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Quantum oscillations of the surface impedance under anomalous-skin-effect conditions, in the high
frequency limit-when the frequency W of the electromagnetic field is much greater than the collision 
frequency 'IT-I-and in a magnetic field parallel to the surface of the metal, were studied theoretically by 
Azbel' [Zh. Eksp. Teor. Fiz. 34, 969 and 1158 (\958) [Sov. Phys. lETP 7, 669 and 801 (1958)1. But the 
expression for the conductivity obtained by him is incorrect, because in it, no allowance was made for the 
contribution of the "instantaneous-equilibrium" density matrix to the current; this contribution does not 
vanish in the quantum case. As is shown in the present paper, the amplitude of the oscillations of 
conductivity and of surface impedance is smaller by a factor WT (at not too large WT) than that obtained by 
Azbel'. 

PACS numbers: 73.25.+i 

Quantum oscillations of the surface impedance in the 
high-frequency limit WT» 1 have been investigated the
oretically in a paper of Azbel'Ul under anomalous-skin
effect conditions, when the following inequalities are 
satisfied: 

(1) 

here W is the frequency of the electromagnetic field, VF 

is the Fermi velOCity, T is the relaxation time, 6 is the 
skin depth, and r H is the Larmor radius. There it was 
shown that in a magnetic field that is parallel (or almost 
parallel) to the surface of the specimen, the chief con
tribution to the oscillations is made by electrons that 
do not collide with the surface, and consequently the os
cillations of the impedance are actually determined by 
the oscillations of the conductivity tensor in an infinite 
medium. To calculate the conductivity, use was made 
inUl of an equation for the density matrix that contains 
a collision integral describing relaxation to an "instan
taneous equilibrium" state. But in the calculation of 
the current, no allowance was made for the contribution 
of the instantaneous-equilibrium part of the density ma
trix; this does not vanish in the quantum case, because 
of the diamagnetism of the electron gas. This is incor
rect. Allowance for the contribution of the instanta
neous-equilibrium density matrix to the current, as 
will be shown below, decreases the amplitude of the 
quantum oscillations by a factor WT as compared with 
the result ofm. 

We shall obtain an expression for the conductivity ten
sor in an infinite medium. As intlJ , we shall start from 
the equation for the density matrix 

8f18t+i[f/, n+I(f) =0, (2) 

where H = f!<P - eA/c) is the Hamiltonian of the electron, 
p = - i a/ ar - e~/ c is the kinematic momentum in a con
stant magnetic field with vector potential ~(-Hy, 0, 0), 
and A is the vector potential of the electromagnetic 
field, which will be supposed to vary with the coordi
nates and the time according to the law e'" .,t.,tr . The 
collision integral IV), as intlJ, we shall write in the 
form 

(3) 
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where J 0 is the equilibrium density matrix. The cur
rent density is determined in the usual manner: 

;"=Sp{ (J'+fo(H»i"). (4) 

The current-density operator I" (R) in the quasiclassical 
approximation has the form 

/' (R) = e;:"/\ tR - ~) - c-1e'.4,3 (",1 ).~ /\ (R - l), (5) 

where v" = ae/ap" is the velocity operator, (m-1)..a 
= a2 e/aPa aps is the inverse-effective-mass operator, e 
is the charge of the electron, and c is the velocity of 
light. In deriving (5) we have considered that in the 
quasiclassicallimit any Hermitan operator is deter
mined by its classical analog, and therefore the order 
of the operators in (5) can be arbitrary. 

We expand the instantaneous-equilibrium density ma
trixJo(fi) through terms linear in A: 

j.(H) =10 (Ho) +10', (6) 

where fio = E<P). We substitute the expression for j~ 
into (2). Solving equation (2) in the linear approxima
tion, we findj', and we then calculate the current den
sity r by formula (4). We omit these simple calcula
tions and present only the final expression for the con
ductivity tensor cr"s(w, k): 

;"=cr., (00, k).4" 

cr,,(oo,k)=- e'.E {(Alv'(-k)IA'>(A'lv'(k)IA> 00. _. 
C a' ; eA-e~.'-w-~'t 

where A=n, p,., P. is a complete set of quantum numbers 
of the electron (we neglect spin) in a constant magnetic 
field, (A I v" (k) I A') are the matrix elements of the oper
ator v"e1t•r with respect to the wave nmctions of the 
electron in a magnetic field, EA = En(P.) are the eigenval
ues of the energy, and fA = f (€ A) is the equilibrium dis
tribution function. 

In the quasiclassical approximation, which is correct 
for metals, since the number of filled Landau levels 
nF »1, while ka:.O-1 «PF (PF is the Fermi momentum), 
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the matrix elements of the operators are determined 
by the Fourier time components of the corresponding 
classical quantities. We shall suppose that k=k(O, ky , 

0); that is, kl H. In this case we have 

1 T , 

=1) •• ,1) • • '-Jdtv"(t)exP{ik f v{t,)dt,+ilQt} , 
z % x % T J 

• • (8) 

where T = 21T /0 is the period of the classical motion; 0 
is the cyclotron frequency. 

The matrix elements v~(k) for krH» 1 are calculated 
by the method of stationary phase. As is evident from 
(8), they differ Significantly from zero if 1 $. krH« nF, 
since k« PF' Consequently an energy difference of the 
form e n+'(P.) - E n{Plt) in (7) may be replaced by 10{PlI)' 
When this is taken into account, the expression (7) for 
the conductivity tensor can be transformed to the form 

e'l eH 1 1 ~J { - (0) aap«(o),k)=--;;- -c- '2n' ~ dp, v,"(-k)v_,,(k) IQ-(o)-i'c' 
a,' (9) 

xf(e.+LQ)-f(e.) + v,"(-k)v_.'(k) f(e.+/Q)-f(e.) + [(in-').;lol(e,,)}. 
In IQ 

In formula (9) the summation extends over alll. The 
terms with 1 = 0 are understood in the sense of the limit 
as 1-0. 

In the expression for the conductivity obtained in[l), 
the last two terms in wavy brackets in formula (9) are 
miSSing; these give the contribution of the instantaneous
equilibrium density matrix j 0 (H) to the current. Their 
sum vanishes on approach to the classical limit. It is 
incorrect, however, to discard these terms in the cal
culation of the oscillations of the conductivity. In fact, 
in[ll, where only the first term in (9) was considered, 
it was shown that the principal contribution to the oscil
lating part is made by terms with 1 =0. Consequently, 
according to[1] the oscillations of (Jail are determined by 
the oscillations of the quantity (J~/l: 

, e' (0) I eH 1 1 1: J af a., =--+ __ , - -2 ' dp,v.·(-k,e.)v.'(k,e·)-a· 
C (0) 11: C n e 

(10) 

But if we take account also of the terms with 1 = 0 in the 
second term of formula (9), then instead of (10) we get 

(') e' ((0) ) 1 eH I 1 ~ r at a •• «(o),k)=-;:- (o)+i-C,-1 7. 27[' L.iJ dp,vo"(-k,Bn)v,'(k,en)a;' 

(11) 

When WT» 1, the quantity (J~0t1 is smaller by a factor 
WT than (J~a. If T =00, then the terms with 1 =0 in the 
first and second terms of formula (9) almost completely 
cancel each other. But at not too large values of WT, 

such as are ordinarily attained experimentally, the 
quantity (J~~ makes the principal contribution to the os
cillations of the conductivity. In order to prove this, 
it is necessary to estimate the order of magnitude of 
o-~~, the oscillating part of (J~, and to compare it with 
the contribution to the oscillations from the neglected 
terms. In the classical limit for w« 0 we have[Z] 
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(12) 

where N is the electron concentration, the coefficients 
a",a-1, and m is the effective mass. 

On calculating o-~ by means of Poisson's formula, 
we get 

(.) e'N (0) i 1 1 
lJa.8 -a"I5-----me w+i-r- 1 COT krH nF 'f •• 

(13) 

We shall now estimate the contribution to the oscilla
tions from the terms with 1,* 0 in the second term of for
mula (9); this we shall denote by <T~~. We shall again 
use Poisson's formula and shall go over to integration 
over e and PII' By performing the integration over Pit by 
the method or' stationary phase, one can put o-~~ into the 
form 

(') e' 1 ~ ~ ~J 
0.. = -;; --;; L.i ~ L..l de ._1 m l"a.o 

(14) 
where 

( I d'n I) -'I. F~.{e, s) = s dp,' m'{e, p,) v." (-k, e,p,)v~, (k, B,p,), 

m*(e, Pit) is the cyclotron mass, the index m in (14) 
enumerates the extremal cross sections of the Fermi 
surface, and P: is the momentum corresponding to the 
mth extremal cross section. 

The matrix elements v~(lt, e) are oscillatory functions 
of the parameter krH, with period - 21T. The other fac
tors in F~/l vary more smoothly with energy. The im
portant contribution to (14) comes from the terms with 
1 $.krH; therefore if the condition 

(15) 

is satisfied, the finite-difference relation in (14) can 
be replaced by a derivative, and we get 

(') e':l of. ~ ~ J [ 11: ] aF:. 0 •• =-;:-~ .: .. U:dL.i def(e)Reexp 2nin(e)s±i4" a;:-
.=1 tit 1 .... 0 

(16) 

(we note that the expression (8) for the matrix element 
is also correct only when the inequality (15) is satis
fied). The sum over 1 in (16) is easy to calculate, since 

.Ev," (-k) v!, (k) = (v"") .-v." (-k) v" (k). (17) 
, .... 

By use of (17) it is easy to obtain from (16) 

") e'N 1 
0a.15 - all,-;;;; nFn;la.- (18) 

An estimate of the terms with 1,* 0 in the first term 
of formula (9) shows that they make a contribution 
smaller than (18). We shall now consider the third 
term in (9). In the case of a quadratic dispersion law, 
it obviously is independent of the magnetic field. But 
if the dispersion law differs Significantly from a qua
dratic, this term undergoes oscillations whose ampli
tude, as is easy to demonstrate, coincide in order of 
magnitude with o-~. On comparing the values of <T~ 
and <T~~, we find that when the condition 

A. P. Kopasov 946 



(19) 

is satisfied, the oscillations of the conductivity tensor 
are determined by the value of Cr~~). As is evident from 
the expression (13) for Cr~'li, the oscillations of the con
ductivity, and consequently also the oscillations of the 
impedance, decrease with increase of frequency. 

It should be mentioned that the collision integral (3), 
as is well known, does not conserve the number of par
ticles. In order to insure fulfillment of the law of con
servation of particles, it is necessary to introduce a 
nonequilibrium correction to the chemical potential. 
This will lead to the occurrence of additional ("diffu
sion") terms in the conductivity tensor. An expression 
for the conductivity tensor in a quantizing magnetic 
field, with allowance for diffusion terms in the case of 
an isotropic and quadratiC dispersion law, was obtained 
inC3,4]. But under anomalous-skin-effect conditions 
these diffusion terms are negligibly small. We note 

also that the diffusion terms disappear if T-OO, and con
sequently formula (7) for T '" 00 gives an exact expression 
for the conductivity tensor of an electron gas without 
collisions. 

In conclusion, I wish to express thanks for discus
sions of this article to Yu. A. Romanov, and especially 
to V. Ya. Demikhovskii; numerous discussions with him 
facilitated the writing of the paper. 
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The phonon frequencies and damping in lead in the [111] direction are measured at 4.2, 20.4, 78 and 
300'K. At 4.2'K a softening is observed for phonons with wave vectors in the aq/21T = 0.35-{).50 range, 
whereas strong broadening of one-phonon resonance is observed at aq/21T = 0.50-0.867. A possible 
mechanism of the phenomenon is discussed. 

PACS numbers: 74.50.Gz, 63.20.Dj 

Information on the frequencies and damping of phonOn!, 
in metals at low temperatures, when the anharmonici
ties of the lattice are negligibly small, is of consider
able interest from the point of view of the study of elec
tron-phonon interactions (EPI). This is particularly 
true for superconductors at temperatures close to Te. 
In this case EPI can bring about qualitative changes in 
the phonon characteristics of the system when the sam
ple goes into the superconducting state and a new state 
of the electronic subsystem is produced. [1,2] 

The purpose of the present paper was to investigate 
these possible changes in lead. Since the EPI in lead 
is very strong, we can expect the effects to be observ
able. The main measurements were carried out on 
transverse phonons in the [111] direction at tempera
tures 4.2 and 20.4 OK. No such investigations were 
performed previously for lead in the interval 5 OK < T 
< 80 OK, [3,4] and the data oftS] at 5 OK are not sufficiently 
complete. 
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EXPERIMENTAL PROCEDURE AND MEASUREMENT 
RESULTS 

The measurements were performed with a three-axis 
neutron spectrometer by the constant momentum-trans
fer method (Q = const) with a fixed incident-neutron 
wave length i\J = 1. 611 A. To make the primary beam 
monochromatic, we used the (200) plane of a eu single 
crystal with mosaic angle 11m - 5'. The (220) plane of 
single-crystal lead with 1]" - 9' was used as the analyzer. 
The intrachannel and pre-detector collimation were 
weakened by (aQ , et 3 -1 0), and collimators with diver
gence a 1 aa -15' were placed in front of and behind the 
sample. The sample temperature in the cryostat was 
monitored with a special thermocouple and with super
conducting titanium-vanadium foils with fixed supercon
ducting transition temperatures. 

A cylindrical sample (diameter -25 mm, 1-40 mm) 
with axis in the [110] direction was cut from a single 
crystal of pure (99.9999%) lead. The mosaic angle of 
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