
Perturbation theory for the quasienergy spectrum of atoms 
in a strong monochromatic field 

N. L. Manakov, V. D. Ovsyannikov, and l. P. Rapoport 

Voronezh State University 
(Submitted October 18, 1975) 
Zh. Eksp. Teor. Fiz. 70, 1697-1712 (May 1976) 

The quasienergy spectrum of atoms is calculated, including higher·order perturbation·theory terms in the 
interaction between the atom and the field which, among other things, allows an analysis to be made of the 
range of validity of the first non vanishing order theory in calculations of resonance and nonresonance 
perturbations of atomic levels in strong laser fields. The case of an isolated level in a nonresonance 
elliptically polarized field is investigated, and results are reported of calculations of polarizability and 
hyperpolarizability for alkali-metal and noble-gas atoms at the frequencies of pulsed solid-state lasers. 
Frequencies that are small in comparison with the ionization potential or comparable with it are 
considered, as well as the transition to the constant field. A calculation is given of the quasienergy 
spectrum in a resonance field, and of the corrections to the multiphoton excitation probability. It is shown 
that, both in the resonance and the nonresonance cases, the contribution of the higher-order terms becomes 
appreciable when the field is much smaller than the characteristic intra-atomic field. A separate analysis is 
given of the quasienergy spectrum of the hydrogen atom which has a number of specific features connected 
with the presence of a permanent dipole moment in excited states. 

PACS numbers: 31.10.Bb, 32.1O.Vc, 32.10.Nw 

1. INTRODUCTION 

The method of quasienergies[ll provides us with a 
convenient formalism for calculating the spectrum of 
quasistationary atomic states in strong fields. Sub­
stantial progress has been made in recent years in the 
experimental investigation of this subject. [21 Since cal­
culations of the quasienergy spectrum require the solu­
tion of the time-dependent Schrodinger equation, per­
turbation theory in the interaction between the atom and 
the field is at present the only method suitable for 
quantitative calculations involving real atoms. The 
usual procedure is to confine the analysis to the first 
nonvanishing order of perturbation theory. In contrast 
to the constant field, where the perturbation theory 
series are asymptotic, the question of the convergence 
of series in a time-dependent field has not as yet been 
investigated which, among other things, is due to the 
fact that the terms in the series have an appreciable 
dependence on the frequency and polarization of radia­
tion. However, it is clear that the inclusion of the 
higher-order terms in the case of the time-dependent 
field may turn out to be much more important than for 
the constant field: The dynamic polarizability deter­
mines the quadratic level shift and is zero for a num­
ber of frequencies, whereas the hyperpolarizability 
is not zero at these frequencies. 

In a sufficiently weak field (for which perturbation 
theory calculations are possible), one can define three 
qualitatively different cases that may occur, depending 
on the structure of the spectrum of the particular atom: 

(1) isolated level in a field of nonresonance frequency; 

(2) resonance case when the energy difference be­
tween the levels I i) and Ij) and the energy k of the pho­
tons satisfy the condition I E j - Ej I :::: knw; and 

(3) a group of closely lying levels in a nonresonance 
field (degenerate states of hydrogen, isolated level with 
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J '" 0 in an elliptically polarized field; closely spaced 
levels of a multiplet for which the matrix element of 
the interaction with the field is of the order of the 
multiplet splitting). 

Various variants of the perturbation theory can be 
used to calculate the quasienergy spectrum in such 
cases, [3~1 and the most satisfactory of them is that 
proposed in[61. The latter is a natural generalization 
of the time-independent perturbation theory to the case 
of fields that are periodic functions of time. The quasi­
energy wave function for the SchrBdinger equation with 
a periodic perturbation V(r, t) is 

'l'iI(r, t)=exp {-wt}U.(r, t), U(t+2n/ro)=U(t). 

In this expression, fS is the quasienergy and U satisfies 
the condition 

i6(t) Uil (r, t) = {H(') (r) +V(r, t) -i oOt }u ,,(r, t) =fSU .(r, t), (1) 

which is formally identical with the time-independent 
equation with the Hamiltonian ie(t).l) The functions U 
are defined in the Hilbert space R $ T, where R is the 
usual space of stationary function f(r) and T is the space 
of periodic functions of time with period 2rr/w. This 
fact was used in[6] to put forward a method for solving 
(1) that was analogous to the time-independent case ex­
cept that the integration with respect to r was augmented 
by averaging over the field period T during calculation 
of the probabilities and averages. It is clear that the 
complete set of solutions of (1) with V(r, t)=0 (basis 
functions) is 

where 'Pn are the eigenfunctions of the operator H CO ) with 
energies E!O). Perturbation theory on the unperturbed 
basis (2) enables us to consider all the physically inter-
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esting cases from a unified point of view. In particular, 
cases (2) and (3) given above correspond to degeneracy 
(or the presence of closely spaced levels) in the unper­
turbed spectrum E~) and, therefore, the correct func­
tions in the "zero-order approximation" are combina­
tions of the functions u<~) corresponding to close levels 
,.(0) .. "" . 

In this paper, we calculate the quasienergy spectrum 
(QES) of atoms for the typical cases indicated above, 
taking into account higher-order terms of perturbation 
theory which, among other things, enables us to estab­
lish the limits of applicability of the first-nonvanishing­
order perturbation theory in calculations of the per­
turbation of atomic states in a strong field. Numerical 
calculations have been carried out for alkali metals, 
noble gases, and hydrogen because they are of particu­
lar interest for experimental studies. To calculate the 
matrix elements, we used the Green function for the 
optical electron of an atom in the approximation of the 
model potential, [71 which enabled us to obtain an ana­
lytic expression for the various quantities in which we 
are interested in the form of rapidly converging hyper­
geometric series. 

2. QUASIENERGY OF AN ISOLATED LEVEL IN A 
NON RESONANCE FIELD 

Consider an isolated level of energy E~O) in a field of 
optical frequency w <E~O), which corresponds to the 
ground and low-lying excited states of atoms. If the 
total angular momentum of the atom is J"* 0, then de­
generacy in the magnetic quantum number is removed 
in an elliptically polarized field, and the splitting of the 
2J +1 magnetic sublevels of the level E~O) must be ana­
lyzed by perturbation theory in the presence of degen-

, eracy. The quadratic Stark effect was investigated for 
this case by Zon. [81 For the sake of simplicity in the 
calculation of the corrections - F, we shall confine our 
attention to the case J = O. 

The interaction operator V(r, t) in (1) in the case of 
an elliptically polarized wave propagating along the z 
axis has the form (in the nonrelativistic dipole approxi­
mation) 

V(r, t) =F(t)r=-A(t)P+I/2A'(t) , (3) 

where 

F(t)= :~, A(t)={: sinoot,-e: cosoot,o}, 

and - 1 ~ E ~ 1 is the elliptic polarization such that E = 0 
correspond to linear and E = + 1 (- 1) to the right-handed 
(left-handed) circular polarization. Although the two 
forms of (3) are equivalent in the dipole approxima­
tion, [91 one of the two may turn out to be technically 
more convenient in particular cases. 

The perturbation theory series for the quasienergy 

is analogous to the series for the energy in time-inde-
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pendent pertul'bation theory. The expression for the 
correction E!") has a form analogous to that for E!"), 
but summation in the intermediate states is carried out 
over the unperturbed basis (excluding the state U~~~) and 
the matrix elements are averaged over the period of the 
field. All that remains is to note that the presence of 
theiwo terms in the operator 

V(r, t) =V(r)e .... + V+(r)e-;·' 

leads to a substantial increase in the number of matrix 
elements in the series for En and Un, as compared with 
the time-independent case. For example, 

E(2) = ~' «U!~~ IV(r,t) 1V:,:)>>«u~;IV(r,t) IV;,:)>> 
• .i...l E(O)_E(O) 

k.r n A,,. 

=F' 1+e2~ '2(E~O)_E.(O)I<'I'nIZI'l'.)IZ .. _1+e' ct ( ) z 

4.i...l (E(O)-E(O)'-oo' 4 n 00 F, . .. (4) 

where an is the dynamiC polarizability. Similarly, the 
quantity E~4) can be written in the form 

where Yn is the dynamiC hyperpolarizability which can 
be expressed in terms of the components of the nonlin­
ear susceptibility tensor of the atom,2) Xii,,/: 

(5) 

The formulas for X include a combination of fourth-or­
der matrix elements. [101 They are rather unwieldy and 
will not be reproduced here. 

The components of the tensor X are normalized as 
follows: 

where Xo =222.1875 for hydrogen. Moreover, 

y(oo, e=O) 1.~o=3/8YO' y(oo, e=±1) 1.~o=Yo, 

where Yo is the static hyperpolarizability which deter­
mines the fourth-order correction to the energy in a 
constant electric field F. The factor i for e = 0 corre­
sponds to the value of P(t) averaged over the period. 
It follows from (4) and (5) that E! is more frequency­
dependent than E~2). In particular, in addition to single­
photon poles of intermediate p-states, which are also 
present in an(w), the quantity Yn has two-photon reso­
nance singularities near which there is a considerable 
increase in E~4). Moreover, when I e I "* 1, the quantity 
Yn has two-photon resonances on virtual S states that 
are absent in the case of circular polarization, which 
shows that fff!4) depends on the degree of elliptical po­
larization. 

Table 1 shows the results of a numerical calculation 
of a(w), XII = X '""" and Xl. = X",," for the ground states of 
hydrogen, alkali metals, and noble gases at the fre­
quencies of the ruby (wR =0.0656) and neodymium (WN 

=0.043) lasers, and for w=O. The ratio of ~!2) to E!4) 
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TABLE 1. PolarizabiUties and components of the nonlinear 
susceptibility tensor of rank four for the ground states of 
atoms. 

Atom 1--0 -"'-=,O-x.- __ ~I"_S_:_~_'M3-;I;---_' 1-1 -1--o-·"-R-~-:-I16_561r---'-H 
H 4.5 222.1875 4.;5 82.96, 251.577 4.618 85.78 264.62 
He 1.4.9 9.5 1.49 3.IS 9.55 1.49 3.24. 9.76 
Ne 5.2 51.0 5.25 16.9 5l.1. 5.27 17.1 51.9 
Ar 13.1 390 13.2 1.30 408 13.3 140 442 
Kr 18.2 800 18.3 292 898 IS.5 338 1065 
Xe 27.1. 2020 27.4 705 2150 27.9 ROO 24.6U 
U 166 2.7(5) 277 -8.8(4) 2.4(5) 2.46(3) -5.5(8) -1.7(9) 
Na 162 1.04(6) 234 2.5(5) 1.0(8) 575 9.7(7) 1.1(S) 
K 290 3.48(6) 607 1.3(7) 2.6(7) -1.320 7.8(7) 1.5(8) 
Rb 318 5.42(6) 692 1.1(S) 1.7(8) -1.206 6.2(7) 1.3(8) 
Cs 396 U8(7) 1117 -6.1(7) -4.4(8} . -775 - -

Note. Xo =X. (w = 0). Numbers of parenthesis show powers of ten: 
(n) = 10". Values of Xi and XI for Cs at w = 0.0656 are not given 
because of the presence of the two-photon resonance 6S-9D. 

in the case of hydrogen and the noble gases is not very 
different from that in the case of a constant field. This 
is due to the fact that W is small in comparison with the 
energy difference between the ground and. the first ex­
cited states. In the alkali metals, the difference is 
substantial and corrections - F4 become appreciable for 
fields F:::106 V/cm, where, depending on 10, the quan­
tity Yn may change sign. This was, in fact, the case, 
for example, in the lithium atom at the frequencies wN 

and 2wN • Consequently, departures from the first-non­
vanishing-order perturbation theory can be seen even in 
fields F~Fcru much smaller than the "interatomic" 
field Fat' and for the alkali metals Fcru is less than in 
the case when w =0. This is connected with two factors: 
firstly, with the large magnitudes of the matrix ele­
ments of order N for atomic potentials with long-range 
Coulomb asymptotics, which are much greater than the. 
corresponding values for rapidly decreasing potentials3) 

(the statistical hyperpolarizability of hydrogen exceeds 
the hyperpolarizability of a particle in a short-range 
potential by a factor of 40[12]), and this difference in­
creases with increasing N. Secondly, at frequencies w 
that are comparable with the frequencies of atomic 
transitions, the ratio Yn/ an is found to increase quite 
substantially (and, correspondingly, there is a reduc­
tion in Fcru) in comparison with the static case because 
the expression for Yn(w) includes the'product of three 
energy denominators of the form E~O) - E~O) ± w, the 
magnitude of which decreases with increasing w. 

Thus, it is impossible to formulate a combined cri­
terion for estimating the contribution of higher-order 
perturbation theory terms in a time-dependent field be­
cause ~n depends appreciably on both w and II. For ex­
ample, in the region of normal dispersion (w < win = E~O) 
- E!O), where E~O) is the energy of the state nearest to 
I n) state, the transition to which is allowed by selection 
rules), the quantities a and Y can be expanded into 
series in w2 which converge for w < Win and w < w1n/2, 
respectively. In that case, the first N= wln/w terms of 
the perturbation-theory series give the asymptotic ex­
pansion of Bn in the parameter F2 to within the N-th 
term, inclusively. At high frequencies, the asymptotic 
character of the series is violated. (See the analogy 
with the level shift in a short-range potential. [12]) 

Let us now consider the frequency region w~In' when 
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single-photon ionization of the state under consideration 
is possible. This situation is characteristic for highly 
excited states in the light field. For sufficiently large 
n, the electron is weakly bound to the atom, and the un­
perturbed value of the quasienergy must include 1lliL. 
mean oscillatory energy in the wave field ~o.c = Fi-(t)/ 
2w2, which may be comparable with In. To calculate 
/C n in this case, it is convenient to use the operator 
V(r, t) in (3), written in terms of the vector potential. 
The term ~! contains the terms i(l + e2)F 2 = 8 0BC' and 
we therefore included it in H(O) (r). This corresponds 
to the replacement of B~) in (2) by /C!~)' =~~) +8osc'. 
and the remaining part of V is discussed in t~rms of 
perturbation theory. In the second order, we have (for 
the sake of simpliCity, we confine ourselves to the case 
8=0) 

",")I_F'~,2ro .. l<nlp.lk)I' 1 '() 2 "'. --~ ""--Ct. roF. 
002 It WAft '_(02 4 

It is important to note that the formulas for the higher­
order corrections have the same form as for the inter­
action F(t)r, provided we make the replacement Fz 
- FP./w. Hence, the term iA2(t) provides a contribu­
tion only in the second order and determines the spe­
cific dependence of 8n on w at high frequencies. Using 
the sum rule, we can readily show that 

where 8!2) is given by (4) and, consequently, in practi­
cal calculations for small w (w« In), the expression . 
given by (4) is convenient. For w» In, the quantity B!21 
decreases rapidly with increasing n. In particular, for 
the nS states of hydrogen, [3] 

""n,.)1 "" 4 
'" = '" os< 3n'ro' . (6) 

Similarly, it can be shown that B!4)=F4/n5w6• Thus, in 
contrast to the constant field, where the level shift in­
creases rapidly with increasing n, the quasienergy 
spectrum in a time-dependent field reaches the asymp­
totic value 8!?~' as n increases. Moreover, when w>In, 
the quantity 8!2)I has an imaginary part which deter­
mines the level width and is related to the single-pho­
ton ionization cross section O'n' It follows from the 
optical theorem that 

I """)'_~ F' mC!'" - 8n an , 

where a is the fine-structure constant, When w > i In, 
1m B!4) gives the two-photon level width, and so on. 

The case w - In is of particular interest, especially in 
the case of resonance multiphoton ionization, when the 
asymptotic approximation of the form given by (6) is in­
valid for 8!2),. Table 2 shows numerical values of the 
"renormalized" polarizabilities a~ for a series of xenon 
levels in the field produced by the neodymium laser (it 
includes only states with zero angular momentum com­
ponents along the polarization vector). Despite the 
complexity of the xenon spectrum, which results in a 

N. L. Manakov et al. 887 



TABLE 2. Pol ariz abilities (X~ of excited states of Xe at 
ileodymium-laser frequency. 

,State 'n 

6.[I'/,), 1.89 
6p [2'/'j' 2.38 
54[1'/, 2 2.52 
7s[I'/2], 2.94 
ip[2';'j, 3.42 

611[l'/.1t 3.i5 
8s(I'{21o 3.95 
4/[1';'], 3.96 
8p[2'i,j, 4.H 

.. 
" 

20iO 
-220 
2080 

354 
815+i97 

-630+i24O 
238+i6.2 

-1150+i85 
430+157 

State '" 

U[I'/,] , 4.63 
5f[ 1':'j' 4.96 
9s[I';, , 4.9i 
9p[2'/,j, 5.45 
ad[!'/,], 5.90 
6f( I';'], 5.95 

10.(1'/,10 5.98 
if[I'/,j, 6.95 

lls[ l'l,]' 6.98 

. ' n 

-275+i160 
-80+i49.3 
8i.6+;o.53 
480+127 
-13+i52 

8.8+129.7 
92.6+10.22 
154+i19 

94.3+iO.12 

considerable difference in the values of a~ for suffi­
Ciently closely lying energy levels, the quantity a~ 
rapidly decreases with increasing "principal quantum 
number" lin = (- 2E~O) t 1/ 2 , as expected. The individual 
deviations are due to the approach to resonance with 
the lower-lying level. However, the conditions of 
single-photon resonance Vnn, ~ I E~O) - E~~) ± w I are not 
satisfied for any of these states for field strengths up 
to F'" 5x 107 V/cm. 

Eleven-photon ionization of xenon with resonance at 
w =9450 cm-1 was observed inCl3l for F'" 5x 107 V/cm 
and laser linewidth - 2 cm-1• It follows from Table 2 
that the minimum detuning corresponding to the two­
photon resonance on the field-shifted levels 5p61S0 and 
9p[2tls is then -130 cm-l , 

For frequencies in the neighborhood of which an(w) 
- 0, and for W'" I E~O) - E~O) I, where I k) are virtual 
states with the same parity as I n), corrections to t'!~2) 
that are connected with the inclusion of quadrupole 
terms in V(r, t), and are of the order of (awt, may turn 
out to be appreciable. Numerical calculations show 
that the contribution of nondipole terms is appreciable 
when the frequency differs by more than 0.01-0.1 cm-1 

from the above frequencies, i. e., in fields -106 V / cm 
the contribution of terms - F4 is more important than 
corrections due to retardation. 

The above results are not valid at low frequencies 
when 

where W is the composite matrix element for the tran­
sition between the harmonics of the level E~O). In par­
ticular, when w - 0, the expressions given by (4) and 
(5) do not become identical with the formula for the 
static Stark effect because of the dependence on the de­
gree of elliptical polarization. Similarly to the case of 
closely-lying levels in the time-independent perturba­
tion theory, the correct QES function corresponding to 
the "zero-order approximation" must have the form of 
a superposition of harmonics when the inequality given 
by (7) is satisfied: 

U. (r, t) = 1: c,U~:) (r, t). (8) 

The matrix element Wnq,nq' is nonzero for q' =q, q±2, 
where 
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W., ... = (1+e') W., Wn, n,,,,' =(1-e') W., 

W,,(±w)=F2 1: i<cp.izicp.>i' . 
4 , E:,"-E~O)±") 

For small-w, the dependence of Wn on w can be ne­
glected, and the expression for Un turns out to be 

U. (r, t) = exp { i( 1-e'} :- sin 2wt} crn (r). (9) 

Under these conditions, t'! n =E!O) .;,. 2(1 + E2)Wn' which is 
identical with (4) for w- 0, and the weights of the har­
monics are determined by the Bessel functions cq 

=Jq [(1-E2)Wn/w). It is readily seen that the time-de­
pendent argument of the exponential in the function 
wgn(r,t) becomes E!O) -tan(0)F2 when w-O, and cor­
responds to the inclusion of the Stark shift in a con­
stant field F. The expression for the correction t'! !4) 
can be obtained in a similar way when (7) is satisfied. 
In a circularly polarized field, the harmonics of a given 
state are "nondegenerate" in the sense that W nq, nqz.2 = O. 
The various features which arise for w::; Wn and, in par­
ticular, the large weight of the harmonics u<,,::) with q ± 0, 
are determined by the "linearly polarized component" 
of the wave (cq = 1iqO for E = ± 1) which is connected with 
the fact that an atomic electron can absorb an arbitrary 
number of linearly polarized photons without a change 
in the quantum numbers l and m, 

An interesting feature of the behavior of the level 
with J", 0 in an elliptically polarized field is the coales­
cence of some of the split (2J +1) magnetic sublevels at 
low frequencies. In particular, Un(r, t) is a superposi­
tion of (2J + 1) harmonics exp(iqwt) with q =0, ± 1, .. " 
±J in the case of circular polarization and provided (7) 
is satisfied. The secular determinant splits into the 
product of determinants of order J and J + 1, which cor­
respond to the two independent sets of magnetic sub­
levels with even and odd m. Thus, Un is a superposi­
tion of states with different m and, when w« Wn, the 
conserved quantum number is the component of the 
angular momentum along the direction of F. It is 
readily verified that the 2 J + 1 roots of the determinant 
then coincide in pairs, which corresponds to degeneracy 
in the constant field with respect to the sign of the com­
ponent along the vector F. At low frequencies, the 
separation between the coalescing levels is - w2. 

3. PERTURBATION THEORY IN THE PRESENCE 
OF RESONANCES 

The two-level resonance approximationC14l (the gen­
eralization to the case of resonance between two multi­
plets is given in[4l) is usually employed in the presence 
of resonances and is equivalent to the zero-order ap­
proximation of the perturbation theory for the QES. C6l 
However, in fields of the order of 106_107 V/cm, the 
corrections representing the presence of nonresonance 
levels become very important and this leads to a modi­
fication of both the quasienergy spectrum and the 
weights of the quasienergy harmonics of the resonance 
level. 

Since the unperturbed states I n) and In') with ener­
gies satisfying the relation E~,) - E~) '" kw, k = 0, 1, 2, •.. , 
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correspond to degenerate states of the operator ~(t) 
in (1),4) the QES function is a superposition of degen­
erate states in (2) in the zero-order approximation: 

(10) 

where IS is the root of the secular equation 

(11) 

In this expression, Vii is the correction to the quasi­
energy of the i-th isolated level, where, however, the 
states In) and In') are absent from the sums over the 
intermediate states. The nondiagonal element Vnn• can 
also be written as a series in F, beginning with the term 
Fk. Since the shift of the quasienergy of an individual 
level is quadratic in F, and resonance effects are im­
portant only when terms - Fk are included, one is in 
practice interested in cases with k "" 2 when the weights 
of the harmonics cn• n' in (10) can be comparable in 
magnitude. 

A. Single-photon resonance 

We shall now take into account in Vii terms up to 
the second order in F, inclusive, and will write the 
solution of (11) in the form 

2l:!",=-'/.F' (an +an,) +oS±[a'F'+ (oS+'/,anF'-'/,a.,F') 'J 't., 
oS = [8~~l_ W:), a = (n I z I n'), <Xi = ~ 200Pi I (i I zip) I' 

p~n· W~i - 0)2 

(12) 

It follows from (12) that the quantities a", are linear 
functions of F when Ii «aF, and the shift of the quasi­
energy corresponds to the shift of the isolated levels 
I n) and I n') when Ii» aF. Inclusion of second-order 
corrections is unimportant when a» (ctn - ctn.) and, in 
the opposite case, the formulas of the two-level ap­
proximation are invalid. 

As an example, we have calculated the parameters 
of the resonance between the 3d3 and 5 V levels of the 
Xe atom (in the Paschen notation) for which the detun­
ing at the frequency of the neodymium laser is Ii = 74 
cm-l : 

a=1.37, a,,=740, a,v=-1470+i·39. 

The relative deviation {a", - a",( ct i == 0)}1 a", is -1 in a field 
F"" 107 vi cm, and calculations based on perturbation 
theory are valid in this case for F::S 5 x 106 vi cm. 

The quantity I Vnn.l z in (11) is proportional to the· 
parity of the K -photon excitation of the level I n') in a 
weak field. It is clear that, when higher-order cor­
rections are included, Vnn• can be written in the form 

where B(K) is a combination of matrix elements of or­
der (K + 2), which corresponds to the inclusion of vir­
tual processes in the re-emission of the photon. The 
following table lists the calculated values of A (1) and 
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B(l) for the transition between the ground state nS1/Z and 
the first excited state nP3/2 of alkali-metal atoms: 

Atom: J.i 'ia K Rb Cs 
A I!): 0.35 0.37 [1.43 0.44 0.47 

B,I)·IO-·: -1.7 -1.. -0.83 -1.6 - 1.5 

The negative value of B leads to a slower increase in 
the probability with increasing F, as compared with 
the results of the first-nonvanishing-order perturbation 
theory, and this corresponds to the "smoothing" of the 
resonance when the nonresonance levels are taken into 
account. Zaretskii and Krainov[l5l have obtained in the 
adiabatic approximation the expression for the proba­
bility of K-photon excitation in the two-level system: 

where y = t. The considerable increase in the param­
eter y in atoms (y=2BIA::=104 ) and the associated re­
duction in the critical field Fcrit> for which the first 
nonvanishing order of perturbation theory is valid, is of 
the same origin as the reduction in Fcrit in comparison 
with Fat for the level shift, which was discussed in 
Sec. 2. 

We note that generalization of the results of Zaretskit 
and Krainov[lSl to the case of real atoms[ZlJ leads to a 
negative value for y (thus, for the lS - 2S transition in 
hydrogen, y = - 446 [Zll) although the numerical values 
of the pre-exponential factor in WK are in reasonable 
agreement with perturbation-theory calculations. The 
negative value of y shows that the preCision of the 
method used in[Zl J is insufficient for calculations of the 
deviation from perturbation theory in resonance transi­
tions in atoms. This may be due to the fact that transi­
tions through different intermediate states [see[141, Eq. 
(53.10) and thereafter], which compete with the direct 
1- 2 transition, and whose contribution increases with 
increasing F, were neglected in[Zll. 

B. Two-photon resonance 

This case is formally different from the foregoing 
only by the fact that Vnn• is a composite second-order 
matrix element. The functional dependence a(F) re­
mains quadratic in form. However, in contrast to the 
isolated level, the "polarizability" of this quasienergy 
state is given by 

ct+=-4(6.+-6)/F', 
o._=-46._/F', 

and is a function of the field (for fixed detuning Ii = E~~) 
- E~O) _ 2w). When FZ« Ii, ct+ - ctn.(w), ct_ - ctn(w): 

ct",='/, ( ct.' (00) +0..-' (00) +' ~~ ) 

[ ( , ,46 )' 
± '/, an -ctn • -"Ii' 

(13) 
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FIG. 1. "Polarizabilities" 
a. (in atomic units) as func­
tions of F2/20 for ~he two­
photon resonance between the 
6SI / 2 and 7S1/ 2 levels of Cs. 

It follows from (13) that resonance effects do not lead to 
a change in the polarizability of the states 1 n) and 1 n') 
when 1 Won' 1 « 1 a~ - a~, 1 • 

As an example, Fig. 1 shows graphs of a+(46/F a) for 
the resonance 6S1I2 and 7S1/2 levels of cesium. Mixing 
is important for these states and, when 6« F 2, one ob­
serves the characteristic "repulsion" between closely 
lying levels in the external field. When 6» Fa, we have 

(%_ .... a;.s(00=1/2oo .. , 7S) =to50, (%~ .... a;7S(00='/,00,s, 7S) =-495, 

W",7s=-838. 

Nonresonance corrections which, in this case, are 
comparable with terms - Fa in a field F= 5x 106 V/cm 
can be included by analogy with the procedure used in 
the case of the single-photon resonance. 

It thus follows from the above calculations, per­
formed for a number of typical cases, that the validity 
of the resonance perturbation theory is restricted to 
the same range of field strengths as in the nonreso­
nance case. 

4. QUASI ENERGY SPECTRUM OF EXCITED STATES 
OF HYDROGEN 

The particular feature of hydrogen is the presence 
of a permanent dipole moment in excited states, and 
this leads to a linear Stark effect in a constant field. In 
a time-dependent field F(t), effects connected with the 
presence of the permanent dipole moment are impor­
tant only for frequencies w that are comparable with 
the change in the frequencies of atomic transitions due 
to the linear Stark effect (w:5 V(nlm 1 F· rlnl'm')} but 
can be ignored in a rapidly-varying field where the 
quasienergy spectrum is determined by the interaction 
between the induced dipole moment p- aF(t) and the 
field. We note that the quadratiC shift and the level 
splitting were investigated int3,161 for V« w, whereas 
the case V» w was investigated in[17,aOl for linear and 
circular polarizations, neglecting terms quadratic in F. 
The analysis given below is valid for an arbitrary re­
lationship between V and w, which, in particular, en­
ables us to investigate the transition from the linear to 
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the quadratic Stark effect (and vice versa) as a function 
of the relation between F and w. 

A. Circularly polarized wave 

In this case, the problem can be reduced to the time­
independent problem by transforming to a system of 
coordinates that rotates with the frequency of the field: 

U.(r, t)=exp (i800L,t}cp.(r) , 8=±1, 

where fP. satisfies the time-independent equation 

(H(')(r)+Fx+eooi,-~}cpii(r) =0. (14) 

In the rotating system, E~O) splits into (2n -1) sublevels 
with different m: E~o)l =E~O) +m (henceforth, we shall 
assume that e = + 1). When V« w, sublevels with dif­
ferent m can be considered independently, and the re­
sult is that the level E!O) splits in the field into n2 sub­
levels with definite values of m, the parity, shift and 
splitting of which are - F2. When V~ w, the sublevels 
with different m must be considered in terms of the 
perturbation theory for close levels, and U. is a super­
position of harmonics with m =0, .•. , ± (n -1). 

To simplify the laborious diagonalization of matrices, 
we shall confine our attention to n = 2. The state 12pO) 
then remains isolated, and we have the quadratic shift: 

The polarizability a is calculated with the aid of the 
Coulomb Green function: 

a;2p,( (i) =oo-'(P(v+) +P(v_) -1), 
(15) 

When w=O, we have a=156, which corresponds to the 
constant in the quadratic Stark effect. (18) (In the para­
bolic set of coordinates in which F lies along one of the 
axes, the level 12pO) corresponds to the state with nl 
=na =0 for which the linear Stark effect is absent.) 

The 12s) and 12p,± 1) states are mixed by the field and 

(16) 

The solution of the secular equation for~, when the 
terms - F2 are included, have the form (A = E~O) - $) 

(!l=E.(')-~) 00 1 
!l1,2=±~'F 2ji(Wu- W -.-.) ~ "2(Wu+W _._.) 

+ ( :)' {Wu+W_._.+W._.+W_u-2W •• }. 

A.--W .. - (~: r {Wu+W_._.+W._.+W_u-2W .. }, 

(17) 

are the composite matrix elements between states with 
m =0, ± 1 in (16). Similarly, (15) can be expressed in 
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FIG. 2. Quasienergies of n = 2 
states in hydrogen as functions of 
field F (double log scale). Solid 
Line-w = 20 em-I, broken lines-w 
=1000 em-I. 

terms of the hypergeometric functions 2F1' Figure 2 
shows the function ~l,z(F) 'f w for w = 20 and 1000 cm-1. 
The change in the slope of the curves for w = 20 cm-1 
corresponds to the transition from the quadratic to the 
linear level shift as F increases. 

It is clear that ~l,Z are linear functions of F for 
w < 3F and are determined by the interaction between 
the field and the degenerate states of the level In). In­
clusion of the interaction between the shells gives cor­
rections - FZ. When w« I E!O) - E!~) I, the dependence 
of Wij on frequency can be neglected, and we have the 
follOWing expression for ~I: 

1\ •. 2==t=~+3F'{31-27F'/~'}±CIl, 
1\.=6F' {10+27 F' W}, (18) 

When w =0, (18) leads to the formulas for the static 
Stark effect. [lBl In particular, for the coefficient Cj in 
(16), which corresponds to the root ~1> we have Co = 1/ 
,f2, C_1 = - C1 = t (state with parabolic quantum numbers 
n1 =m =0, nz = 1, where m is the component along the 
vector F)~Similarly, the root ~ corresponds to the 
state with n1 = 1, nz =m =0, and ~3 corresponds to the 
level n1 =nz =0, m = 1. We note that the levels 8 zpo and 
10 3 = E~O) - ~ coalesce for w - O. ThUS, some of the 
split nZ sublevels coalesce as the frequency is reduced, 
and when w«3nF/2, the number of split components is 
tn(n + 1), as in the case of the constant field. 

In the opposite limit (F« w), the roots ~j and the 
corresponding wave functions have the form 

9F' 
I\ •.• =±IJ)± 2;'" - W ±I.±h U r (r ,t) =q>,p,m_±Ie±'··, 

I\.=-W", U.(r)='l',,(r), 

which is in agreement with the results in[3,i6]. 

For low frequencies w« E!O) - E!~), we can obtain an 
analytic solution for an arbitrary level E!O) if we take 
into account the analogy between (14) and the SchrB­
dinger equation for an atom in crossed electric and 
magnetic fields. In particular, to within terms repre­
senting the interaction between the field and states with 
the same n, we have[19, ZO] 

-v 3nF)' 8 ...... =ii:~o' +(n' +n") IJ) 1 + (2w ' '''' n-1 +n-1 
n,n=--2-"'" 2 

(19) 
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The quantum numbers n', nil correspond to the com­
ponents of the vectors J± = t(L ± A) along the directions 
of Q± = wez ± 3nFe:/2. In these expressions, L is the 
angular momentum and A is the Runge-Lenz vector in 
the subspace of states with given n. [19] The number of 
split levels (2n -1) remains the same as in the case of 
the linear Stark effect. The characteristic parameter 
yZ = (3nF/2w)2 in (19), which determines the transition 
from the square shift to the linear shift as F increases, 
can be written in the form 

where 10' o,c =e2F2/2mw2 is the mean energy of an elec­
tron in the field and In is the ionization potential. 5) 

In the above approximation, the QES function is given 
as a superposition of unperturbed functions l/!~~~i2(r) in 
parabOlic coordinates with the quantization axis lying 
along the direction of propagation of the wave (the z 
axis): 

• 
'¥ ...... (r, t) =e-",.,·"t L, D:, .. ( 0, -Ct- ~ ,0) . 

'i(,II __ 11; 

(20) 
. DA". (0 ~_ 3rt 0) .h,·IO" e'('.+'"., 

n I ,...... 2' 't' 11 I , 

where k = (n -1)/2 is the modulus of the vectors J,., it> 
i2 are their components along the z axis, a = arc coty, 
and D is the finite rotation matrix. 

It follows from (20) that, when y-1, the wave fune­
tion \If .(r, t) includes the superposition of harmonics 
with m =0, ••• , ± (n -1), the component of the momen­
tum is not a quantum number of the QES (although each 
individual harmonic has a definite component m = i1 + i2 
along the z axis), and the QES quantum numbers are the 
components n' and nIt introduced above. It is readily 
verified that, when y» 1, the function l/!""'n" becomes 
identical with l/!~~!'. -n" with fixed value of the component 
m =n' -nil along the direction of F (the x axis), and 
8 nn'n" is given by the usual formula for the linear Stark 
effect. In the opposite limiting case (y« 1), we have 

{ . [(., 9 mn'F'] } ,0, 
'I'",,"(r,t)=exp -i E. -g-IJ)- t 11:.-.'.-." (r), 

where m = - n' .., nil is the component along the z axis. 

The formulas given by (19) and (20) are valid for 
y? 1, when we can neglect terms - F2 that correspond 
to the inclusion of the interaction between the shells, 
and lead to complete removal of the degeneracy of the 
level E!O). The algebraic method used in[19] does not 
take into account correctly terms that are quadratic in 
F because, when y< 1, the parabolic symmetry of the 
problem is lost and the use of the algebra of the opera­
tors J± is ineffective (the correction - F Z obtained by 
Demkov et al. [19] is incorrect because it was erroneous­
ly assumed in their derivation that the second-order 
composite matrix element was diagonal in the parabolic 
quantum numbers6». 

B. Linearly polarized wave 

In a linearly polarized optical-frequency wave (V« w), 
the level E~O) splits into tn(n + 1) sublevels, the shift of 
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which is quadratic in F, and the wave functions are 
superpositions of the zero-order harmonics (2) corre­
sponding to the degenerate states of the level I n}. [16] 

When V~ w, the QES function in the zero-order approxi­
mation should be sought in the form 

U.(r, t)= EE C,.<i'.r(r)e"·', 
I • 

which takes into account the "degeneracy" of harmonics 
with different q in (2). For the qJ"., we take the hydro­
gen functions in parabOlic coordinates with z "F: :; {nh 
n2, m}. Since the absorption of a photon of plane-polar­
ized radiation by an atom is not accompanied by a 
change in the component of the angular momentum along 
the quantization axis, the secular determinant is in­
finite in the indices q and q' (in contrast to circular po­
larization): 

(21) 
where V=~nF(nl -nz) and W'Y'Y' is the composite matrix 
element of the form given by (7) in which we can neglect 
the dependence on w at low frequencies. The matrix 
element W.,." is not diagonal in y and y' (for the state 
n=2, m =0, for example, we have Wn =-84F2, Wn ' 
=-24F2), but for V~w, the terms in (21) that are non­
diagonal in y provide a contribution to the order of 
VW.,." to 8, and can be neglected. Thus, in this ap­
proximation, the quasienergy spectrum is characterized 
by parabOlic quantum numbers, similarly to the static 
stark effect; and we have 

'¥ w" (r, t)= exp{-~~·)t}<i'.r(r) U(t), 8 ~') =E~') +2WTl , 

v -
U(t) = exp i{-;;;-sin wt+B sin2wt} = ~ cq(F, w)e"·' 

(22) 

c,=I.(B)/, (:) + tl,(B) {/,_ .. ( : ) +(-1)'1<+ .. (: n, 
q---

,-I 
where Ii =Wn/2w. In particular, when n =2, m =0, we 
have 1i=28FIVI/w, andforstateswithn=2, m=±l, we 
have V=O, Xn=tcr21>0F2; the quantity cr21>0 is defined 
by (15). 

It follows from (22) that, as w- 0 (V» w), the argu­
ment of the exponential in >If ~ (r, t) includes both 8~2) and 
the term V which corresponds to the linear stark ef­
fect. When V« w, the weights cq of harmonics with 
q *0 are small in comparison with Co -1, and (8" - 8~O» 
- F2 • As in the case of circular polarization, the role 
of terms that are linear in F for states with nl *n2 be­
comes important for V~ w. The inclusion of terms 
that are quadratic in F leads not only to a shift and a 
splitting of the QES level E!O), but also to a change in 
the weights cq of the harmonics. For example, for the 
statewithn=2, nl=l, n2=0, the ratio rq =cq/cq(Ii=O) 
has the following values for F= 5x 10-3, W = 10-2 : ro 
=0.997; rl=0.92; r_l=1.06; r2=1.11; r_2=0.88. The 
departure from symmetry in the weights of the positive 
and negative harmonics is analogous to the change in 
the symmetry of the shift of levels relative to E!O) when 
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quadratic corrections to the static stark effect is taken 
into account. 

OWe use the atomic system of units. 
2)We note that the quantity "l'" is of independent interest in non­

linear optics of atomic gases because it governs the correc­
tion to the refractive index of the medium, which is a function 
of intenSity. 

.3) An analogous situation obtains in the problem of ionization of 
an atom where the inclusion of the Coulomb potential results 
in a considerable increase in ionization probability. [141 

4)k = 0 corresponds to the presence of close levels for which 
the matrix element of the interaction (simple or composite) 
is of the order of the distance between the levels. 

5)The parameter nF/w is identical with the parameter ~ intro­
duced by Ritus. [31 

6)We note that the shift and the splitting of states with n = 2 in 
crossed fields (F.l H), including terms quadratic in F, are 
given by (18) if we suppose that w = eH/2mc and we omit the 
terms ± w in ~I,2' 
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