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The efficiency of using Bragg diffraction to amplify finite beams in finite crystals is discussed. The 
conditions under which the plane-wave approximation begins to lose its validity are determined. It is shown 
that the appearance of modes propagating with weak attenuation is possible in fmite crystals. Numerical 
estimates are given. 
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The energy dependence of the gamma-ray absorption 
cross section of solids is satisfactorily described by a 
well-known curve with a minimum in the region of a 
few hundred keY in which the absorption process is 
largely determined by the photoelectric effect. It is 
therefore natural that studies of the generation of gam
ma rays in solids should be concerned with this region 
of energy, and that attempts should be made to reduce 
the interaction between gamma rays and electrons in 
some way. This can, in fact, be done because of the 
existence of the Borrmann effect[1] which involves a 
sharp reduction in the x-ray absorption coefficient when 
the Bragg conditions are satisfied for x rays propagating 
through a crystal. The Borrmann effect is closely anal
ogous to the suppression of inelastic nuclear-reaction 
channels discovered by Afanas' ev and Kagan[21 in which 
the collective character of the interaction between nuclei 
and the electromagnetic field in crystals produces a field· 
distribution, when Bragg diffraction conditions are sat
isfied, such that there is a sharp reduction in the ampli
tude for the formation of the nuclear excited states, 
which ensures that even resonance gamma rays propa
gate in these directions in the crystal practically with
out absorption. 

It is clear that, in the gamma laser, we must retain 
the interaction between gamma rays and nuclei, and re
move only their interaction with electrons, i. e., while 
retaining the Borrmann effect, we must try to eliminate 
the suppression effect. It is shown in[3.41 that this can, 
in fact, be achieved by using nuclear transitions of high 
multipole order as the working laser transitions. 

The dynamic theory describing all the above effects 
has been developed for the case of plane waves and an 
unbounded entrance surface of the crystal. However, it 
has frequently been noted in the literature that a needle
shaped working body is preferred for the gamma laser. 
This shape has a number of advantages in the case of 
the gamma laser. Firstly, the single-transit gamma 
laser is the most promising, and the needle-shaped 
body then ensures a highly directional flux of the stimu
lated coherent gamma radiation. m Secondly, a needle
shaped body enables us to reduce the heating of the 
medium due to the presence of cascade gamma rays. [61 
Thirdly and finally, needle-shaped bodies have the ad
vantage that single crystals can be rapidly grown in this 
form ("whiskers") and this is particularly important in 
the case of the gamma laser using long-lived nuclear 
isomers. 
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Thus, the dynamic theory must be extended to the 
case of finite beams propagating in finite crystals be
fore the question of the use of anomalous propagation in 
the gamma laser can be properly resolved. 

In this paper, we consider two separate cases. In 
the first section, we shall discuss the propagation of 
finite beams in semi-infinite crystals[71 in order to 
establish the ratios of longitudinal and transverse crys
tal dimensions for which the influence of boundaries can 
still be neglected. A general solution of the dynamic 
problem for this case is given in an integral form in[Sl. 
Unfortunately, an analytic form of solution cannot be 
obtained from this integral solution even in the simplest 
cases, and this complicates the analysis of the various 
properties in which we are interested. However, it is 
shown in[Sl that a simple description of the process is 
possible in a case that is of interest for the gamma 
laser. 

In the second section of the present paper, we shall 
consider the propagation in crystals of beams whose 
width is approximately equal to the transverse dimen
sions of the crystal. This will enable us to exhibit a 
number of new properties of the process. 

1. DIFFRACTION OF WAVE PACKETS 

Consider a monochromatic gamma-ray beam incident 
at a Bragg angle on a perfect crystal. We shall assume 
that the reflecting plane of the crystal is perpendicular 
to its boundary. Diffraction of the electromagnetic wave 
by the crystal atoms produces two waves in the plane of 
scattering that propagate at a considerable angle to one 
another (of the order of 10°)' In the plane perpendicu
lar to the plane of scattering, on the other hand, we 
have only the usual diffraction spreading of the packet 
which is much smaller than the first.. We shall there
fore confine our attention to processes which occur in 
the plane of scattering, which are more important and 
interesting from our point of view, i. e., we shall sup
pose that the beams are bounded in one direction only. 

Inside the crystal, the slowly varying wave amplitude 
is described by the following set of equationst41 : 

. aE, aE, 
sm6~ + cos 6-a;- = g"Eo+gOlE .. 

{jEt {jEt 
- sin 6-a;- + cos 6~= g"Eo+g"E t , 

(1) 

where (J is the Bragg diffraction angle, Eo is the elec-
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tric field in the transmitted wave, and EI is the electric 
field in the diffracted wave. The coefficients g..a are 
proportional to the scattering amplitudes of the crystal 
atoms and contain both the electron and nuclear compo
nents. Under the conditions of our problem, we have 
the following properties: goo =gu whereas gOI =glO when 
the complex polarizability x(r) satisfies the condition 
x(r) = x(- r), which we shall assume henceforth. 

Since we are interested in diffraction in the Laue 
geometry, the initial conditions that determine the 
shape of the incident beam are as follows: 

E,(x,O)=q>(X), E.(x, 0)=0. (2) 

If we resolve the incident beam into plane-wave compo
nents on the entrance boundary, we obtain for each of 
these components a set of equations similar to that in
vestigated previously int4]. Thus, if we take into ac
count the exponential dependence of each of the plane 
components on z, the slowly-varying amplitudes of the 
diffracted and transmitted waves inside the crystal can 
be written in the form 

1 -E.(x, z) = - S dv E. (v) exp(i(vx+ltz)], 
2tt_oo 

where jJ.:; jJ.(v) and ~ =O.l. 

(3) 

The condition that (1) has a solution yields the follow
ing dependence of jJ. on v: 

ilt=(g,,± l'gOl'-V' sin' elcos-' e, 

and if we use the inequality 

I g,,1 >v sin 8 

this takes the quadratic form 

. g,,- g" + sin' 8 , 
11t=-- --~v, 

cos e 2gOl cos 0 

so that, in the (X, z) plane, we obtain the parabolic 
equation 

fJE goo-g" sin' e a'E 
-=--E------. 
fiz cos 0 2g" cos 0 ax' 

(4) 

(5) 

(6) 

This equation has a simpler solution than the hyperbolic 
equation obtained directly from (1), and also has a 
clearer physical interpretation. However, at first 
sight, it might seem that this equation has an identically 
zero solution for the scattered wave because the initial 
condition for EI is zero since, to obtain a definite solu
tion of the parabolic equation, it is sufficient to know 
only the values of the function itself on z = 0 without 
specifying its derivative (in contrast to the hyperbolic 
equation). In point of fact; Eq. (7) does not describe 
separately the transmitted and diffracted waves, but 
the strongly and weakly attenuated modes corresponding 
to the two signs in (4). Equation (7) was obtained by 
taking the negative sign in (4) and describes the weakly 
attenuated Borrmann wave. The corresponding initial 
conditions are: 
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E,'(x,0)-q>(x)/2, E.'(x, 0) =-q>(x)/2. 

For the strongly attenuated wave, they become 

E,"(x,0)=q>(x)/2, E."(x,O)=<p(x)/2. 

We can see from (6) that the amplification coefficient 
obtained int4] now acquires a further term which repre
sents the effects of the finite width of the beam and, as 
expected, this is associated with a reduction in the am
plification coefficient for the side components: 

, , 1 'I , .• 0 
R (' )=g" -gOl _~~ 

e 'It cosO g;~2 2 cos 8 • 
(8) 

h '. " were g.s =ga/J + Jga/J. 

The parabolic equation given by (7) has a complex dif
fusion coefficient, the imaginary part of which is greater 
than the real part (seet4]); thus, the broadening of the 
beam in the course of its propagation in the crystal is 
largely due to transverse diffusion of the slowly-varying 
amplitude, which is the analog of diffraction problems 
in quasioptics. t9] Thus, for example, for a Gaussian 
beam [cp(x) = g'o exp(-.x2/a~)], the increase in the radius 
of the beam with increasing distance from the entrance 
boundary occurs in accordance with the formula 

[ ( z )']'" a(z)= a.'+ -;;;b , (9) 

where b=2sin28/g~:cos8. For 25 keY gamma rays in 
the crystal lattice of aluminum, we have' b = 5 x 10-8 
cm. [10] Thus, the distance over which the entering 
beam, having a width of the order one-tenth of a milli
meter, expands by a factor of two amounts to about 
50 cm. 

Estimates of the minimum widths of beams satisfying 
(5) shows that this condition is not really very stringent 
for our purposes and, for the above values of energy 
and lattice constant, it is equivalent to ao »10-5 cm. 

2. PROPAGATION OF FINITE BEAMS IN FINITE 
CRYSTALS 

We may conclude from the foregOing results that, in 
crystals whose length is of the order of a few centime
ters, beams whose width is smaller by a factor two or 
three than the width of the entrance boundary of the 
crystal will propagate through it without being affected 
by the boundaries. In this section, therefore, we shall 
investigate those cases in which the width of the incident 
beam is approximately equal to the width of the entrance 
boundary. 

In this case, the set of equations given by (1), subject 
to the initial conditions given by (2), must be augmented 
by the boundary conditions which, in our problem, take 
the form 

E.(-Z; z)=O, E.(l. z)=o, (10) 

where 2l is the width of the crystal. It is readily seen 
that (1), with the boundary conditions given by (10), is 
invariant under the transformations Eo(x, z)-EI(-x, z), 
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El(x, z)-Eo(-x, z). It is therefore sufficient to con
sider the symmetric and antisymmetric solutions 
Eo(x, z)=qEl(-x, z), where q=±l for the symmetric 
and antisymmetric solutions, respectively. 

The boundary conditions then reduce to the single con
dition Eo(-l, z)=O, and the set of equations given by 
(1) reduces to the equation 

. a {} 
smS."E,(x, z)+ cos S-E,(x, z)=g"E,(x, z)+qg"E,(-x, z). 

vx az (11) 

We shall seek the solutions of this equation in the form 
of damped waves: Eo(x, z) =Eo(x)eA-. For Eo(x), we 
then have the equation 

. dE. (x) 
smS---= (g"-,",cosS)E.(x)+qg,,E,(-x). 

dx 

The solution of this is 

Eo(x)=Ae'''''+Be- i",. 

(12) 

Substituting this solution in (12), and using the boundary 
conditions, we obtain the following equations for k and A: 

J, = ~ -~{e""+e-';"), 
cosS 2cosS 

k=~(e""-e-""). 
2isinS 

(13) 

(14) 

We thus have a transcendental equation for the complex 
variable k, which we can use to determine the eigenval
ues of our problem. The first N roots of this equation 
can be found relatively simply. They have the form 

k.= (nn/21) +£", (15) 

where £" satisfy the condition 1£"121« 1 and are given by 

E,,= nn [q(-1)Rg"21_1]-1. 
21 sinS 

(16) 

It is clear from (16) that the condition 1£" 121« 1 is 
equivalent for small n to the condition IgOll 21/sin6» 1, 
which, in turn, is identical with the condition given by 
(5). This condition has a clear physical interpretation: 
the quantity 21/sin6 is, roughly speaking, the distance 
that must be traversed by the gamma ray in the crystal 
if it is not reflected, and 1/ IgOl I is the characteristic 
length for reflection from the interatomic planes. 

Borrmann solutions will exist if Eo(x, z) "" - El (X, z); 
on the other hand, Eo(x, z) "" - (- l)"Eo(- x, z) = - q(- l)n 

. xEl(x, z) and, consequently, for quasi-Borrmann solu
tions, we must have q(_l)n = 1. 

If we take into account the above conditions, we find 
that the expressions for £0 and ~~ = ~ - ~ [where ~ 
= (goo - gOl)/cos6) assume the form 

E = nn sin S (1 + sin a ) 
R 21 21g" 21g" , 

(17) 

"'''- = - --- 1+--( nn)' sin'a ( sin a ) 
n 21 2g" cos a g"I' 

(18) 

If we use the fact that the imaginary part of the coeffi
cients gOl is much greater than the real part, the real 
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part of ~~, which characterizes the attenuation along 
the crystal axis, is given by 

Re("',", )=_(nn)'Sin'a [lg:11 + SinS] 
, 21 2 cos S g:.' t::I' (19) 

from which it is clear that the principal modes will be 
those with the smallest values of n. 

We have thus obtained a set of quasiorthogonal eigen
functions 

(20) 

with eigenvalues 

where En and ~An are given by (17) and (18). Although 
the set of eigenfunctions given by (20) is not complete 
because In 1 ",; N, we can use it to resolve, with suffi
cient accuracy, any form of incident beam because the 
first two or three harmonics will predominate during 
the propagation of the beam in the crystal. The influ
ence of the remaining harmonics is reduced by the 
strong exponential dependence on n, namely, exp(- an2). 

It is precisely for these harmonics that the eigenvalues 
given by (16) and (17) are most accurate. 

The quantity N can be estimated for the same charac
teristic parametersof the problem that were used in 
Sec. 1 and the result is N« (21/cm)xl05 • 

CONCLUSIONS 

Similar information on the Borrmann effect can be de
duced from the character of the growth of the field with 
depth in the crystal, which is determined by the real 
part of the coefficients in front of the coordinate z. The 
following are the explicit expressions for these coeffi
cients: 

goo'-go,' 
Ilo=---, 

cosS 
• sin'S {got'l 

J.1v=J.1o-'V~ 2 cos e g;l~ , 

I' =!!o--'- (nn)' sin'S r Igo.'1 + SinS] 
n 21 2 cos a l g'" g"'I' 

(11 01 

(21) 

(22) 

(23) 

where JJ.o is the amplication coefficient for the case of 
plane waves in an infinite crystal, JJ.~ is the correspond
ing coefficient for a wave packet in a semi-infinite 
crystal, and JJ.n is the amplication coefficient for modes 
present in a finite crystal when an arbitrary wave packet 
is incident upon it. It is important to note that the for
mulas for JJ.~ and JJ.n were obtained for the only case that 
was of interest for the gamma laser, namely, Igol l21/ 
sine» 1. 

Comparison of the last two formulas shows the first 
term in the brackets in the expression for JJ." is due to 
aperture effects which are always present during the 
propagation of waves in bounded crystals and which re
duce the amplification coefficient because the Bragg 
condition is not satisfied exactly for all the components 
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of the packet. Let us denote by II the characteristic 
attenuation length. The physical interpretation of the 
second term in the brackets in the expression for J1. n is 
also readily understood if we recall that, when gd =ig~, 
volume losses become unimportant and there are only 
losses due to radiation from the boundaries. We shall 
denote by lz the corresponding characteristic length. 
The above formulas then take the form 

J!. = 111., J!.=111.-111" J!.=111.-1Il,-1/12. 

The two lengths II and lz can readily be estimated by 
introducing one further characteristic length. This 
length, l will be referred to as the transverse diffusion 
length and will be defined as the length over which the 
radius of the beam, given by (9), increases by a factor 
of -12. Assuming that aD "'2l, we obtain 

We note that lo -1 cm [11] and, for the parameter values 
used above, l = 20 cm. 

We may therefore conclude that, for the above nu
merical values of the parameters of our problem, the 
plane-wave approximation for the incident waves gives 
a correct representation of the efficacy of the Borrmann 
effect as a means of reducing the absorption coefficient 
provided the width of the beam (crystal) is aD» lO"Z cm, 
Whereas, for ao'" 10"3 cm, the aperture effect and the 

effect connected with radiation from boundaries begin 
to play an appreciable role. 

In general, the plane-wave approximation begins to 
lose its validity when the characteristic length l ap
proaches Zo. 
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The possibility is investigated of two-mode lasing at a large relative excitation of the active medium for an 
atomic transition with level moments 0 or 1. It is shown that in the case of parallel polarizations of the 
generated modes a two-mode regime takes place, providing the intermode distance C1121 exceeds a certain 
critical value C112ler; in the case of orthogonal polarizations the regime sets in at arbitrary intermode 
distances. The dependence of the size of the two-mode generation region on various parameters is 
investigated for parallel and orthogonal mode Polarizations. 

PACS numbers: 42.50.+q 

Many recent studies, both experimental and theoreti
cal, have been devoted to problems of nonlinear spec
troscopy. A recent book by Letokhov and ChebotaevUJ 

contains an extensive bibliography on this subject. One 
of the methods of investigating spectroscopic charac
teristics is to sound a resonant medium saturated by a 
strong field with a weak probing wave. We note that 
the results of the probing depend significantly on the 
mutual direction of the polarizations of the weak and 
strong fields, as was first pointed out by Alekseev. [2J 

The latter conSidered, for an atomic transition with 
total angular momentum change 1-0, the waveform of 
the weak signal as it passes through a glass laser 
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operating in the single-mode generation regime. The 
analysis took into account the depolarizing atomic col
lisions, when the strong field in the laser and the field 
of the transmitted signal had parallel and orthogonal 
polarizations. 

One more method of spectroscopy of resonant media 
is to study the two-mode generation regime in them. 
The principles of theoretical analysis of the two-mode 
regime were developed in a paper by Lamb. [3J No ac
count was taken of the degeneracy of the resonance 
levels, and the case was considered when the mode in
tensities could be regarded as weak (small relative 
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