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The effect of the defecton·phonon interaction on the phonon spectrum in crystalline helium is 
theoretically considered. It is shown that a substantial renormalization of the phonon group velocities 
occurs in the neighborhood of the threshold frequencies corresponding to the decay of a phonon into a 
defecton pair. The phonon spectrum breaks off at the threshold points and disappears, when the interaction 
is sufficiently strong, in the region of frequencies corresponding to the continuum of the free defecton pairs. 
The coupling between the phonons and the bound defecton states leads to an additional modification of the 
spectrum. It is also found that the defecton-phonon interaction leads to a nonmonotonic dependence of the 
intensity of the one-phonon mode in the dynamic form factor on the transferred momentum. 

PACS numbers: 67.80.Ez, 67.80.Mg 

1. INTRODUCTION (w D) of the phonon excitations and, as was first noted 
by Andreev and Lifshitz, W can, in principle, become 

zero. 
The weakness of the interaction, coupled with the 

smallness of the atomic mass, is the source of quite a 
number of properties that qualitatively distinguish solid 
He3 and He4 from normal classical crystals. To these 
properties pertains, in particular, the fact that the en­
ergy of formation of a point defect in crystalline helium 
turns out to be appreciably lower than the cutoff energy 

The object of the present paper is to consider the 
possible distinctive features of the phonon spectrum of 
solid helium that are caused by the interaction with the 
defecton excitations under conditions when the minimum 
energy of creation of the latter is finite. We shall show 
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that, as we approach the creation threshold for one-par­
ticle excitation pairs of the "particle-hole" type from 
the low-frequency side, the phonon group velocity de­
creases sharply, tending at the threshold point to the 
value of the one-particle excitation velocity. At this 
point the phonon-spectrum curve breaks off abruptly 
and, in the case of a sufficiently intense interaction, 
vanishes in the frequency range corresponding to the 
continuum of the one-particle excitations. It reappears 
only at frequencies corresponding to the upper pair­
production threshold, above which pair production is 
impossible. The shape of the phonon-spectrum curve 
in the region immediately above the upper threshold is 
similar to that obtaining near the lower threshold. 

Recently, Andreev[2] found that there can exist in 
solid helium bound defecton states, including bound 
pairs of the particle-hole type. Since the spectrum of 
the bound pair lies below the spectrum of the free-pair 
continuum, the bound states cannot affect the phonon 
spectrum in the immediate vicinity of the production 
threshold for the free pairs. As to the region where, 
in the absence of interaction, the spectral curves (for 
the phonons and bound pairs) could intersect, the cou­
pling between them leads to a modification of the spec­
trum in accordance with the principle of (mutual) non­
intersectability of terms of the same symmetry. [3] 

It is characteristic that the distinctive features of the 
phonon spectrum that are in question here do not depend 
on the statistics obeyed by the atoms and, hence, by 
the one-particle defecton excitations of the crystal. 
This circumstance is connected with the assumption that 
the minimum energy of formation of a defecton pair 
substantially exceeds the temperature of the crystal. 
As a result, there are virtually no thermal defectons, 
and their statistics-dependent contribution to the re­
normalization of the phonon spectrum is exponentially 
small. For this reason, the analysis of the properties 
of the phonon spectrum will be carried out for the T = 0 
case. 

The distinctive features of the phonon spectrum are 
closely related with the properties of the crystal's 
dynamic form factor, which plays an important role in 
the description of experiments on inelastic neutron 
scattering. The third section of the paper is devoted to 
the consideration of some properties of the dynamic form 
factor that are due to the defecton-phonon interaction. 

2. DISTINCTIVE FEATURES OF THE PHONON 
SPECTRUM 

The phonon spectrum in a crystal, like the other 
branches of the Bose excitations of the collective type, 
is determined by the poles of the two-particle vertex 
part r[U as a function of the frequency transfer w and 
the wave vector k. With allowance for this circum­
stance in the representation of an arbitrary system of 
functions satisfying the Bloch periodicity conditions, 
we can write the function r in the form[5] 

r(p, p'; k) =[(p, p'; k) + L. g. (p, k)D.(oo, k) g~+) (p', k). (1) 

The function D",(w, It) explicitly contains phonon poles 
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((I is the number of the phonon branch), and can, nat­
urallY'A be called the phonon Green function. The quan­
tities f, g"" and g~.) do not possess such poles. The 
four-dimensional vectors p+k, p' and p, pi +k corre- -
sponds to the energies and quasimomenta of the parti­
cles respectively before and after the interaction: A 

p={e, p}, p' ={e', p'}, k ={w, It}. The functions r, fl, 
g"" and g~) are matrices with respect to the band in­
dices numbering the basis functions in whose represen­
tation they are written. 

The fact that the phonon poles of the vertex part r 
have a factorizable form allows us to treat the function 
D", (w, k) in the same way as any other one-particle 
Bose Green's function. In particular, for the corre­
sponding retarded Green function D!(w, k), we can write 
down a Dyson type of equation 

(2) 

in which the contribution, 'p!(w, k), of the processes of 
decay of a phonon into a pair of defecton excitations has 
been explicitly separated out. The function P!(w, k) is 
determined by diagrams of the type shown in Fig. 1. A 
line with the plus sign in the diagram denotes a particle­
type defecton (an interstice), while a line with the minus 
Sign denotes a hole-type defecton excitation (a vacancy). 
Bearing in mind the analytic properties of the function 
D!(w, k), we can represent the quantity ~(w, k) in the 
form of a spectral decomposition: 

= ( 'k) 
PaR(oo,k)= jdoo' pa 00: ,{j +0 

oo-Ill +i{j - , 

ooPa(oo,k);;;'O. (3) 

The spectral function P", (w, k) is completely determined 
by the defecton-excitation states and the defecton-pho­
non interaction. 

Let us first assume that there are no defecton-defec­
ton bound states. Then the spectral function,p",(w, k) 
will be determined by the contribution of only the free 
pairs. Having an energy gap that is substantially 
greater than the temperature, the defecton excitations 
are long-lived. Indeed, the processes of phonon emis­
sion by the defectons are forbidden by the laws of con­
servation of energy and quasi-momentum as a result of 
the large difference between the phonon and defecton 
velocities, while the fusion of two defectons into a pho­
non is excluded because of the absence of thermal de­
fectons. The only possible process that is capable of 
making a contribution to the defecton decay is the scat­
tering of the defectons by phonons. The probability of 
these processes are, however, small because of the 
smallness of the number of thermal phonons - (T/WD)3, 
owing to which we can neglect them. 

With allowance for these remarks, the expression 
for the spectral density p",(w, k) for w > 0 has the form 

~~. 
~ k-p .' 

P. S. Kondratenko 

FIG. 1. 

951 



S dp 
p.(oo, k)= (2n)' A.(p, k)I\(OO-E+ (p) .>. 

-E_(k-p», (4) 

where E.(P) and e.(k-p) are the energies of the particle­
and hole-type defectons with quasi-momenta p and k-p 
respectively. The function A .. (p, k) is positive. Owing 
to the band character of the defecton spectrum, the 
function P .. (w, k) for w > 0 is different from zero within 
the frequency range 

oo(l) (k) <00<00(') (k), 

in which the energy sum e.(p) + E_(k - p) is contained. 
The frequencies w(ll(k) and w(2)(k) correspond to the 
minimum and maximum of the expression E.(P) +E_(k-p) 
for a given value of the vector k. 

Let us determine the form of the spectral function for 
w - wU)(k) and w - w(Z)(k). Let us denote by Pl(k) and 
pz(k) the values of the quasi-momentum p (for a fixed k 
vector) at which the expression e.(p) + E.(k - p) has its 
minimum and maximum respectively. According to the 
foregOing, these points are not singular points for the 
defecton spectrum, andnear them we can expand the 
function E.(P) +E.(k-p) in powers of the difference q1 =p 
-P1(k) and ~=p-Pz(k): 

E+ (p) +E_(k-p) ""oo(l) (k) +a:,,(k)q.'q," p-+p, (k); 

E+(p)+e_(k-p)""oo(') (k)-~,,(k)q,iq", p ..... p,(k). (5) 

Because the points P1 (k) and pz(k) are extremum points, 
there are no linear terms in the expansion in q1 and Q2' 

The principal values of the matrices a'l" f3'k are non­
negative. We shall also assume that not a single one 
of them vanishes. Then on the basis of (4) and (5) we 
obtain for the function f3 .. (w, k) for frequencies close to 
w(ll(k) and w(2)(k) the following expressions: 

p. (00, k) '" 
A.(p" k) l'oo-oo(l)(k) e(oo-fJ)(') (k», 00 ..... 00(1) (k); 
4n'(det~)'" 

(6) 

p.(oo, k)", 
A.(p"k) Y 00(2) (k) -00 e (00(') (k) -(0), 00 ..... 00(') (k). 

4n' (det ~ )"' 

where 6(x) =1 for x> 0, 6(x) =0 for x < O. Hence with the 
aid of the relation (3) we have 

P.(oo,k)"'P.(oo(l)(k),k)+ A.(p"k) (oo(l'(k)-oo)''', 
4n' (det;X) 'I. 

00"'" 00 (l) (k); 

p. (00, k) ",P. (00(" (k), k) - A. (p" k) (00-00(" (k)) "', oo ..... I!l(') (k). 
4n'(det ~)'" 

The square roots here are defined such that for wU)(k) 
< w < w(2)(k) the imaginary part of the function p .. (w, k) 
is negative. 

Let us denote the solution to the dispersion equation 

(8) 

by w = w .. (k). Outside the interval corresponding to the 
spectrum of the defecton pairs the function w .. (k) is, 
when the phonon self-damping effects are neglected, 
real. The lower and upper thresholds for defecton­
pair production are determined by the equations 

oo.(k) =fI)(l} (k), oo.(k) =00(') (k). (9) 
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In order to elucidate the nature of the phonon spec­
trum near an arbitrary point, kh lying on the lower­
threshold surface w .. (k) = w(1)(k), let us determine the 
form of the phonon Green function for w- wU )(k1), k-k1 • 

Let us introduce the notation: 

Q=oo-oo.(k,), x=k-k,. (10) 

Let us assume that in the vicinity of the point k1 the 
phonon spectrum is nondegenerate. Then the expansion 
of the function [15:(w, k)]-1, which does not contain a con­
tribution of the decay into defecton pairs, in powers of 
the quantities {2 and x has an analytic character. Taking 
into account the formulas (2) and (7), we obtain 

[D."(oo,k) ]-1 =~[Q-cx-b(VX-Q)"'] 
a ' 

(11) 

Here a and c are parameters ariSing from the expansion 
of the analytic part of the inverse of the Green function 
and the quantity 

corresponds to the group velocity of the defectons; c is 
of the order of the phonon velocity unrenormalized by 
the interaction with the defectons. The parameters a, 
b, and c depend on O! and kt. For brevity of notation, 
we shall omit the designation of this dependence. Be­
cause A .. > 0 in the formula (7), the signs of the quan­
tities a and b in (11) coincide. In the following section 
we shall show that the quantity a is positive; therefore, 
a, b>O. 

The substitution of the expression (11) into (8) leads 
to a dispersion equation for the phonon spectrum in the 
neighborhood corresponding to the lower threshold for 
the point k1: 

Q-cx-b (vx-Q) "'=0. (12) 

The solution to this equation corresponding to the condi­
tion {2 = 0 for " = 0 has the form 

Qa<vx- (c-v, x) 'Ib'. (13) 

the frequency determined by it satisfies the inequality 
{2 < V)(, i. e., w < w (1) (k), and, consequently, the solu­
tion (13) corresponds to the prethreshold frequency re­
gion. We can convince ourselves by a direct verifica­
tion that the found root of Eq. (12) applies only for 
(c - v, x) < O. In the region (c - v, x) > 0, however, Eq. 
(12) does not have solutions-real or complex-in the 
vincinity of the point )( = 0 . Thus, the phonon spectrum 
breaks off at the threshold pOint)( =0. As can be seen 
from (13), the phonon group velocity then tends, as we 
approach the threshold, to the defecton velocity v. The 
situation arising here is similar to the situation that 
arose in the analysis of the properties of the excitations 
of superfluid helium near the end of the spectrum in 
Pitaevskii's paper. [6] 

Analysis of the phonon spectrum near the upper 
threshold for decay into a defecton pair leads to the 
conclusion that the solution to the equation analogous to 
(12) has, near an arbitrary threshold point, kz, the form 

Q'a<v'x'+(c'-v', x')'lb", (14) 
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, ()' IF where 0 = w - w .. ~ , ~ = k -"'2, and the parameters 
v', C', b' have the same origin as the parameters v, c, 
b in the lower-threshold case. The solution (14) corre­
spondstoO>V'''', Le., w>w(2)(k), and is valid for 
( ' ") . (' ") C - v, x > 0. In the regIon c - V ,')I. < 0, however, 
the dispersion equation does not possess roots. 

It is worth noting that in the case when the component 
of the defecton velocity along the direction of the wave 
vector k is negative (L e., when nv < 0, n = k/ I k /), the 
component of the phonon group velocity n aw .. (k)/ak 
along the same direction, being positive in the region 
of small values of the vector k, goes, according to (13), 
through zero as we approach the lower threshold. In 
other words, in this case the phonon-spectrum curve 
goes through a maximum. It is evident that at points 
sufficiently far from the lower threshold on the low­
frequency side and from the upper threshold on the high­
frequency side the role of the effects of the interaction 
with the defectons diminishes, and the phonon group 
velocities tend to the corresponding-to them-unrenor­
malized values. At the threshold points, however, they 
are comparable to the defecton group velocities, which, 
according to the available experimental data, is signifi­
cantly lower than the phonon group velocities. 

Let us recall that the conclusion about the breaking 
off of the phonon spectrum at the lower threshold and 
its regeneration at the upper threshold was arrived at 
on the basis of an expansion of the function [D!,(w, k)]-l 
in the immediate vicinities of the threshold points. In 
order to understand the physical meaning of the disap­
pearance of the poles of the D function and elucidate the 
possibility of the regeneration of the phonon spectrum 
in the frequency range w(1)(k) < w < w(Z)(k) far from the 
threshold values of w, let us consider in greater detail 
the case of weak coupling, namely, the case when the 
parameters bZ and b'z, which have the dimension of fre­
quency, are small compared to the width of the defecton 
spectrum: 

b', b"¢:w(') (k) _00(1) (k). (15) 

In this case the expressions (7) and (11) and Eq. (12) 
have a region of applicability wider than that of the solu­
tions (13) and (14), which correspond to a power series 
expansion in the quantities (c - v, ,,)/bz and (c' - v', 
I< ')/b 'z. 

As follows from the formulas, (7), for the polarization 
operator, the two-valued function Dt)(w, k) of the com­
plex frequency w can be set in correspondence with the 
function D!(w, k). In the upper and lower half-planes 
of the first sheet of the Riemann surface the function 
D~* )(w, k) coincides with the analytic continuations of the 
retarded, D!(w, k), and advanced, D!(w, k), phonon 
Green functions. The first and second sheets are con­
nected by a branch cut along the segment wUl(k), w(Z)(k) 
of the real axis. In analyzing the mechanism underlying 
the disappearance of the poles of the DR function, it is 
useful to consider the poles of the function D~·)(w, k) in 
the near-threshold frequency region. At values of w 
elose to w(1)(k), they are determined by the equation 

Q-ex'Fb (vx-Q) '1'=0, 

which follows from (12), and which has the solution 
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b' b'[ (C-V,X)]'" Q,,=cx--±- 1-4--- . 
, 2 2 b' (16) 

For (c - v, x) < 0, the first root, 010 corresponds to the 
first sheet of the functionD~·)(w,k). For (c-v, x)2/b 4 

«1, it goes over into the expression (13). The second 
root, Oz, corresponds to a pole of D::)(w, k) on the 
second sheet of the Riemann surface. For (c - v, x) =0, 
the first pole 0 1 crosses to the second sheet, where the 
pole Oz also continues to remain. For (c - v, x) < b2/4, 
both of them are real. At the pOints (c - v, x) =b2 /4 the 
poles 0 1 and O2 merge and become complex when (c - v, 
)() > b2/4, the two poles being then complex conjugates. 
If (c - v, ,,) < b2/4, then the real parts of the two roots 
satisfy the condition Re(vx- 0) > 0, and the analytic con­
tinuation of the function D!(w, k) from the real axis into 
the lower half-plane along the shortest path does not 
contain them as its poles. The situation changes 
abruptly when (c - v, )() = b2/2. If (c - v, )() > b2/2, then 
the pole 

b' .b'[ (c-v,x) ]'" Q,=cx---!- 4----1 
2 2 b' 

(17) 

turns out to be in a region of the second sheet which can 
be reached by an analytic continuation of the function 
D!(w, k) from the real axis into the lower-plane along 
the shortest path. The poles of the function D~·)(w, k) 
have, in the case of w close to w(2)(k), properties simi­
lar to those just considered. 

In order to elucidate the physical meaning of the poles 
of the fUllction D~·)(w, k), let us use the method proposed 
in(7) (see alsoe4]). If at the initial moment of time the 
crystal was in the one-phonon excited state, then the 
amplitude of the probability for finding it in the same 
state at the moment of time t is, in accordance withe7• 4l, 

determined by the integral 

f~dW , 
F«(k,t)= Tne-'"'D«(w.k), (18) 

where DCI(w, k) is the causal Green function figuring in 
the relation (1). Using the properties of the functions 
D .. , D!, ~, and D~*), let us move the integration con­
tour in (18) into the lower half-plane of the complex fre­
quency, as shown in Fig. 2. The sections of the con­
tour marked by the continuous and dashed lines corre­
spond respectively to the first and second sheet of the 
function D~*)(w, k). If we neglect the self-damping of 
the phonons, then the integral of the function (27Tt1 

x (D!(w, k) - ~(w, k»e-IOlt along the vertical section 
Rew = ° vanishes (seeC7• 4l). Therefore, this section of 
the contour has been omitted in the figure. The points 
A, B, and C denote the poles of the function D~·)(w, k) 

1m", 

FIG. 2. 
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that are encountered in the path of the integration con­
tour when it is shifted into the lower half-plane. Indeed, 
according to the analysis carried out above, for a given 
value of the wave vector the integration contour can en­
compass not more than one of the poles A, B, and C. 
For (c - v, x) < 0 this pole is of the type A; for (c - v, x) 
>b2/2, (c'-v',x')<-b'2/2, it is a pole of the typeB, 
while for (c' - v', )( ') > 0 it is of the type C. In the inter­
vals 0 < (c -v, x) < b2/2 and - b'2/2 < (c' -v', x') < 0, not 
one of the poles of the function D~*)(w, k) falls on the in­
tegration contour. 

Clearly, the poles under consideration can corre­
spond to weakly damped elementary excitations of the 
phonon type only in the case when the contribution from 
their circumvention to the integral (18) exceeds the con­
tributions from the integration along the vertical sec­
tions Rew = w(l)(k), w(2)(k). The latter contributions de­
crease in time according to a power law, in contrast to 
the exponential decrease of the pole contributions. For 
w .. (k) < w(l)(k), or w .. (k) > w(2)(k), their contribution 
turns out to be negligible when the self-damping of the 
phonons is neglected. If, on the other hand, the wave 
vector k lies in the space between the surfaces w .. (k) 
= wU)(k) and w .. (k) = w(2)(k), then the pole contribution to 
the integral (18) will, when the imaginary part of a 
type-B pole, (17), is taken into account, predominate 
only upon the fulfilment of the inequalities I (c - v, x) I 
» b2 , I (c' - v', x ') I » b'2, which, with allowance for the 
formula (17), implies 

ro-m(tl (k) >b', m(') (k) -ro>b". (19) 

The satisfaction of these inequalities is possible only 
when the conditions (15) are fulfilled. Thus, only in the 
case of a sufficiently weak interaction, satisfying the 
inequalities (15), can phonons in the continuum region 
for the free defecton pairs exist as weakly-damped exci­
tations at frequencies determined by the conditions (19). 
If, on the other hand, the interaction is not weak, then 
the pole contribution to the integral (18) is comparable 
to, or less than, the contributions from the integration 
along the segments Rew = w(1)(k), w(2)(k), and phonons 
as elementary excitations are absent at wave vectors 
lying in the space between the surfaces w .. (k) = w (1) (k) 
and w .. (k) =w(2)(k). The integrals along the vertical 
segments Rew = w(1) (k) and Rew = W(2) (k) clearly corre­
spond to the excitation of the defecton pairs. 

Thus far, we have assumed that the spectrum of the 
defecton pairs reduces to the free-pair continuum. In 
reality, however, as was indicated above, bound defec­
ton pairs can, according to[2], exist in solid helium. 
Let us denote by Er(k) the unrenormalized-by the dy­
namical interaction with the phonons-energy of the 
I-th branch of the bound state of the pairs. The correc­
tion, due to this branch, to the spectral density P .. (w, k), 
of the phonons for w > 0 is equal to 

p.'(ro, k)=N.'(k)6(ro-e,(k», N.'(k) >0. 

The corresponding contribution to the polarization op­
erator for w- E,(k) has, according to (3), the form 

, _ N.'(k) 
P. (m,k)- m-e,(k)+i6' 6 ..... +0. 
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The dispersion equation (8) with allowance for the cor­
rection to the polarization operator P,.(w, k) in the ex­
pression, (2), for the Green function gives the spectrum 
of two interacting branches of the phonon and bound-de­
fecton-pair excitations. The general properties of the 
solution to (8) in the wave-vector region where the 
branches under consideration could, in the absence of 
interaction, intersect are, as usual, determined by the 
principle of nonintersectability of terms of the same 
symmetry. [3] Since by the very nature of the bound 
states E z(k) < w (1) (k), their presence can in no way af­
fect the above-considered properties of the phonon spec­
trum in the imediate vicinity of the lower threshold. 

Figure 3 shows a schematic representation of the spec­
trum of the phonons of the Ci-th branch and of the defec­
ton pairs along some given direction, n, of the wave 
vector k = I kin, n2 = 1. For simplicity, we show only 
one branch of the bound defecton pairs. The hatched 
part of the figure corresponds to the continuum for the 
free defecton pairs; the phonon spectrum is absent from 
the region of this continuum if the interaction is not 
weak. The dashed lines represent the spectrum of the 
phonons and the bound defecton pairs in the absence of 
any interaction between them. 

3. THE DYNAMIC FORM FACTOR 

One of the most important quantities characterizing 
a crystal is the dynamic form factor S(w, k); 

S(ro,k)= Jdte'·'S(k,t), 

(20) 
S(k, t) =<n.(t)n_. (0». 

Here nt(t) = f dre-it•r ii(r, t) is the Fourier transform of 
the Heisenberg particle-number-density operator and 
the symbol ( •.• > denotes averaging over the statistical 
ensemble. The relation[S] 

S(ro,k)=- ! [1-exp (- ;)] ImR(ro,k) (21) 

relates the dynamic form factor to the density-density 
correlation function defined by the equalities 

R(m, k)= J dt e'·'R(k, t), 

R(k, t) =-i(l;.(t), n_.(Om8(t), (22) 

where [,] is a commutator and 8(t) is the step function. 
Since the quantity R(w, k) can be expressed in terms of 
the two-particle, equal-argument (pairwise) Green 
function GlI; [41 while the latter is linearly related to 
the vertex part r, the quantity R(w, k) with allowance 
for the equality (1) can be written in the form 

FIG. 3. 
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R(w,k)=ll(w,k)+ .EBu(w,k)DuR(W,k)B~+)(w,k). (23) 

In contrast to the retarded phonon Green function 
n!(w, k), the functions B,,(w, k), B~+)(w, k), and R(w, k) 
do not contain one-phonon poles, on account of which 
their frequency dependence is determined by the con­
tribution of only the many-phonon and defecton excita­
tions. Notice that the argument k of the functions S(w, 
k) and R(w, k) can assume arbitrary values, including 
those that extend beyond the limits of the first Brillouin 
zone. In the latter case the function D!(w, k), like the 
excitations determined by it, should be understood in the 
scheme of the extended zones of the vector k. 

Assuming the state of the crystal to be invariant under 
time reversal, we can show that 

B~+) (w, k) =Bu(w, k). 

Taking this equality into account, we can, on the basis 
of (23), write the imaginary part of the function R(w, k) 
in the form 

ImR(w,k)= Imll(w, k)+ .E ImDuR(w,k)ReBu'(w, k) 

+ LReDuR(w,k)ImBu'(w,k). (24) 

In separating out the one-phonon contribution from this 
expression, we should bear in mind that, while the fre­
quency widths of the peaks corresponding to the contri­
butions of the many-phonon and defecton excitations cor­
respond to the energy widths of the spectrum of these 
excitations, the frequency width of the one-phonon con­
tribution is determined by the phonon damping. It is 
natural that the separation of the phonon peak can be 
carried out only in the case when the phonon damping 
is small compared to the indicated spectral widths. 
When this condition is not fulfilled, it should be as­
sumed that there is no one-phonon contribution to the 
dynamic form factor. This means, in particular, that 
if the phonon-defecton interaction is not weak, then a 
one-phonon contribution to the dynamic form factor does 
not, in accordance with the results of the preceding 
section, exist in the frequency interval corresponding 
to the free-defecton spectrum. 

Let us consider the influence of the phonon-defecton 
interaction on the intensity of the phonon peak in the 
wave-vector region where the phonon damping is weak. 
In this case the separation of the one-phonon contribu­
tion S~h(W, k) from the dynamic form factor does not 
meet with any difficulties. It is clearly determined by 
the sum of the second and third terms on the right-hand 
side of the formula (24) with the phonon Green function 
replaced by the corresponding pole expression. Let us 
define the integrated intensity of the one-phonon contri­
bution to the dynamiC form factor of a crystal by the 
equality . 

<d>(k) 

I.(k) = J dwSfh(fJl,k). 

,"«k) 

(25) 

The limits of the integration here Jlave been chosen such 
that their half-sum ~(w~(k) +w~(k» corresponds to the 
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center of the phonon peak, while their difference satis­
fies the inequalities 

-y.(k) ¢:w>" (k) -w<· (k) ¢:L\w (k) (26) 

(Y,,(k) and t.w(k) are respectively the frequency widths 
of the phonon peak and the multiphonon- and defecton-exci­
tation background). The possibility of the fulfilment of the 
condition (26) is ensured by the requirement that the pho­
non damping be weak. With allowance for what has been 
said above about the determination of the quantity S:h(W, 
k) we shall have on the basis of the relations (21), (24), 
and (25) the following expression for the integrated in­
tensity of the one-phonon peak: 

I.(k)= [1-exp (- w;(k)) rReBu'(wu(k),k)Q.(k), (27) 

(28) 

In computing I" (k), we neglected the quantities of rel­
ative order of magnitude Y,,(k) (w~(k) - W~(k))"l, (w~(k) 
- w~ (k))/ t.w(k). Within this degree of accuracy, the in­
tensity I,,(k) does not, in particular, contain any con­
tribution from the third term of the expression (24), a 
term which affects the shape of the one-phonon peak. 

According to (11), the residue at the pole of the pho­
non Green function (28) in the immediate vicinity of the 
lower threshold has the form 

Q.(k)=2al(c-v, >e)I/b'. (29) 

Notice that the weakness of the phonon damping simul­
taneously implies also the smallness of ImB,,(w, k) in 
comparison with ReB,,(w, k). Therefore, ReB~(w, k) 
> O. Since, by virtue of its definition, the dynamiC 
form factor is positive, the formulas (27) and (29) lead 
to the conclusion that a > O. It follows from the equali­
ties (27) and (29) that the integrated intenSity of the one­
phonon peak, I,,(k), vanishes at the threshold points. 

In order to understand its behavior as the lower 
threshold is approached from the side of wave vectors 
corresponding to low frequencies, let us note that, like 
that of the polarization operator P.!(w, k), the diagram 
expansion of the quantity B,,(w, k), defined by the equal­
ity (23), will contain a diagram of the type shown in Fig. 
1. As can be seen from the expansion (3), the contribu­
tion of this diagram increases in absolute value as the 
threshold is approached. This circumstance creates 
the prerequisite that, before vanishing at the threshold 
itself, the function I" (k) should go through a maximum 
as the threshold is approached. Since, on the other 
hand, the total contribution of the diagrams for B,,(w, k) 
that do not have defecton pairs as intermediate states 
decreases with increasing Ik I (this is, in particular, 
corroborated by the expression for the function I" (k) in 
the harmonic approximation, an expression which is 
proportional to the Debye-Waller factor), the indicated 
maximum should, if it occurs, be preceded by a mini­
mum of the function Ia (k) . In such a Situation, instead 
of the classical monotonically decreasing dependence 
on Ikl, the integrated intensity I,,(k) has an oscillatory 
character in the prethreshold region. Since the char­
acteristic frequency range in which a substantial change 
occurs in the threshold part of the function Ba (w, k) is 
the frequency width, t.w" = w(2)(k) - w(l)(k), of the con-
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tinuum spectrum of the defecton pairs, the "period" of 
oscillation of the function l",(k), i. e., the distance be­
tween its minimum and its zero at the threshold, is 
qualitatively determined by a quantity of the order 
of ~W4' 

A similar analysis leads to the conclusion that the 
function [",(k) vanishes also at the points of the upper 
threshold and that it will certainly go through a maxi­
mum as we move away from this threshold on the 
higher-frequency side. As to the minimum, there is, 
in contrast to the region near the lower threshold, no 
basis for it, since, as we move away from the upper 
thresholds on the side of higher frequencies and larger 
wave vectors, both the threshold and the nonthreshold 
parts of the quantity B",(w, k) decrease. 

A necessary condition for the nonmonotonic depen­
dence of the integrated intensity, I", (k), of the one-phO­
non peak on the absolute value of the wave vector is, 
naturally, that the threshold diagram shown in Fig. 1 
make a sufficiently large contribution to the function 
B",(w, k). The magnitude of this contribution is deter­
mined by both the amplitude of the defecton-phonon in­
teraction and the overlap of the defecton wave functions, 
the dependence on this overlap being expressed by the 
integral 

J(p,k)= S dre-;"Ijl+,.(r)Ijl_,k_.{r). .. 
(30) 

Here I/!M(r) and I/!_,t_p(r) are the wave functions of the 
particle- and hole-type defectons with quasi-momenta 
p and k - P respectively. The integration is restricted 
to the volume, Ve , of the unit cell of the crystal. Let 
us emphasize that the possible nonmonotonic dependence 
of the integral J(p, k) on k can serve as the factor that 
promotes the oscillations in the intensity, I", (k), of the 
one-phonon peak. For example, the possibility of the 
integral J(p, k) having a maximum in the second or third 
Brillouin zone is not to be excluded. In this case the 
oscillations of the function l",(k) are more probable at k 
values lying outside the limits of the first Brillouin 
zone. Finally, among the conditions necessary for the 
oscillatory behavior of the function I", (k) must be in­
cluded the requirement that the lower threshold for de­
cay into a defecton pair for a given branch of the phonon 
spectrum be accessible. Such a condition is not realized 
in classical crystals. 

Osgood et al., [9] as well as Minkiewicz et al., [10] 

have carried out, using the method of inelastic neutron 
scattering, an experimental investigation of the proper­
ties of the dynamic form factor of solid He4 in the bcc 
and hcp phases. According to their results, the depen­
dence of the intensity of the one-phonon peak on the mo­
mentum transfer is nonmonotonic. Thus, in[g] anoma­
lous intensities were observed for scattering by phonons 
that involves momentum transfers larger than the re­
ciprocal-lattice vector, and inUO ) oscillations in the in­
tenSity of the one-phonon peak were observed at large 
momentum transfers. The indicated anomalies were 
connected in[9] with energy transfers of the order of 
w-1.4 MeV. This assertion does not contradict the re­
sults of the theroretical analysis carried out above, ac-
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cording to which the oscillations of the quantity l",(k) 
are caused by threshold phenomena. In contrast to[9], 
the conclusion is drawn inUO ] that the anomalous be­
havior of the intensity of the one-phonon scattering of 
neutrons depends not on the energy, but on the momen­
tum transfer. This conclusion is, however, at variance 
with the fact that, according to the data of the same pa­
per, there are no anomalies in the case of the low-fre­
quency transverse phonon mode Tl in the [011] direc­
tion. 

In both[jI] andCl01 the experimental data were analyzed 
on the basis of the Ambegaokar-Convway-Baym sum 
rule[l1]: 

(kt,)'ld(k) 12 
2m 

(31) 

which establishes a connection between the one-phonon 
part of the dynamic form factor S!b(W, k) and the Debye­
Waller factor Id(k) 12, which determines the equilibrium 
distribution of the number density of the atoms in the unit 
cell of a crystal (m is the mass of the atom and E", is 
the polarization vector of the a-th phonon branch). 
Notice first of all that the relation (31) does not settle 
the question of how to extract the one-phonon contribu­
tion from the dynamic form factor. Furthermore, in 
deriving the formula (31), [11] it was assumed that any 
excited state of a crystal can be completely characterized 
by a displacement of its atoms relative to the lattice 
sites. Such a description can in no way take into ac~ 
count the possibility of real and virtual processes of 
defecton-pair production and, in fact, assumes the en­
ergies corresponding to these processes to be infinite. 
Therefore, the sum rule (31) is applicable only to clas­
sical crystals, in which the minimum energy necessary 
for the production of a defecton pair is significantly 
higher than the maximum phonon energy. 

Notice, finally, that the resolving power in the mea­
surements of the one-phonon scattering of neutrons i 
for large momentum transfers is not high. [10] Thus, 
the comparison of the theory with experiment requires 
a more detailed experimental investigation of the dy­
namic form factor and more adequate processing of the 
data. 
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Dopplerons and the Gantmakher-Kaner effect in tungsten 
plates with atomically pure surfaces 
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The surface resistance of thin single crystal tungsten plates in the radio-frequency range is investigated as 
a function of the intensity of a magnetic field directed along the nonnal to the surface. The measurements 
were made on samples whose surfaces had been purified in a high vacuum (10- 11 mm Hg) or covered with 
a monomolecular impurity film. The smooth variation of the real R(H) and imaginary X(H) components 
of the impedance due to the anomalous skin effect, as well as the component R ""'(H) that oscillates with 
respect to magnetic field and is due to the Doppler-shifted cyclotron resonance, are studied. When the 
magnetic field is oriented along a fourfold symmetry axis «100», resonance sets in for carriers lying on 
the inflection of the hole octahedron of the tungsten Fermi surface. Resonance-induced dispersion of the 
imaginary part of the nonlocal conductivity produces weakly damped circulary polarized transverse waves 
dopplerons [L. M. Fisher, O. V. Konstantinov, et al., Zh. Eksp. Teor. Fiz. 60, 759 (1971) and 63, 224 
(1972) [Sov. Phys. JETP 33, 410 (1971) and 36, lI8 (1973)]; R. G. Chambers and V. G. Skobov, J. Phys. 
I, 202 (1971); D. S. Falk et al., Phys. Rev. Bl, 406 (I970)}. It is found that the amplitUde of the doppleron 
signal depends on the state of the sample and increases with increasing crystal purity. The observed 
changes are attributed to the increase of the specular-reflection coefficient of the resonant electrons. If the 
magnetic field is not nonnal to the plate surface, the doppleron wave undergoes collisionless magnetic 
Landau damping and the signal is reduced to a value comparable with the amplitude of the 
Gantmakher-Kaner "wave." Purification of the surface (and the ensuing increase specularity) decreases 
the doppleron amplitude further and produces interference peaks in the Gantmakher-Kaner "waves." The 
effect of surface currents due to the static skin effect, on the smoothly varying components R(H) and 
X(H) and the oscillating component R OSC(H) of the surface resistance of the plate is discussed. 

PACS numbers: 72.15.Gd, 73.25.+i 

INTRODUCTION same interval of magnetic fields or close to it. 

Cyc1otron damping that is shifted by the Doppler ef­
fect exerts an appreciable influence on the high-fre­
quency properties of degenerate metals. Direct and 
well-investigated consequences of Doppler-shifted cy­
clotron resonance (DSCR) are the limited helicon-ex­
istence regions in weak magnetic fields Ho and the on­
set of the Gantmakher-Kaner ratio-frequency size ef­
fect in a normal magnetic field. A recent object of in­
vestigation has been one more manifestation of DSCR, 
namely, low-frequency electromagnetic waves found to 
exist in anisotropiC specially compensated conductors 
and to be produced if the magnetic field is near the cy­
clotron-damping threshold. These waves were named 
dopplerons. [l-4J The doppleron modes are transverse 
circularly polarized waves with length quite close to the 
extremal displacement U mu of some selected group of 
carriers outside their cyclotron period. For this rea­
son the doppleron wave is outwardly similar to the 
Gantmakher-Kaner "wave, ,,[5J which is produced in the 

In typical experiments, doppleron waves were ex­
cited in tin metallic plates. The magnetic field was 
oriented along the normal to the sample surface and co­
incided with a high symmetry axis of the crystal. With 
changing field Ho, the wave length in the metal changed 
and this led to the appearance of a series of resonant 
absorption maxima corresponding to satisfaction of the 
standing-wave conditions in the plate. The impedance 
oscillations were observed against the background of 
smooth but much larger changes of the impedance, due 
to the anomalous skin effect. In compensated metals, 
these changes turn out to be quite appreCiable, since 
the conductivity of the metal decreases without limit 
with increasing magnetic field, in proportion to (W eT)2, 
where We is the cyclotron frequency and T is the mo­
mentum relaxation time of the electrons. 
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In the radio-frequency band there exist thus several 
mechanisms responsible for energy dissipation in the 
plate: the anomalous skin effect, doppleron waves, and 
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