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We consider the non-linear stabilization process for the modulational instability. We obtain more exact 
dynamical equations which take into account electron non-linearities and higher-order non-linearities. We 
use these equations to find the limitations to the development of modulational perturbations which indicate 
the prohibition of the Langmuir collapse. We show that it is possible that fast Langmuir solitons (spikons) 
can exist. 

PACS numbers: 52.35.En 

1. The development of the modulational instabilitl1,21 
of three-dimensional Langmuir turbulence is in princi­
ple possible: 1) either up to the formation of a system 
of weakly interacting sOlitons(31; or "without limits" 
down to a region where Landau damping is important(41 
(the so-called Langmuir collapse); 3) or up to a state 
of interacting non-stationary perturbations in which 
the non-linear stabilization guarantees stationarity only 
on average. (5] To describe the latter possibility we(S] 
developed a statistical theory of the Langmuir conden­
sate. The aim of the present paper is to analyze within 
the framework of the dynamical approach the role of 
various non-linearities in the stabilization processes of 
the modulational instability and to determine the limits 
of the development of modulational perturbations. This 
enables us, in.particular, to estimate the possibilities 
for the realization of the Langmuir collapse which ear­
lier has been analyzed both theoretically and numerical­
ly (for a number of selected initial conditions) in the 
framework of the simplest system of equations(4] in 
which the non-linear processes which we consider be­
low were neglected. 

From the definition of a collapse it follows that the 
non-linear dynamic motions corresponding to a collapse 
must reach dimensions of the order of r" (r" is the 
Debye radius) so that if non-linear effects limit the 
process for r» r", this indicates the impossibility of 
the collapse. We show in the present paper that such 
limitations exist. We start by showing that the sim­
plest equations used for describing the collapse and the 
formation of solitons(3,4] follow directly from the well 
known non-linear equations from plasma theory[7J when 
we restrict ourselves to quadratic and cubic non-11n­
earities. However, even in the approximation of the 
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quadratic and cubic non-linearities the equations used 
in the non-linear plasma theory are more general and 
take into account not only the non-linear Landau damp­
ing and the breakdown of the quasi-neutralitY,of the per­
turbations, but also the electron non-linearities which 
are of the same order of magnitude. Therefore, even 
in the framework of the simplest equations of the non­
linear plasma theory, which take into account non-lin­
earities only up to cubic terms, there are a whole num­
ber of effects which restrict the region of applicability 
of the hydrodynamic equations (HE in what follows) used 
by Rudakovt3] and Zakharov. [4] This leads to well de­
fined criteria which are obtained below. We obtain in 
the present paper exact equations which take into ac­
count effects neglected in the HE. These equations are 
written in the coordinate representation whiCh is nor­
mally used for numerical simulations. We evaluate 
higher-order non-linear effects and give an estimate of 
the limitations connected with them, and also obtain 
the corresponding dynamic equations. 

2. ~ show how the HE are obtained from.the well 
known plasma theory equations. We write the Fourier 
component of the non-linear change density in the form 

p. = S s •.•..• .E.,E •• 6(k-k,-k,)dk, dk.+ S l:. ........ .E • .E.,E .. 6(k-k,-k,-k,) 

Xdk, dk, dk,+ S S: ............ E.,E.,E • .E",6 (k-k,-k,-k,-k.) dk, dk, dk, dk. 

+ S l:.: ........... .,E.,E.,E • .E • .E"'6 (k-k,-k,-k,-k.-k.) dk, dk, dk, dk. dk., 

k= {k, w}, dk=dk dw. 
(1) 

For obtaining the HE it is sufficient to use the first two 
terms of the expansion (I); the next two terms we use 
to obtain corrections to the HE. Both modulated high­
frequency fields of Langmuir oscillations and low-fre-
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quency fields take part in modulational perturbations. 
It is convenient to split in the high-frequency field the 
positive-frequency (+) and the negative-frequency (-) 
parts E,!! =E: +E;. In what follows we shall deal with 
only either the positive-frequency or the negative-fre­
quency part of the high-frequency field. We shall 
therefore distinguish the high-frequency fields by upper 
indexes, but we shall write the low-frequency fields 
without upper indexes. The Poisson equation for the 
high- and low-frequency fields then becomes, if we take 
into account only the first two terms of (1) 

(4n)-'ike,E,+=2 S s"" • .E,,+E,,6(k-k,-k,)dk, dk, 

+2 S '2." .... ".E.,+E.,+E,.-6(k-k,-k,-k,)dk, dk,dk" 

(4n) -'ike,E. = 2 S S"." • .E.,+E,,-6 (k-k,-k,)dk, dk,. 

(2) 

(3) 

We assume here that the matrix elements S are symmet­
ric in the indexes 1l1> kh k2 and ~ correspondingly in the 
indexes k2 and k 3 • Thus we have 

e' S 1 { ( a) 1 ( a) Slr.ll.1kz ='---- --- k,- --- k,-
, , 2m.'k,k, (w-kv) av w,-k,v dv 

+ (k 0) 1 (k O)} dp S dp 
'ov w,-k,v 'ov f (2n)' , no = fp (2n)' . (4) 

The quantity S occurs in (2) which in the first approxi­
mation equals 

S S e(kk,) k, ( e(kk,) 
',',," = ,"" -8---' -k £.,'-1) "" -8 k k T ' 

n.me(J)pe t 1t 12. II 

(5) 

Here Ilk (k ={k, w}) is the linear plasma dielectric per­
mittivity. On the other hand, the quantity S in (3) has 
the approximate form: 

e (kk,) k' e (k,k,) 
S .. , =S,""------(e,-1)""----

• !, Z 8:nmek,k2 <Op/ 81tk t k 2'1'e ' (6) 
W<kvre, wt-.:t>ktUre, uh"':2>k2,V re. 

Exactly in the same way we have an approximate expres­
sion for ~ which occurs in (2): 

Substituting the low-frequency field from (3) into (2) 
and using (5) to (7) we get 

(8) 

where 

e'(kk,) (k,k,) 
(9) 

We write 

930 SOy. Phys. JETP, Vol. 43, No.5, May 1976 

e,; 1 S (k,k,) 
6n,=---- ---E,,+E,,-6(k-k,-k,)dk,dk,. 

e, 4nT, k,k, 
(10) 

With the notation introduced here Eq. (8) becomes 

(11) 

If 

ffip/- 3k2Vr/ 
Ek~1--,----, 

ro 2 ffip/ 

while the complex amplitude of the Langmuir field in 
the coordinate representation is 

E(r, t) = (2n)-' S~E.+ exp(iwp,t+iwt-ikr)dk, 
k 

we can write Eq. (11) in the form 

div 2iwp,,-+3vr.'i7.2 E(r,t)=divwp,'-E(r,t). ( a) On 
at no 

(11') 

(12) 

On the other hand, (10) can in the coordinate represen­
tation be written as follows: 

8' 2 v.' 2 (j' ~2 1 a' IE(r, t) I' 
(-, -v,'i7 ---,'i7 ,)6n(r,t)= +-, 'i72,) ---

at Wp; at Wp, at 4rrm; 
(13) 

(we used here the fact that E~ = (E;)'It). In the limit as 
a/at« wpi Eqs. (12), (13) reduce to the equations used 
in[3,41 to describe the modulational instability and the 
collapse. c, 

One should note that the terms in (13) which .contain 
w~ 11-/ af and which are usually dropped are terms with 
leading derivatives and even when Wpi T» 1 the correct­
ness of the asymptotic approximation requires a special 
study. Under conditions when the characteristic time T 

becomes of the order of w;~ not only the additional terms 
written down in (13) turn out to be important, but there 
also appear additional terms in (12) of the same order . 
They describe electron non-linearities which can be 
evaluated from the general expression for ~ and S as 
corrections to their approximate expressions (5) to (7). 

3. In the framework of cubic non-linearities there 
appear several kinds of corrections. First of all we 
specify that_we shall find corrections to the approximate 
expression ~ in which d "" - W:I/W2 and E" ""- W:I/W2 
+ w:d~ v~, which also appear in the HE, i. e., 

W.e enumerate those effects which must be included in 
6~. 

1) The effects of the breakdown of quasi-neutrality 
which can be found from (9) provided we do not neglect 
unity compared to Ilk -1; as a result we get the correc­
tion 
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for subsonic motions W - w1 « I k - kll va we have 

for supersonic motions W - W 1 » I k - kll va 

6" (II _ e'(kk,) (k,k.,) (k-kd'v.' 
~h')'1.l12.hl'- 8:r.im,.Tewp/ktA'2k3 (()p~~ 

2) Corrections connected with the time dependence of 
the non-linear processes for field amplitudes given by 
(11') when we must expand the currents in ~W = W - w, •. 
The quantities ~W play the role of non-linear corrections 
proportional to k2 ti-e/w,e if non-linear terms are ne­
glected. In the given case we must consider the more 
general problem without approximating ~W by a linear 
expression as Eq. (8) takes into account all non-linear­
ities which are cubic in the field. The actual calculation 
of these corrections leads in the approximations which 
are linear in ~W to the general important result: 

(15) 

which is valid in the general three-dimensional case. 
Its consequences will be discussed below. 

3) Electronic non-linearities connected with the ex­
pansion in ~ v~./ w,e. In the case of subsonic motions 
we get 

I') e'(kk,) [ ( () , ) , k k ) Ii! .. ,:.,., ". . .. -6 kk,) kk, +2k, (k,k, +11k, ( , , 
8:r.zm,-Cil p ... k,k,k, 

+2k,' (kk,) -2k,' (kk,) -2 (kk.) (k,k,) -3 (kk,) (k,k,) +k,'k,'+ (k,k,)' 

+7 k' (k,k,) -4 (kk ,) (k,k,) -6 (kk,) (k,k,) -3 (k,k,) (k,k,)], 

and correspondingly for supersonic motions 

{)!::,~ •••• ". . • e' . ( -6 (kk,) (kk,) (kk,) +2 (kk,) (kk,) (k,k,) 
8:um,.-Cil pc" k ,k,k, 

+2k.' (kk,) (kk,) -2k,' (kk,) (kk,) -2k' (kk.) (k,k.) +2 (kk,)' (k,k,) 

-k,'k,' (kk,) + (k,k,)' (kk,) +k'k,' (k,k,) -k,' (kk,) (k,k,) + 
+6 (kk,) (kk,) (k,k,»). 

4) And, finally, an additional term arises due to the 
possibility of a process which proceeds through a virtual 
wave at the doubled frequency (2w/>e)' If we denote the 
field at the doubled plasma frequency by E2z we can 
write the non-linear current up to terms cubic in the 
field in the following form: 

p/ = f 8.,., .• ,E.,-E.,'+6(k-k,-k,)dk, dk, 

+ S r.,.,., .• ,E.,+E.,+E.,-li(k-k,-k,-k,)dk, dk, dk,. 

The evaluation of this expression gives the same result 
for subsonic as for supersonic motions: 

(.) e' k) 6ot •.••.• ", ". . • , [6 (kk,) (kk,) (kk,) + (kk,) (kk,) (k" k- , 
8mm,-Cil,,,. k,k,k, 

+ (kk,) (kk,) (k" k-k,)+'/,(kk,) (k,. k-k,) (k" k-k,) + (kk,) (kk2 ) k ,' 

+ (kk,) (kk,) k,'+'/, (kk,) k.'(k" k-k,) +'/, (kk,) k,' (k" k-k,) + 

-'-'I,lk-k,I-'('/,k,'(k,. k-k,)+'/,k,'(k" k-k,) +'/,(k" k-k,) (k" k-k,» 

)t('/, (kk,) (k-k,)'- (kk,) (k, k-k,) +k,' (k, k-k,» ). 

Summing all the expressions obtained we get the follow-
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ing corrections for subsonic motions: 

Ot.'.'.'i'" "" ~~-'. -. - [- +(kk,) (kk ,) (kk;)-"(, (kk ,) (kk,) (k,k,) 
g:"m .. -Cil p ·k,k,k,. 

-'/., (kk,) (kk,) (k,k,) +'I,k,' (kk,) (kk,) -"/,k,' (kk,) (kk,) 
-' ',k,'(kk,) (k,k,)-'/,k,'(kk,) (k,k,)+'/,(kk,) (k,k,) (k,k,) 

-',k' (kk,) (k,k,) +'/, (kk,)' (k,k,) -'/,k,' (kk,) (k,k,) +2k,'(kk,) (k,k,) 

-2 (kk ,) (kk,) (k,k,) ""2k,' (kk ,) (kk,) +k,'k,' (kk ,) + (k,k,), (kk ,) 

-,k'(kk,) (k,k,)-4(kk,)'(k,k,)+ l1k,'(kk,) (k,k,)-6(kk,) (kk,) (k,k,) 

-3 (I;k ,) (k,k,) (k,k,) - (kk,) [k, Xk, 1 1"':"'(k,k, )[kXk31 1 

+~[k, Xk1Jl[kXk 3Jll, 
3 Ik,+k,l-

and for supersonic motions 

62:, ,"'" "" . ., eO. [_ ; (kktl (kk,) (kk,)+.1k'(kk ,) (k,k,) 
8'-llm .. -ww~k"~·:!k:.J 1: 

-6(kk,)' (l:-,k') _19', (kk,) (kk,) (k,k,l+2k,' (kk,) (kk,) -"18k,' (kk ,) (kk,) 

+k'k,' (kck,I-'/, (kk,) (kk,) (k,k,) +1/, (kk,) (k,k,) (k,k,) +'I,k,' (kk2 ) (kk,) 

-' I,k,' (kk,) (k,k,) -'/5k,' (kk,) (k,k,) -'I,k' (kk,) (k,k,) + 'I,(kk,)'(k,k,) 

-'/,k,' (kk,) (k,k,) _1/, (kk,) [k, Xk,l ' +'1, (k,k,)[k X k3,l' 

(16) 

The one-dimensional case is of special interest as in 
the approximation (16) the result vanishes exactly. 

4. Before discussing the consequences of these re­
sults we find the contribution from the non-linearities 
of higher (fourth and fifth) order in the field which are 
connected with 8' and~' in Eq. (1). They give, respec­
tively, corrections to the right-hand sides of Eqs. (2) 
and (3): 

(4n) -'ike.6E. +=2 S 8 •.• , .• ,E., +6E •• 1i (k-k,-k,) dk, dk, 

+ S 8.,:,., .•..•. E.,+E.,E.,+E •• -6 (k-k,-k,-k,-k.)dk, dk, dk, dk. 

+ f J:./., .••.••.••.•. E.,+E.,+E •• -E •• +E •• -{j (k-k,-k,-k,-k.-k,)dk, dk, dk, dk. dk" 

(4n) -'ike.liE. = S 8 •.• "",E.,E •• 6 (k-k,-k,)dk, dk, 

(17) 

+ f r. •.• , .••.• ,E.,E •• +E •• -fj (k-k,-k,-k,) dk, dk2 dk, 

+ 8 •.• , .••.••.•• E.,+E •• -E •• +E •• -6 (k-k,-k,-k,-k.)dk, dk, dk,dk •. 

(18) 
The coefficients ~, 8', and ~' are here already sym­
metrized with respect all indexes bar the first one. 

It is sufficient in Eq. (18) to use (3) for the low-fre­
quency field and to substitute the result obtained in the 
first term of (17), in the second term of (17) also we can 
use Eq. (3) for the low-frequency field. As a result we 
get 

(4n)-likek,6E.\+=2 J 6~.It'~I.lll,k3,k"k:;E/i.I+EII2+Ek3-E,"+EII$- • 

·6 (k-h\-k,-k,-k,-k,) dk, dk, dk, dk, dk., 

where 

, , 8niS"J+.h k a. k 3 (S ' S ' ) 
61:k ,li l ,i!l,lh,kl . .II:;=Lk ,Ii,.kl,kl.li l ,h; - Ik +k I k./H.kJ+kl,k,JI:;+ k.kt,kl,ks,kI+IQ 

2 3 Eh2+IiJ 

8niSk ,R\,k_k, , 32rr 2Sk III 11-11\8"'2+11.1,11.: .II, 

---'-"--'-Sit-hi kl1l3 h, k~ - -::---:-.,---::--:-~--
Ik-k, I e.-h, Ik-k,1 e._.,lk,+k,le.,+., 

32n2SII,+lu,/t2.113 S1l.i+ Iz S1l."k:;L/t,II\,lIz+kJ,'/u+lIs 

. (~._.,.,>+ •• , ••.• ,+r.._., .•.. ""'+h.) + Ik +k I I'k +k I 
Z 3 EIl2+/lJ ...:; e.l!.+J.;. 

+ 4.1li (8n) 2811 ,111,11_11\ Sk-k\.kz+R3.kHk:;SIi2+k"JU,lnSh,+k5,kl,k:; 

Ik-k,le._., Ik,+k,le,,+ •• lk,+k,le,,+.,' 
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. and 

. S' (40"1) -',ke.6E.=2 6S .... , ••.•• ,k,E •• + E •• -E.,+ E.,-

Xb(k-k,-k,-k3-k.) dk, dk, dk, dk •. 

where 

68 !. -8 I 81tiS'"+1I1,1I1,1tI~1t,1I1+".kJ"U 
A:.Ji,.l!dh.lu- 11;0\1,112,111,11, - Ikt+k:! 1£'\1+". 

(Bn) 2 Sit ,111+" •• 11:1+11,8 III +1t2 It ,.It,sIts+II"III,Il, 

1 k,+k, 1 e •• + •• lk3+k, 1 e •• +., 

Using the approximate expression for the matrix ele­
ments occurring in (19), we have 

, e' (kk,) (k,k.) 
6~., •• ,." •• , ••.•• = - 8' 'T' 'k k k k k Ik-k I' 

~um. e <Ope i 2 3 , 5 I 

, , 
xl (k3• k-k,) (k,. k,+k,)+ (k,. k-k,) (k,. k,+k,) 1 e._., e •• +., . 

8,.,-k, 8~+k$ 

This expression is analogous to (9) and obtained under 
the same approximations, 1. e., neglecting corrections 
in 11- v~./ w,. and all other kinds of corrections which 
were discussed in the preceding section. 

For subsonic motions the correction terms are thus 
of order IE 12 /41TnT« 1. This means that we are in fact 
dealing with weak non-linearities and the theory using 
the HE can not describe correctly the limit IE 12/ 4m T 
""1. On the other hand, for supersonic motions the 
higher non-linearities turn out to be not too important 
and the present analysis shows that one can use for su­
personiC motions the HE up to IEI 2 /41TnT""1. However, 
for supersonic motions a limit such as IE 12/ 4'n:n T« 1 
appears from the conditions that we may neglect the 
electron non-linearities. 

5. We now discuss the role of the corrections de­
scribed in Sec. 4 which we shall all call electron non­
linearities as they are of the same order as the electron 
non-linearities. 

First of all we discuss the problem of the collapse. 
To do this we must give an exact definition what we un­
derstand by the collapse phenomenon. It is widely 
known and expounded in textbooks[7] that the develop­
ment of the linear stage of the modulational instability 
leads to the occurrence of a lowered denSity. However, 
one usually is dealing with the non-linear stage of the 
modulational instability and the collapse corresponds to 
the fact that the non-linear stage of the modulational 
instability is, according to Zakharov's assumption, [41 

non-linearly not stabilized, 1. e., it develops until IE 12/ 
41TnT""1, fIn/n ""1, r-r6' Subsonic density rarefactions 
are usually small: On/n ~ m./m i ; to reach fIn/n -1 the 
rarefactions must go through a supersonic stage. Zak­
harov[4] obtained self-similar solutions 

1 (r) E-- -
t f t'/' ' 

(20) 

which were disputed by Litvak, Fralman, and Yunakov­
skirtS] as they do not conserve the energy flux. Without 
discussing the validity of the self-similar solutions, we 
note that the electron non-linearities which were dis-
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cussed in Sec. 4 come into play when t !i w;L Le., the 
HE can be used when t» w;h up to the time t "" w;1 the 
self-similar solution (20) gives 

IEI'/4nnT:::el. fJnln:::e(m,lm,)·'·. 

As the criterion t» w;: must be satisfied, it follows 
from this that IEI 2 47T.nT«1 and oo./n«(m./m,)1/3. 
The Landau damping for such perturbations is, even if 
we assume that oo./n ""(m./ml)l/S, a quantity of the or­
der of w,.XlO-6, Le., it is very small and cannot be 
used as a mechanism for the dissipation of the Lang­
muir turbulence. The main problem of the possibility 
of the collapse consists thus, even if we assume the 
validity of the self-similar solution (20), in whether the 
non-linear equations which take only the electron non­
linearities into account can lead to self-compression 
effects. One can easily solve this problem. It is im­
portant that in the three-dimensional case the correc­
tions due to the time-dependence of the non-linear inter­
actions are absent in the linear approximation in AW 
because of (15). On the right-hand side of the equations 
we obtained there are no AW and, hence, no modulational 
interaction occurs (the modulational instability arises 
formally as a consequence of the frequency dependence 
of the non-linear response). However, one can also 
understand physically that self-compression must be 
absent. As we have already stated the equations are 
applicable when IE 12 /411:nT« 1; in that case the elec­
·tron non-linearities in the three-dimensional case con­
tain second derivatives with respect to the coordinates 
and have the same structure as the dispersion term, 
but smaller by a factor IE 12/4n:nT. Hence, the linear 
dispersion dominates and the non-linear compression 
processes, even if they occur, are small. Langmuir 
wave packets will thus basically spread out due to the 
linear dispersion. 

The equations which describe such non-linear inter­
actions do in no way differ from the equations with a 
weak non-linearity or weak turbulence, [7] 1. e., they 
are described by standard methods where it is necessary 
to use the linear dispersion to describe waves in the 
non-linearities. This shows the impossibility to realize 
collapse, even if the solutions (20) were valid. 

6. We now consider in detail one-dimensional mo­
tions, taking the electron non-linearities into account, 
and in this connection we discuss the possibility of the 
occurrence of fast Langmuir solitons with u »v.. In 
contrast to the three-dimensional case not only the 
terms proportional to AW, but also the terms of order 
11- ifr./w!e vanish {see (16». It is therefore necessary 
to take into account the effects of the next order among 
which will be effects of the order of products of small 
parameters. Effects in (~:""'/ £11..,) (lr ~Te/ w:.,) turn out 
to be small compared to ~!~~l; taking effects of order 
k4v~e/w:. into account leads to the result: 

-17k,'(k,+k,)'-40k, (k,+k')'+4(k,+k,)']' 

Taking these terms into account the non-linear equa-
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tions will be 

~~+ 3v,,' ~= 6n E- VT,'/(iJ".' [_ 335IEI'~ 
(iJp. at (iJp; ax' no 4nnT 2 ax' 

121 a'E a a'E a' aE a' ij' 
+---IEI'-17--IEI'-40--. -IEI'+4E-IEI']. 

2 ax' ax ax' ax' ax Ox' ax·" 

(21) 

Apart from this there appear non-linear effects propor­
tional to (t::..W/W~e) (k2 v~e/w:e) and (t::..W/W~,,)2. Evaluation 
of terms of order (t::..W)2 leads to the result: 

Ill: _ e'k (4k2 ~(iJ ~(iJ, 4k,!l(iJ 1(iJ, ) (22) 
k.kbRI,/u -- Bn:im,hil p }VT.,2 (k-k ,) ~ - (k.-k ,) ~ . 

Introducing dimensionless variables 

and using (21) we can write the non-linear equation in 
the following form: 

a/S f)'/S f)'/S a'/S f)'I/SI' iJ/S algi' 
2i-+3-. --I/SI'-+ul/SI'--+u'(/S------) =0 OT 06' aT' as aT as' ar; ar; . 

(23) 
We discuss two limiting cases, when 

(24) 

and the opposite case. 

When (24) is satisfied we can use Eq. (23) to solve 
the problem of the possibility of the existence of fast 
Langmuir solitons (spikons). Introducing ~= 1~lej~ and 
separating the real and imaginary parts we get two 
equations for I 'it: I and <T? Assuming that I if I is only a 
function of ; - UT we get as a necessary consequence of 
the equation that <T? has the form 

where 

at (U')' -=AI/SI' 1--1/S1' 
(11: 3' 

A =const. 

We consider here the simplest case A =0. The solution 
for the amplitude I 'it: I then has the form 

(25) 

. where 

so=6/u/So(Q+u'/3) '\ 

(26) 

It is clear from solution (25) that spikons may exist. 
To see this we determine first of all the limits of ap­
plicability of the results. On the one hand, it is neces­
sary to satisfy (24) which reduces to the condition 
u» ;01 and the inequality u« 1. As a result of this we 
have ;0» 1. On the other hand, the inequality U» ;01 

leads to the condition u ~o « 1, and hence the frequency 
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(26) has the apprOximate form: 

(27) 

As (1 +u2/3 > 0, the solution (26) with the minus sign 
must be discarded, and this has been used in (27), i. e. , 
;0"" 4. 2/u2 ~ o. However, it is necessary to bear in 
mind that the term with ~(o) is small compared to the 
terms taken into account, i. e. , 

The following inequalities must thus be satisfied 

17.6»u'/S,,'» (me) u-' 
m .. 

or ( 1 ) ,I, ( m, ) 'I. 
l»u» - - . 

17.0 m, 

These inequalities show that fast Langmuir solitons 
are possible for sufficiently large values of U and 'it:o• 
In the other limiting case when the opposite of (24) is 
satisfied, Eqs. (21) could apparently lead to fast soli­
tons while from dimensional considerations we must 
have ;0 - ~ 0, but ~ 0« 1 and, hence, ;0« 1 which con­
tradicts the condition under which Eq. (24) was obtained. 
Spikons are thus impossible when (24) is not satisfied. 

7. In conclusion we note that there does not occur 
such a strong compensation of the non-linear processes 
for three-dimensional motions and the main contribution 
for fast processes comes from terms proportional to 
~ v~e/w:e which, on the one hand, prevents the possibil­
ity for the realization of a collapse, and on the other 
hand, makes the existence of fast three-dimensional 
solitons difficult in practice. 

The investigation methods used in the present paper 
differ in essential ways from the methods using aver­
ages over the high frequency which are used in other 
papers. [3,4] This is just the reason why we were able 
to determine the limits of the applicability of the HE 
and to evaluate all kinetic effects. We emphasize also 
that the electron non-linearities which make the occur­
rence of collapse impossible are completely determined 
by kinetic effects and could not be found by a hydrody­
namical approach. 

Note added in proof (March 26, 1976). Ouranalysisi.!i­
dicates that terms proportional to t::..w(k2 v~./w:,,) must be 
taken into account when one determines the structure 
of fast solitons • 
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NMR of V51 in a V3Si single crystal is investigated at room temperature. The anisotropic component K.n 
of the Knight shift is found to be zero. It is noted that calculations based on the band-structure scheme 
proposed by Labbe and Friedel are not in accord with the obtained temperature dependence of K ... 

PACS numbers: 33.30.De, 76.60.Cq 

Tret'yakov, Kodes, and Kuritsin, [1] in a report of 
the results of an investigation of nuclear magnetic 
resonance (NMR) of Y 51 in polycrystalline Y 3Si sam­
ples, have shown that in addition to the temperature­
dependent isotropic Knights shift (K.a) there exists an 
anisotropic component of the Knight shift (KID), which 
also changes with changing temperature. Since there 
was no sufficiently correct method of determining KID 
from the NMR spectra obtained with polycrystals until 
recently, it was impossible in [1] to determine KID' 

However, since KID is directly connected with the an':' 
isotropy of the electron density in crystals, and in some 
cases with the values of the magnetic moments of the 
atoms contained in the crystal lattice, attempts were 
made to investigate NMR in Single-crystal samples of 
Y3Si. Tret'yakov et al. Oll investigated NMR of y 51 of 
single-crystal Y 3Si in a polarizing magnetic field Ho 
= 4 kOe at 78 OK and have established that KID = 0.04% 
for this resonance. The use of the acoustic nuclear 
resonance method, [3] likewise with a Single-crystal 
sample, has confirmed the value KID = o. 04% at 78 OK, 
and yielded KID = o. 07% at 17 OK. At room temperature, 
however, the value of KID for NMR of y51 has not been 
determined to date. 

The present study is a continuation of[2] and is de­
voted to an investigation of NMR of y51 in the same Y 3Si 
single crystal, for the purpose of obtaining the value of 
K." at room temperature. The experiment itself as well 
as the reduction of the experimental data were the same 
in the present study as in[2], except for the value of the 
polarizing magnetic field Ho, which could be raised to 
10 kOe, owing to the increase in the reSistivity of the 
sample at the higher temperature; this led to an in­
crease in the accuracy of KID' The accuracy with which 
the crystallographic directions of the Single crystal 
were set relative to the external magnetic field was 2°. 

The figure shows a plot of the resonance frequencies 
of the satellite NMR transitions of y51 on the angle cp be­
tween the direction of Ho and the crystallographic di-
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rection [100] of the single crystal. The [001] direction 
remained perpendicular to Ho for all the spectra. The 
vertical strokes in the figure correspond to the experi­
mental values of the resonant frequencies, while the 
solid lines were calculated theoretically at KID = 0, 
Kia = o. 54%, and a quadrupole splitting constant II q 

= 206 kHz. The method of determining these parame­
ters from the experimental values of the satellite 
transition: frequencies is given in [2]. Thus, the reduc­
tion of experimental data leads to the following NMR 
parameters of y51 in Y3Si at room temperature: 110= 206 
± 1 kHz, Kia = (0. 54±0.01)%, and K",= (0. OO±O. 01)%. 

The parameters of NMR of y51 using the spectrum 
from a powder obtained by pulverizing a part of the 
investigated single crystal has yielded the parameters 
110= 206 ± 1 kHz, Kis = (0. 57 ±O. 01)%, and KID = (0 ±O. 01)%. 
These parameters are identical with the parameters of 

----_a v, kHz 

Dependence of the resonant frequencies of the NMR ·satellite 
transitions of V51 of single-crystal V3Bi on the crystal orienta­
tion relative to the external magnetic field at room tempera­
ture. The fractions in the figure correspond to the quantum 
magnetic number of the Zeeman level of the V51 nucleus. 
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