". (symmetrical in all the coordinates) was ob
tained in I, see formula (I. 9). The term in the curly 
bracket of (I. 9) describes the magnon-magnon interac
tion. If this term is disregarded, Eq. (1.9) has as its 
solution 

(8) 

where 'P~ and Ef make up the solution of the single-par
ticle problem (1) in the field of two impurities. At 
J' «J and R » 1 we must use expressions (6) and (7) for 
Ef and 'P~. 

Just as in I, assuming the magnon-magnon interaction 
to be small, we account for it by perturbation theory. 
For an isolated impurity with 1 magnons, the energy 
correction takes the form 

E/') ='1,1(1-1)(1" (9) 

where a is the same as in (1.13). Since £B« a, all the 
states (8) must be regarded as degenerate and the wave 
function must be sought in the form of a linear combina
tion of expressions of the type (8) with unknown coeffi
cients A al ••• a".. The substitution of such a wave function 
in (1.9) leads to a system of equations for the quantities 
A al ... a .. , and the condition that this system have a solu
tion yields the sought energy levels. 

The solution of the problem with a wave function in 
this form is in general difficult. We therefore first 
classify the energy levels E". at R »1. With m given, 
E". breaks up in the zeroth approximation in l/R into a 
number of sublevels corresponding to different distri
butions of the magnons over the pair of impurities. If 
one of the impurities has 1 magnons (0'" 1 '" 2S'), then 
the energy of such a state is equal to 
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with El from (1.7) and EP) from (9). Allowance for the 
fact thaUhe distance between impurities is finite leads 
to a splitting of these sublevels. 

We take into consideration the following two circum
stances: First, the splitting is connected with tunneling 
of the magnons from one impurity to the other, so that 
we can confine ourselves to a one-magnon transition, 
i. e., the transition between the states (1, m - Z) and 
(l± 1, m -1 'F1). The probability of many-magnon tran
sitions is small in the parameter 1/R. Second, the 
considered sublevels must be degenerate, for otherwise 
the splitting will be of next order of smallness. It is 
easily seen that the states satisfying both requirements 
are (10, 10+ 1) and ([0+ 1, 10), i. e., 10 =%(m -1), which is 
possible only if m is odd. We note that these sublevels 
are lowest in energy at the given m. Thus, in the first
order approximation in l/R, the energy sublevels do 
not split if m is even, and if m is odd only the ground 
sublevel is split. 

To find the splitting of these sublevels we write down 
the wave function of the system in a form analogous to 
(7a) (m = 21 + 1): 

_p {(I) (I) (Z) (Z) (') (') (1) (I) () 
!P1 ... m- I. .. m!pl '" !PI+< !p,+, ••• !pm ±!Pl •.. !P1+1 !Pl+> .•. !pm }. 10 

Here <p~O == <p~!) is the same as in (7b), and Pl ... m is the 
operator of symmetrization with respect to the coordi
nates r l ••• rm' We have left out from (10) a normaliza
tion factor which is inessential for our purpose. We 
substitute the wave function (10) in (I. 9) and then multi
ply both sides of the equation by 

and sum over all the coordinates rl' .. rm' Here S~j) =S 
at r*Ri andS~j)=S' at r=Rjo since <p~o is the solution 
of the one-magnon problem for an isolated impurity. 
USing the normalization condition (1.4) for the functions 
<p~i) we obtain as a result (m=21+1) 

Here Elo a, and ER are given by expressions (I. 7a), 
(I. 13), and (6). 

(11) 

The right-hand side of (11) is the result of the term 
with the magnon-magnon interaction in (I. 9). The term 
Z2a in (11), as can be seen from (9) is equal to E~l) 
+E~!l. Therefore the expression for the energy levels 
at arbitrary m can be written in final form 

(12) 

In (12), 1im•21 +1 is the Kronecker symbol and the energy 
levels Em are assigned a second index 1 in accordance 
with the classification given above. 

The origin of the first three terms in the expression 
for Eml was explained earlier. It is also clear that the 
splitting should be proportional to CR' It is likewise 
easy to understand the meaning of ER in (12). The split
ting is connected with tunneling of one magnon from the 
impurity with Z + 1 magnons to an impurity with 1 mag
nons. Since any of the Z + 1 magnons can take part in 
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the transition, the probability of the transition is pro
portional to their number multiplied by the probability 
of finding a free place on another impurity, equal to 
(2S' - Z)/2S', where 2S' is the total number of states at 
one impurity. 

Expression (12) goes over into (6) at 1 = 0 (m = 1). At 
Z = Zmax = 2S' -1, the splitting is the same as in the one
magnon case. Moreover, it is easily seen that the 
term with the splitting in (12) is invariant to the substi
tution Z-Zmax -1. The reason is that when the number 
of magnons is larger than 2S' one can speak of tunneling 
of "holes" rather than tunneling of magnons. The in
variance indicated above is the consequence of the sym
metry of the magnons and "holes." The splitting in (12) 
at half-integer S' is maximal if Z =%(2S' -1) and is equal 
to 'F E R(2S' + 1)2 /8S'. For integer S' the splitting is max
imal at 1 =S' -1 and is equal to'F ER(S' + 1)/2. 

The determination of the energy levels with the aid of 
a wave function of the type (10) is valid only in the re
gion of a small overlap over the wave functions of the 
magnons at different impurities. In the general case 
this calls for an exponentially small overlap, i. e. , 
xR» 1. It turns out, however, that the result (12) (at 
J' /J« 1) is valid also in the region 1« R« l/x. For 
the case S' =% this was demonstrated in Sec. 2, where 
we used only the condition R» 1 (and J' /J» 1). At 
S'>% the overlap is apparently small also at xR <1, 
since the wave function of the magnon is decreased by 
a factor J' /J already at the site neighboring on the im
purity. 

To prove this statement, we use another method pro
posed in I. This method, which is valid also at R ~ 1, 
enables us to obtain a successive expansion in the pa
rameter J' /J. In addition, the results obtained with its 
aid can be generalized to the case of ferrites. In this 
method, the spin-wave approximation is used for the 
matrix spins, while the impurity spin operators are 
described exactly. The Hamiltonian of the system is 
written in a form analogous to that given in I. The wave 
function -liM corresponding to the total spin of the sys
tem (N - 2)S + M can be represented in a form that coin
cides formally with (I. 16}: 

'¥ M=XMfllo+XM+< E ;j>..a,+fllo+ ...• (13) 
,.,I:81.8 a 

Here <Po is the wave function of the "vacuum" state for 
the matrix spins: ar<po = O. The terms not written out 
in (13) result in higher-approximation corrections to the 
energy and can be left out at the accuracy of interest to 
us. Substitution of (13) in the SchrOdinger equation 
yields, just as in I, two equations for the function XlI 
and ljir. Eliminating the function ljir we can reduce this 
system of equations, accurate to terms - (J' /J)2, to a 
single equation 

(14) 

Here E~l) is a correction to the energy and is propor
tional to (J')2, while G(R) is given by (3) with E = O. 
The "wave function" of the pair of impurities XM can be 
written in the form 
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(15) 

Here AI' are unknown coefficients, x~j) are the eigen
functions of the operator Saj: 

S~. (I) (I) 

ail(. =wx. ; 

the values of iJ. in (15) are bounded by the conditions 
-S'~ iJ.~S' and -S'~M-iJ.~S'. 

In the case R »1 and 1 = (m -1)/2 the equations (14) 
and (15) for the spectrum are easy to solve, and after 
adding the correction energy IX J', which has been left 
out of (14), we obtain the result (12), the only difference 
being that the expression for £R does not contain the fac
tor e- xR• The reason for its absence is that in the deri
vation of (14) we have left out terms containing J' 
raised to a power higher than 2. The expression ob
tained from (14) for Em' is therefore valid at lA.R:::; 1. In 
the case of unequal gyromagnetic ratios, g'"* g, for not 
too strong fields, g' H:::; zSJ', expression (12) for the en
ergy levels retains the same form, apart from the sub
stitution g- g' in £1' 

4. THERMODYNAMICS OF IMPURITY 
FERROMAGNET IN THE PAIR APPROXIMATION 

We consider temperatures that are low compared with 
the Curie point T e - J of the pure ferromagnet. The 
density of the spin waves is then small and they can be 
described in the spin-wave approximation. The impuri
ty concentration e will be assumed smalL Then the 
free energy, just as in I, can be written in the form 

F=F,,+F,,(T) +F,(T), (16) 

where Foo and FS'V/(T) are given by expressions (1.19) 
and (1. 20), while Fj(T) is the contribution of the local 
impurity levels. Inasmuch as at the considered small e 
the concentration broadening of interest to us is con
nected primarily with pairwise interactions of the im
purities, we write down Fj(T) in the form of a sum of 
free energies of the impurity pairs. The region of ap
plicability of this approximation will be explained below. 

Let Fa(r, - r J) be the free energy of two impurities 
located at the points r, and r J• Then, in the considered 
apprOXimation, 

F,= ~ L.F,(r,-rj). 
Ij 

Changing over in this expression to summation over the 
relative coordinate R'J =r, - r J, we write down the ex
pression for F j in final form 

F,=-i-J F,(R)W(R)dR. (17) 

Here W(R) is the probability of finding the second im
purity at a distance R from the first. For a Poisson 
distribution we have 

W (R) =c exp ( -4ncR' /3) . (18) 

We note that the transition from summation over the 
relative coordinate R'J to integration in (17) and to the 
continuous distribution (18) is essentially connected 
with the proposed smallness of the concentration e. It 
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is assumed here that the distances in (17) are large 
compared with the lattice constant. In particular, the 
radius of the bound state is -1/lA. »1 and the average 
distance between impurities is - C·1/S » 1. In addition, 
we assume that ellS /lA. «1, i. e., the radius of the bound 
state is small in comparison with the average distance 
between impurities. 

The quantity Fa (R) in (17) is expressed in the usual 
manner in terms of the partition function of the impurity 
pair Za: 

,S' 1 
F.(R)=-Tln Z2(R)=-Tln L. L.exp(-PEm,). ~=T' (19) 

m=O l 

where Em' are the energy levels of the bound states at 
the impurity pair, and are given by formula (12). If 
we neglect in (12) the term with the splitting, then 
Za = Z~, where Zl is the partition function of the isolated 
impurity, and (17) goes over into expression (1.21). 

Just as in I, we confine ourselves to the case of weak
ly-coupled impurities J'« J, for only in this case are 
the oscillatory phenomena predicted in I possible at the 
considered T« Te' We confine ourselves below to an 
investigation of the quantity which seems to be easiest 
to measure, namely the longitudinal susceptibility X··. 

We consider first the case S' =~. From (19) and (12) 
it is easily seen that Za can be written in the form 

Z2=(1+exp(-~E!+» (1+exp(-~Et-». Et"'=8 t=Fe.. (20) 

We then obtain from (17)-(19) for the contribution of 
the impurities to the longitudinal susceptibility X:· 
x:'=~ J[Ch_2(8~+;B)+Ch-,(8'27R)]W(R)dR, ".= c4~~·. 

(21) 
Here ve is the volume of the unit cell, Xo is the suscepti
bility of the system of free spins in a magnetic field 
H = O. Expression (21) does not depend on the sign of 
£ 1 = g'H - y, i. e., the peak in X~· becomes symmetrical
ly smeared out. If we let the temperature T go to zero, 
then (21) goes over into 

(22) 

In the approximation linear in the concentration, which 
was considered in I, the susceptibility xi" has at T =0 
a 6-function peak, which is obtained from (22) by putting 
£R = O. The presence of this peak is connected with the 
fact that in the approximation linear in c, as the mag
netic field increases, the impurity spins at the point 
g'H=y flip jumpwise from the "down" position (g'H<Y) 
to the "up" position (g'H>Y). When the finite distance 
between impurities (finite concentration) is taken into 
account, the interaction between impurities smears out 
this so-called metamagnetic phase transition. Expres
sion (22) gives the concentration broadening of the 6-
function peak in the pair approximation. 

From (22) it is easy to determine the region where 
the pair approximation is valid. Assume for the sake 
of argument that H<Hl =y/g'. At a fixed distance R, 
for a selected pair of impurities, the metamagnetic 
phase transition takes place at g'H =y - I:R = g'Hl - ER • 
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If HI - H is large enough, so that g'(Hl - H) = e R corre
sponds to a distance R between impurities smaller than 
the average distance R - e·1/3 , then it can be assumed 
that these pairs will make an additive contribution that 
is independent of the other impurities. In fact, the 
probability of finding a third impurity located at a dis
tance R« e·1/3 from the selected pair is small because 
the concentration e is small. Consequently, the region 
of applicability of the considered pair approximation is 
determined by the condition that H be different enough 
from HI: 

g'IH-H.1 >8(R). 

For the foregOing reasoning to be valid it must be stipu- _ 
lated that the wave functions of the bound states overlap 
weakly over distances R - e·1 13, and this leads to the 
condition e1/3/x «1. The inequalities g'l H - Hll » £ (R) 
and e1/3/x « 1 give the region of applicability of (22). 

We note that formula (22), apart from a coefficient, 
coincides with the density of states of a particle in a 
random potential in the pair approximation, if £1 is tak
en to mean the proximity of the particle energy to the 
energy of the bound state on the attraction impurity. 
In the region e »£(R) where it is valid, formula (22) re
duces, apart from a coefficient, to the expression ob
tained by I. Lifshitz[5J for the density of states. 

Our main task is to estimate the concentration broad
ening of the I)-function peak in the susceptibility. Since 
formula (22) ceases to hold in the region of the maxi
mum xj· as Il.H =H - HI - 0, we use the method used by 
Maradudin et al. t7J to estimate the width of the maxi
mum. We define the half-width of the peak r 1 in terms 
of the first moment of the function xj·: 

1-
f. = "2 I g':'1H1 

=+S x,'(H)g'If'lHldH / S X,'(H)dH= ~ S eRW(R)dR (23) 

An estimate of (23) using (6) shows that at el/3 / x « 1 
the major role in (23) is played by values R $l/x« e·lIS , 

i. e., the conditions for the applicability of (22) are sat
isfied. As a result we obtain for r 1 

(24) 

If T < r h then the observed broadening of the peak in 
xj·(H) will be of concentration origin. 

We consider now the general case S'>~. At low tem
peratures T« a, the dependence of xj· on H, just as in 
I, is oscillatory with maxima at the pOints1) g'Hn 
= y - na, n = 0, 1, ... , 2S' - 1. The susceptibility X:· 
near the n-th maximum is given by formulas similar to 
(21) and (22), except that £1 is replaced by g'(H -Hn) 
and the coefficient e R depends on n (in accordance with 
expression (12)). The condition for the validity of these 
formulas at e1/3/ x « 1 is 

e(R)<g'IH-Hnl</X· 

Thus, for example, at S' =~ the value of X:· as a func
tion of H will have three maxima. The outer maxima 
are described by formulas (21) and (22) with the substi
tutions £'1 - g'(H - HI) and £.1 - g'(H - Hs), while the half
widths coincide with (24). The expression for xj· near 
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the central maximum is obtained from (21) and (22) by 
making the replacements e 1 - g' (H - Hz) and £ R - i £ R, 

and its half-width is equal to r z =4r1/3. 
The oscillations of the susceptibility (as T - 0) will be 

noticeable if the sum of the half-widths of the neighbor
ing maxima is smaller than the distance between them: 
r 1 +rz <a, from which we obtain an approximate esti
mate for the concentration: 

C!(,C,='/7(lw-1)J' /8' J. (25) 

Here lw is the Watson integral; its values are given in 
I. At arbitrary S', the inequality (25) is the condition 
for the resolution of the extreme maximum and the 
maximum that follows it. With increasing n, the width 
of the peaks increases and reaches a maximum at the 
center of the" comb" when n - S'. Thus, at S'» 1 we 
have r mu '" S'r1/2, and the condition for the resolution 
of the central maxima is 

c!(,2 (1,,-1)1'/(8') 'J. (26) 

Since the area of each peak is apprOximately the same, 
the height of the central maxima at the considered 
T < r 1 is apparently smaller than that of the outer maxi
ma. It is natural to expect the results of I to be ap
plicable at higher temperatures T> r mu' when the tem
perature broadening is larger than the concentration 
broadening. 

Since the characteristic dimension of the bound state 
of the magnon is l/x »1, it follows that, just as in I, 
our results are apparently qualitatively valid also for 
ferrites. Using parameter values typical of iron gar
nets with raw-earth impurities[8,4J (for example Y3Fes012 
with Gd impurities), J' /J = 0.1, and putting S' =t we 
obtain from (25) a limit on the concentration: e $ O. 03 
(primitive cubic lattice) and e$ O. 02 (BCC and FCC). 

Apropos these estimates we note the following. First, 
at J' /J=O.l the condition x« 1 is not very well satis
fied. Thus, for a primitive cubic lattice we have 
x = (6J' /J)l/Z $ O. 8. Therefore the estimates (25) and 
(26) are only semi-quantitative. The second and more 
significant remark is connected with the method of de-

I termining the width of the peaks. If the half-width is 
defined not in terms of the first moment, as above, but 
for example in terms of the second moment of the func
tion xj·, then the upper bound of the concentration will 
be different than in (25). However, the numerical esti
mate for e at the chosen parameters J'/J and S' re
mains of the same order of magnitude. It is therefore 
natural to assume that expression (25) gives the cor
rect order-of-magnitude estimate of the impurity
concentration region in which experimental observation 
of susceptibility oscillations is possible. 

In conclusion, we thank V. G. Vaks for valuable ad
vice and interest in the work. 

1 >We take the opportunity to correct errors noted in 1. In the 
last term of expression (1. 7a) for E 1 it is necessary to re
place S with S'. In formula (1. 17b) it is necessary to omit 
the term in the square bracket, and set the right-hand side 
equal to zero. On page 1142 [558 of the translation] the 
seventh line from below [3rd line from top, left column] the 
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expression for Hn should take the form g'Hn ='Y -nO/. Every
where in Sees. 3 and 4, and particularly in Figs. 3-5, 0/ 

should be replaced by O! /2. 
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Effect of impurities on the thermoelectric properties of tin 
N. V. ZavaritskIT and A. A. Altukhov 

Institute of Physics Problems, USSR Academy of Sciences 
(Submitted November 12, 1975) 
Zh. Eksp. Tear. Fiz. 70, 1861-1871 (May 1976) 

The thermal conductivity and thermoelectric power of pure tin (P273K IP4.2K- 6.104) and of tin containing 
up to 0.2% of Cd, In, Sb, Te or Pb are measured in the 3.7-7.2"K range. The electronic part of a. of the 
thermoelectric power is separated from the component aph due to electron dragging by the phonons. It is 
found that a., aph and Wph (the thermal resistance due to electron scattering by phonons) depend on the 
impurity concentration and increase by several times when Po is increased up to about 10-8 (l·cm. The 
changes in ~h and Wph are ascribed to suppression of the anisotropy in the distribution of the 
nonequilibrium electrons. The variation of a. is ascribed to the dependence of a In Timp/ a In E on the 
scattering-center charge (Timp is the relaxation time for electron scattering by impurities). The values of a In 
T/a In E for Cd, In, Sb, Te and Ph impurities in tin and for pure tin are 3.3, 3.1, -1.5, -3.7,0.3 and 
-2.4 respectively, on the assumption that a In s/a In E = 1. 

PACS numbers: n.20.Pa, n.15.Qm 

The thermoelectric power is one of the most sensi
tive kinetic electronic properties of a metal. Its value 
depends on the type of impurities introduced into the 
metal, on the electron structure of the metal in an ex
ternal magnetic field, etc. All these features of ther
moelectric power were observed in various experimen
tal studies devoted to its properties (for a review 
seeCll), but until recently there were practically no 
systematic investigations of the thermoelectric power 
of extremely pure metals or of metals with small 
amounts of impurities at low temperatures. 

The present study was undertaken mainly for the pur
pose of determining the dependence of the thermoelec
tric power on a small number of impurities. The in
vestigated object was tin, since we had at our disposal 
material with an initial impurity concentration less than 
10-~ (P273K/ P4.2K = 6· 104). The impurities employed 
were In, Sb, Cd, Te and Pb. It is obvious that In, Cd, 
Sb, and Te differ from tin primarily in charge, where
as lead differs in atomic weight. The known published 
data on the thermoelectric power of tin at low tempera
tures t2•31 are insufficient and contradictory. 

MEASUREMENT PROCEDURE, SAMPLES 

The differential thermoelectric power 

a:=t1u/t1T[V/"KI. 
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(1) 

where ~U is the voltage on the sample along which the 
temperature difference ~T is produced, is small and 
amounts to apprOximately 10-8 V;oK at 4.2 OK. Since 
in the course of the measurements usually ~T -10-2 oK, 
to determine a it becomes necessary to measure volt
age differences down to - 10-12 V. 

We determined ~Uby a known method with the SKIMP 
insta1lationC4l as the null indicator (Fig. 1). The sen
sitivity of the setup was limited by thermal noise in the 
resistor RN and amounted to -10-13 V. The low-re
sistance resistor was a plate 1 x 1 cm of brass foil 
0.25 mm thick. Leads of superconducting wire BT-60 
were welded to the plate on both sid~s, one on top of 
the other, over the entire length. The resistance be
tween these wires perpendicular to the plane of the 
plate was 1. 28X 10-5 Qat 4.2 OK. The resistance was 
constant during the entire measurement cycle. Ran
dom changes of the resistance RN when installed in the 
cryostat were possible. These changes of resistance 
took place in our case during the initial stage of the 
work. As a result, all the thermoelectric-power val
ues cited by us earlierCS1 must be multiplied by 1. 177. 

The temperature gradient was produced in the ap
paratus shown in Fig. 1. The sample was thermally 
insulated from the surrounding helium by means of a 
dewar turned upside down. The copper rod 4 soldered 
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