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A number of topics is considered related to the problem of 7T condensation in nuclear matter (N = Z) and 
in neutron stars (N) Z). A consistent multiparticle approach is developed to describe exact excitations of a 
medium with quantum numbers characterizing 7T mesons-pion quasiparticles. A method is given for 
calculating the effective Lagrangian of a pion field, the nonlinear terms of which are interpreted as an 
interaction between pion quasiparticles. An exactly soluble model for the 7T + 7T - condensation in a neutron 
medium is studied, which enables us to calculate by numerical methods the energy of the system in the 
presence of a 7T condensate of arbitrary amplitUde . .In order to illustrate the computation methods the high 
frequency approximation w> kvF is considered within the framework of which we succeed in calculating 
analytically the critical parameters and the energy of the 7T + 7T - condensate. It is shown that the instability 
discovered by Sawyer and Scalapino [R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); D. I. Scalapino, Phys. 
Rev. Lett. 29, 386 (1972)] is of the same nature as the 7T+7T--instability. The problem of the spatial and 
isotopic structure of the 7T condensate in the system with N = Z is investigated. A broad class of solutions 
is investigated by the Thomas-Fermi method and it turns out that the one-dimensional isotopically 
asymmetric configurations of the condensate field have the lowest energy. The amplitude of the 
modulations of the particle density and of the spin density of nucleons in the condensate field is calculated. 

PACS numbers: 21.65.+f 

I. FORMULATION OF THE PROBLEM 

1. The physical picture 

The possibility of a phase transition with the forma­
tion of a 7T-meson condensate was investigated for the 
first time inUl• The Klein-Gordon-Fock (KGF) equa­
tion was solved in external fields of different type: 
scalar, electric, in a field produced by nucleons (nu­
clear matter). It was found that in suffiCiently strong 
external fields two types of instability of the pion field 
arise which correspond in a scalar field to ~+,r-,ro<O 
and in an electrical field to (wr+ + wr-'f < 0, where wr is 
the energy of the pions in the field. In these cases the 
single particle treatment becomes inapplicable and in 
order to obtain the condensate field and the energy of 
the system it is necessary to solve the nonlinear field 
problem. InUl this problem was solved for the pion in­
teraction of the form >..qJ4. The appearance of a Bose­
condensate makes the system stable (the energy of all 
possible excitations becomes greater than zero). In 
that paper the possibility of a phase transition in nuclei 
and in neutron stars was demonstrated. But the influ­
ence of the nucleon medium was taken into account in 
the gaseous approximation in terms of the external 
field. Possible excitations of the nucleon medium were 
taken into account independently in references[2,3] by 
essentially different methods. In accordance with this 
the further development of the theory proceeded along 

830 Soy. Phys. JETP, Vol. 43, No.5, May 1976 

two paths. 

Sawyer and Scalapino[2] have put forward the idea of 
the instability of the matter of a neutron star with re­
spect to the reaction n - p + 7T- • In order to verify this 
assertion a model was considered in which the nucleons 
interact with 7T- mesons which are present in the only 
state with the propagation vector k. Since only one type 
of pions was taken into consideration the approach of[2] 
based on the method of the average field corresponded 
to the description of the pion field by a Schrodinger 
equation and not by the KGF equation. An instability 
was discovered in this model the meaning of which has 
become entirely clear only recently. This instability 
does not correspond to the initial idea otu]. The in­
stability with respect to the reaction n - p + 7T- could 
have arisen only if the obvious condition IL'")" IL(~) 
+ (wr)mln is satisfied, which in the absence of an inter­
action between pions and nucleons goes over into the 
condition IL (,,) .. IL(~) +mrt!' (mr is the pion mass). At 
the same time the instability observed in[2] disappears 
in the case of a weak interaction. Below we shall re­
turn to the question of the nature of the instability ob­
served in[2]. We shall show that it represents a mani­
festation· of the instability observed in a realistic 
model. £3,4] 

The stability of the model under consideration with 
respect to the reaction n - p + 7T- was demonstrated in[S] 
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where an exact formulation of the problem was given 
concerning the interaction of nucleons with the travel­
ing wave of a pion field of arbitrary amplitude. An ef­
fective Lagrange function was constructed for a system 
corresponding to the description of the pion field by the 
KGF equation, i. e., introducing the 11"- and 11"+ mesons 
automatically. Analogous results were obtained in[S] 
with the aid of the Hamiltonian formalism and also 
. [7] , 
Ln by the method of the average field extended to two 
types of charged piOns. 

The other path along which the development of the 
the()ry proceeded representing an extension ofn ] en­
abled one to discuss the problem of the 11" condensation 
corresponding to a considerably more realistic formu­
lation of the problem (taking into account N* reso­
nances and s scattering, taking nucleon correlations 
into account, nuclear matter with an arbitrary ratio 
Z/N). This path consisted of a consistent application 
of the methods of the many-body problem. In[3] a 
method was developed for determining the polarization 
operator for the pions lICk, w) in a nucleon medium, 
based on picking out those graphs which are essentially 
altered in the case of four-momenta of the order of 
m.c. Self-energy graphs for pions which in the inter­
mediate states have a nucleon and a nucleon hole or the 
isobar N!3 (1232) and a nucleon hole have turned out to 
be of such a nature. The other less sensitive graphs 
were replaced by constants which must be determined 
experimentally, such as the constant I of the 1I"N inter­
action, the constant gnn and gn~ for the spin-spin NN 
interaction in a medium. The constants characterizing 
the nucleon-nucleon interaction in a medium (gM gn, 
Inn ,r'), are known for a nucleus (Z"" N), [8] and a;e n~t 
known for a neutron star (Z« N). But they can be suf­
ficiently well estimated with the aid of sensible model 
calculations, and in the 'case of high pion frequenCies 
w> fl". which is realized in the case of condensation of 
charged mesons in neutron stars, they must not differ 
appreciably from the corresponding constants in vacuo. 
Knowing lICk, w) one can from the poles of the pion 
propagator D(k, w) determine the excitation spectrum 
with the quantum numbers of 11" mesons (pion quasi-
particles): . 

(1) 

We utilize the units Ii =m. = c = 1. 

In[3] this method was used for a detailed investiga­
tion of the case N = Z (atomic nucleus), and in[4] of the 
case N» Z (neutron star). It was found that there exist 
several branches of the spectrum of pion quasi particles. 
Since the interaction between pions and nucleons is not 
small, strong mixing occurs of pion states with states 
of the type (N, N), (N*, N). Therefore the nature of a 
particular excitation can be determined only from the 
behavior of the corresponding branch when the interac­
tion is switched off. Thus, in addition to the "pion" 
branch there exist the "N* resonance" and the "spin­
isospin- acoustic" branches of the excitations of pion 
quasiparticles. Classification of the branches is car­
ried out according to the type of excitation into which 
the corresponding branch goes over when the pion-nu-
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cleon interaction is switched off. 

In[3] it was shown that in a medium with N = Z with a 
sensible choice of constants for the NN interaction, for 
a density ne < no (no is the nuclear density) for a definite 
wave number ko (ko"" PI") an instability appears in the 
spin-isospin-acoustic branch corresponding to ~+ • 0 . .~~ 
< O. In Virtue of the isotopic symmetry for N = Z this 
instability develops simultaneously for all three types 
of pions and leads to the formation of an electroneutral 
condensate of 11"+, 11"-, 11"0 mesons. 

A still more distinctive situation arises in the case 
N» Z. [4,9] The spectrum of 11"0 mesons remains the 
same as in the case N=Z, while the spectrum of 
charged mesons is significantly altered. First of all 
at a density of n;"" O. 4no yet another branch arises in 
the 11"+ -meson spectrum of energy w .. < - E~). These 
excitations correspond to a bound state (p,1i) (in the 
same sense in which zero sound is a bound state of par­
ticle-hole) and possess the symmetry (rr.. Of course 
these excitations represent a superposition of all com­
peting states, and only when the pion-nucleon interac­
tion is switched off do they go over into zero spin-iso­
s~in sound. We denote this branch of excitations by 1T:. 
Since the proton density is small (Z« N), no analogous 
branch exists for 1T- mesons. The appearance of the 11"~ 

branch leads to an important consequence: all the free 
protons present in the medium go over for n> n; into 
neutrons and into excitations of the type 11": (p - n+ 1T+). 
The charge of 11": mesons is compensated by electro~s, 
and their equilibrium concentration is determined by 
the equation w.~ + £~el) = O. Analogous conclusions are, 
reached by Anderson et al., DO] who give the name of 
isospin waves to excitations of the 1T~ type. 

As the neutron density increases, the quantity w.+ 
+ w._ diminishes and at the density of n~"" O. 9no vani~hes 
for a wave number k =k~"" 1. 6. An instability arises 
which leads to the formation of an electroneutral con­
densate of 1T~11"- pairs. The field of 11"0 mesons becomes 
unstable at approximately the same density (n~"" O. 8no). 

All these questions are investigated in detail in[9]. 

In this paper we study the interaction of pion excita­
tions in nuclear matter (Z"" N) and in the matter of neu­
tron stars (Z« N) as it relates to the problem of 1T con­
densation, the energy of the 11" condensate is calculated 
using simple models and the isotopic and spatial struc­
ture of the condensate field is investigated. 

In the next section of this part of the paper a method 
is given for calculating the effective Lagrangian of the 
system which is obtained from the usual Lagrangian by 
summing over all the degrees of freedom except for 
the condensate field. The nonlinear terms of this La­
grangian are interpreted as the effective interaction of 
pion quasiparticles replacing the model expression >..f(J4 

(0 < >..« 1), utilized inU ,3] for a qualitative investigation 
of the 11" condensation. In Sec. 3 of part I the nature of 
the possible solutions for the condensate field is dis­
cussed. 

In part II the exactly soluble model of the 11" condensa­
tion proposed in[2] is studied in which the condensate 
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.T 

field of charged mesons has the form of a traveling 
wave cp=aexp(-iwt+ik. r). The energy of such a con­
densate can be obtained without assuming nearness to 

. the critical point. A simple analytic expression is ob­
tained for the energy of the 1T condensate in the high fre­
quency approximation (w» kv~». It is shown that the 
instability found by Sawyer and Scalapino[Z,l1] is of the 
same nature as the 1T:1T- instability found inCll • 

Part ill is devoted to the investigation of the static 
1T condensate in the system with N=Z. The Thomas­
Fermi method is used to investigate the spatial and the 
isotopic structure of the condensate field cP ={CP1, CPz, CP3}' 
It is shown that the one-dimensional configurations sat­
isfying the condition Sp"Sp,.(a", TB8,.CPPJ2 = const, i. e., the 
isotopically asymmetric solutions, have the lowest en­
ergy. The problem is investigated concerning the 
modulation of particle density and spin density of nu­
cleon in the condensate field. It is noted, in particular, 
that solutions of the traveling wave type do not lead to 
such modulations. 

Possible consequences of the 1T condensation for nu­
clear phYSics and for astrophysics are briefly dis­
cussed in the Conclusion. 

2. Evaluation of the effective Lagrangian 

In order to obtain the structure of the 1T condensate 
(the magnitude, the coordinate dependence and the iso­
topic character of the condensate field) it is necessary 
to take into account the effect of interaction between 
the pions. In[1] the Xcp4 model of the interaction with 
0< X« 1 was utilized for a qualitative solution of this 
problem. Our problem is to obtain the effective inter­
action of the pions and the structure of the 1T condensate 
in real nuclear matter. The effective 1T1T interaction is 

. obtained as the sum of the interaction in vacuo which is 
described by the Weinberg Lagrangian and the interac­
tion via the nucleon excitations. In order to obtain the 
effect of the nucleon medium on the 1T1T interaction and 
in order to obtain the structure of the 1T condensate it 
is convenient to describe the condensate field with the 
aid of an effective Lagrangian averaged over the mo­
tions of the nucleons. The present section is devoted 
to finding this Lagrangian. 

The total Lagrangian density describing the system 
of interacting nucleons and 11" mesons can be repre­
sented in the form 

(2) 

where Lr and LN are the free Lagrangians of the pion 
and the nucleon fields, while LrN' LXN and Lrr are the 
Lagrangians for the 1TN, NN, and 1T1T interactions. In 
describing the ground state of a system with a conden­
sate one can in expression (2) average over all the de­
grees of freedom of the nucleon and the meson fields 
leaving only the classical part of cP, which describes 
the condensate field. Moreover, it is convenient to 
deal with exact excitations of the medium (pion quasi­
particles), and not with "bare" particles. For this pur­
pose it is necessary to go over from L to the effective 
Lagrangian t, which is obtained from (2) by averaging 
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over the exact states of the nucleons in the condensate 
field. In carrying this out the role of the nucleon me­
dium reduces to a change in the pion spectrum and in 
their interaction compared with the same quantities in 
vacuo. Since the interaction of pion quasiparticles with 
each other and with the average nucleon field is related 

: to exchange of low frequency particle-hole excitations 
of the medium, then it is essentially a retarded one, 
i. e., the effective Lagrangian contains high order de­
rivatives ofcp with respect to time. But in the case 
when cP describes a stationary state, i. e., depends on 
time as e- I .. t , this does not lead to complications. In­
stead of dependence on cP, ;p, etc. one can introduce 
into the effective Lagrangian of the pion field as inde­
pendent variables the frequency wand the amplitude 
cp{r) of the condensate field. 

For clarification we consider a Lagrangian which 
contains only a 1TN interaction: 

L= . .E 'l'.+(W-H)'l'p++.E [ (Ul'-Ulk')'I'k'l'_k 
k 

+ i.E f'l'.+ (ok) 'f'l'P-k'l'k ]. 
k,o 

Here w and ware the frequencies of the nucleon and 
the meson fields; we have omitted the isotopic indices; 
H is the Hamiltonian of a single nucleon. Variation 
with respect to 'IF; and CPt gives a system of equations 
for the field qJ and the operator 'IF: 

(w-H) 'l' p=i.E f{ok) 'f'l' o-k'l'k, 
k 

In order to obtain the effective Lagrangian for the pions 
we obtain the energy of a system of nucleons in the 
field cpo The part of the nucleon energy depending on cP 
plays the role of "potential energy" for mesons. Then 
the effective Lagrangian L in the momentum representa­
tion can be written in the formes] 

L=.E (w(n'_~(n'(p))n.+n.+.E (w(p'-il'P'(p))ji.+ji. 
o 

++.E (oo'-OOk')'I'k'l'-k, 
k 

(3) 

Here e:<n,J>l{p) are the exact single particle energies of 
the neutron and the proton in the condensate field; n; 
and p(~) are the creation operators for the "new" neu­
tron and the "new" proton defined in such a way that 

where ;}:') and E'1/) are the limiting energies for the 
Fermi-filling of "new" particles, which are obtained 
from the condition of the conservation of the total num­
ber of nucleons in the condensate field. In terms of 
such a formulation the problem consists of finding the 
change in the nucleon energy in the external field which 
is provided by the pion condensate field. 

Expression (3) gives the correct equations of motion: 
the SchrOdinger equation for the nucleon field and the 
KGF equation for the meson field. In order to verify 
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this one can independently derive the equation for the 
amplitude CPk considering, for example, the poles of 
the correlation function along the particle-hole channel 
in the condensate field. 

The total energy of the system (the average Hamilto­
nian density) is related to the effective Lagrangian (3) 
by the equation[9.5] 

E ax E ax ax E(m,q>.)= w(n) __ + w(p)--+m--X. 
aw(n) aw(p) om 

In future we shall also need the formula relating the 
four-vector for the current of charged quasiparticles 
with the effective Lagrangian (3)[9]: 

(4) 

j.=eoXlok., (5) 

where k,. = (k, w) is the four-momentum of the particle 
under consideration. 

It should be noted that when Eq. (5) for the zero com­
ponent of the four-vector current is taken into account 
relation (4) takes on a form analogous to the relation 
between the free energy of the system and the thermo­
dynamic potential O. Thus, the effective Lagrangian 
L is equivalent to the potential - 0, the role' of chemi­
cal potentials in which is played by the frequencies of 
the meson and the nucleon fields. 

Below we shall add to the expression (3) the interac­
tion terms Lrr and LN N' 

3. The nature of possible solutions 

As has been noted already, in sufficiently dense neu­
tron matter {n(nl > n;) production of w-w: pairs of pion 
quasiparticles becomes possible. The particles being 
produced macroscopically populate one energetically 
most favorable state forming a Bose condensate. In the 
future we shall regard such a condensate as a coherent 
classical field cp(r, t) which represents the average val­
ue of the operator of the pion field with respect to the 
new ground state with broken symmetry. The quantity 
cp(r, t) plays the role of a complex order parameter 
characterizing the new phase. 

From the condition of thermodynamic equilibrium 
with respect to the processes of creation and annihila­
tion of w-w: pairs it follows that the frequencies (chem­
ical potentials) of the w- and w: mesons in the conden­
sate are related by the equation 

CD.-+ w" .... =0, 

not only at the critical point, but also for n(nl > n~. 

Thus, the wave function for the condensate field 
cp(r, t) which simultaneously describes the w- and w: 
components of the meson field must have the following 
form 

(6) 

where the notation W'" w .... = - w,,~ has been introduced. 
The same character of the time dependence of the con­
densate field is obtained in the Hamiltonian formal­
ism. [6] As regards the coordinate dependence, the ex­
act form' of cp{r) must be determined from the equation 
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of motion which in the present case is a nonlinear in­
tegro-differential equation. Setting aside attempts to 
find an exact solution we utilize the variational method: 
we specify different trial functions cp(r) and choose that 
one which, corresponds to the lowest energy. Since the 
instability arises for a nonvanishing momentum k-1, 
the trial functions must be periodic functions of r. The 
simplest functions are 

<p(r) =aeik• (traveling wave), 
<per) =a1'2sin kr (standing wave). 

(7 a) 
(7b) 

In this case the effective Lagrangian I is a function of 
three independent variables w, k and a. The equation 
of motion reduces to the algebraic equation for the de­
termination of the optimum amplitude of the condensate 
field 

aXloa=O. (8) 

In a sufficiently large system we must specify the 
condition of electroneutrality jo=esL/sw=o. Then 
from the condition dE/dk = 0 that the energy should be a 
minimum it follows that aI/dk =0, i. e., the four-cur­
rent is absent in the ground state. Thus, 

BEIBm=O, BEIBk=O. (9) 

From relations (8) and (9) we determine a, w, and k. 

In the limit as a- 0, when we can restrict ourselves 
to terms of order rf in the Lagrangian I, the three 
equations (8) and (9) go over to a system determining 
the critical parameters of the w:w- condensation: n!, 
we' and ke• At the critical point the coefficient in front 
of rf changes sign and for the determination of the pa­
rameters of the condensate it is necessary to include 
in L terms nonlinear with respect to rf. The evalua­
tion of such terms represents "quite a difficult problem 
in a realistic formulation. It turns out that this prob .. 
lem can be successfully solved exactly for a condensate 
field of the form (7a) to the investigation of which the 
following section is devoted. 

II. 11'~11'- CONDENSATION IN NEUTRON STARS."THE 
EXACTLY SOLUBLE MODEL. 

1. Nucleon energy in the condensate field 

We consider the field of the w:w- condensate which has 
the form of a traveling wave 

cp (r, t) =ae-iUlt+iJr.rt (10) 

where a is real. Such a field corresponds to the fact 
that all the w- mesons" occupy" a single state-of fre­
quency w and with momentum k, while all the w: mesons 
"occupy" the state of frequency-wand of momentum-k. 

The irreducible self-energy part of the neutron in 
the momentum representation ~(nl (p, e) 1n the field (10) 
is represented by the one graph 

I a: lit 
I I 
I I 

Ebr~p £F= n l p In 
, p p-k P 

t E-W t 

(11) 
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Here the dotted lines represent the amplitude of the 
condensate field, the points correspond to a 1T+np vertex: 
19'~*)12=2/2'; (nonrelativistic coupling, /=1.0). For 
the sake of simpliCity we do not for the present include 
in our consideration the resonance and the S-wave 1TN 
interaction, and also the nucleon correlations. It can 
be seen that the intermediate proton line need no longer 
be made more precise by including the condensate field, 
since every such increase in precision leads to the ap­
pearance in the intermediate state of a neutron with the 
initial p and e, and such graphs by definition do not ap­
pear in ~(n) (p, e). 

The exact Green's function for the neutron GIn)(p, e) 
is obtained from the Dyson equation 

(12) 

Here and in (11) G~n) and G~) are the Green's functions 
for the particles without taking into account the effect 
of the condensate field: 

(13) 

where e. =p2/2m (m = 6. 7 is the nucleon mass). From 
(12) we obtain 

(14) 

The corresponding expression for the proton Green's 
function C(I»(p, e) differs by the sign of w and k. The 
single particle energies of the "new" neutrons e(n)(p) 
and of the "new" protons e(I»(p) are obtained from the 
poles of the exact Green's functions, i. e., they are de­
termined by the equations [c(n,I»(p, e)]'l =0. From this 
we obtain[2J 

e(n)(p)= 8,+8,_k+Cil + 8,-8,_k-00 [1 + 41;r:"') I'a' ]',. (15a) 
2 2 (8.-8.-k-00), • 

e(p)(p)= E.+8p+k-Cil + 8,-8p+k+Cil [1+ 41;r:"')I'a' ]'" 
2 2 (E,-Ep+k+W)" (15b) 

The signs in front of the square root are here chosen 
in such a manner that as a - 0 the energies e(n,I»(p) 
should go over into the energy of the free particles 
E~n'l» =V 12m. Since for n> ~ in the given model the 
inequality w> e~) holds, then the filling of the "new" 
proton states is energ!=ltically unfavorable. Indeed, as 
was shown in[5J, the conversion of a small number of 
neutrons into protons and exact excitations with the 
quantum numbers of the 1T' mesons (n - P + 1T-) leads to a 
change in the energy of the system: 

bE= (w •. -€~·) VP. 

where vI> is the density of the "new" protons equal to 
the density of the 1T' mesons. Thus, the filling of the 
"new" proton states which must be accompanied by the 
formation of a 1T- condensate would have been possible 
only under the condition wr- - 8"~) < 0, which, as has 
been shown in[9J, is not satisfied right up to very great 
densities of neutron matter. 

In the case of a 1T:1T' condensation only the "new" neu­
tron states turn out to be occupied. At the same time 
the Fermi surface S~n) is no longer a sphere, as in the 
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normal phase. Its equation is found from the condition 

(16) 

We choose the z axis along the k vector and intro­
duce cylindrical coordinates (PJ.'PII,8), where PII =P. 
- k/2 and h is the component of the vector p in the 
plane perpendicular to k. In terms of these variables, 
the equation for the Fermi limit M{PII) assumes the 
form 

(17) 

The boundary points Plll.2 of the Fermi-filling along the 
z axis are determined from the condition P~(Plll,2) = 0, 
which, as follows from (17), leads to an algebraic equa­
tion of the fourth degree. 

The value of the exact Fermi energy "£1:') is fixed by 
the requirement that after a redistribution in the con­
densate field the total number of nucleons should not be 
changed, i. e. , 

n(n) = (18) 

where P1:') is the Fermi momentum for a = O. The 
kinetic energy of the nucleons in the condensate field 
appearing in the effective Lagrangian (3) is obtained 
from the formula 

(19) 

The integrals (18) and (19) can be expressed in terms 
of elementary functions[12J and, thus, the problem of 
determining the energy of the system in the presence of 
a 1T:1T' condensate of the form (10) can be solved without 
assuming smallness of the amplitude of the condensate 
field. The calculations are carried out in the following 
manner. From equation (18) the exact Fermi energy 
for the neutrons 8"}:') is obtained as a function of the pa, 
rameters n, w, k, and~, which is then substituted into 
expression (19) for B(N). Afterfhis, the effective La­
grangian for the condensate field L{k, w,~) is con­
structed in accordance with formula (3) and from it the 
system of equations (8), (9) is obtained for the deter­
mination of ~, w, and k. Substitution of these param­
eters into expression (4) gives the total energy of the 
system B(n) as a function of the nucleon density n. The 
gain in energy due to the formation of the 1T:1T- conden­
sate is by definition equal to 

E(') (n)=E(a(n) )-E(a=O). (20) 

In actual fact the evaluation of E(r)(n) is associated 
with computational difficulties and use of numerical' 
methods is required even in that simplified variant of 
the theory which was considered above. [6,13J 

We succeed in obtaining a simple analytic expression 
for E(r)(n) in the high frequency approximation: W 

» kVF' [t4J In this approximation the Fermi surface re­
mains spherically symmetric and the integration in 
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The spectrum of charged mesons in a neutron medium in the 
high frequency approximation W»kVF In ); a) solutions of the 
dispersion equation for n <y2 =n~, b) the spectrum of charged 
mesons for n <n:, where 1 and 2 are the meson branches, and 
3 is the spin-isospin acoustic branch (7T;>; c) the spectrum of 
charged pions for n > n~. 

(18) and (19) can be carried out in an elementary man­
ner. The effective Lagrangian of the condensate field 
(3) in this case takes on the form[5] 

n6) [ ( 8fk'a' ) 'I,] X.""L(a)-X(O) =(6)'-6)~)a' +2 1- 1 + -----;;- . (21) 

The critical parameters of the W~7T- condensate in this 
approximation have the values ne = (2/2)-1, ke =.fi, We 

= 1. The energy of the condensate (without assuming 
that we are close to a critical point) is given by the 
expression 

An analogous approximation was utilized inU5•16] to 
calculate the energy of a developed condensate in a 
more realistic model. 

(22) 

An analytic solution of the problem is also possible 
near a critical pOint, when the amplitude of the con­
densate field is small. InB ?] the effective Lagrangian 
of the condensa,te field which takes into account the P­
and S-wave rtN interaction, the vacuum ww interaction, 
the nucleon correlations and the N~3 (1232) resonance 
is calculated with an accuracy up to terms of order a4 • 

In the same paper a comparison is made between the 
energies of configurations (10) and (7b) of the conden­
sate field, and also the possibility of a phase transition 
of the first kind is discussed. 

It should be noted that inU5 •16] the results of the in­
teresting paper by Campbell, Dashen and Manassah, [18] 

in which the pion condensation is investigated from the 
point of view of chiral symmetry, have been utilized in 
an essential manner. 

2. Remarks on the Sawyer-Scalapino model. 
In this section we show that the instability found 

in[2] is of the same nature as the w; w- instability 
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described above. 

On the example of a simple model (w» kv~n» we show 
how the nature of the solutions w(k) of the dispersion 
equation (1) changes as a result of passage through the 
critical density n!. In this model the dispersion equa­
tion for the determination of the exact energies of the 
pion quasiparticles in the normal phase of pure neutron 
matter (Z = 0) is given by the expression (aLlatf)aao 
=0, or 

D- ' (k, 6) =CIl'-6).'+2n' ftl fk'/6)=O. (23) 

The last term in this equation is the polarization opera­
tor for the w- meson in the approximation w» kvr) • 
Exactly the same equation is obtained from formula (8) 
of Ref. 5 under the condition qJ*qJ =0 and ii, =0 where 
iip is the density of the "new" proton states forming a 
set of occupied Fermi states. (We note that the insta­
bility with respect to the reaction n - p + w- corresponds 
to vp> 0.) The solution of Eq. (23) can be written in 
the form 

k'(CIl)= 6)'-1 
1-a/6) • 

where a = 2n(n)f 2 • For a< 1 there exist three branches 
of the spectrum (cf., case in the diagram). 

As has been shown inl9] classification of the branches 
is determined by the sign of the residue of D(k, w), i. e., 
by the sign of the quantity 

{)D-' {)II'-l ak' 
--= 26) - -- = 26) - --. 

{)6) {)6) 6)' 

The branches for which 2w - an(-) law> 0 correspond to 
w- mesons, while the branches for which 2w - an(-) law 
< 0 yield, after replacement of w by - w, the dispersion 
law for w+ mesons. 1) In the diagram, case a, branch 1 
corresponds to w- mesons, since for it 2w - an (-) law> o. 
For branches 2 and 3 we have 2w - an H law< 0, and 
therefore after the replacement of w by - w these 
branches give the dispersion law for quasiparticles 
with quantum numbers characteristic of w+ mesons. 
Thus, in the medium there exist two types of w'-meson 
excitations: w+, and w~. The spectrum of quasiparti­
cles has the form shown in the diagram as case b. If 
the interaction between pions and nucleons is switched 
off branches 1 and 2' go over into the vacuum spectra 
for w- and w+ mesons (w(k) - wk ), while branch 3' goes 
over into the dispersion law for spin-isospin sound (w 
- kvr». The results quoted here are valid only for 
w» kvr). It follows from exact calculations (cf., [9]), 

that the segment of the branch 3' with I wi ~ kv1:') van­
ishes, while for a < kvr) the w; branch is absent en­
tirely. The appearance of this branch is what corre­
sponds to the instability indicated above with respect to 
the reaction p - n + w~. 

As the density increases further the branches w- and 
w; become lower, the quantity (wr- + Wr;)mlD diminishes 
and for a = 1 there appears for the first time in the 
spectrum the pOint (k2 = 2) at which wr + w.; = O. Thus, 
the value a = 1 corresponds to the critical density of 
the w:w- condensation: n~ = 1/2/2 • It is evident that at 
the critical point 2w - an(-> law = 0, and this corre-
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sponds to the merging of two roots of (23), i. e., to a 
double pole of the meson propagator D(k, w). For a = 1 
the spectrum turns out to be degenerate, it breaks up 
into two curves: w=1 and 1!=w(w+1). The coordi­
nates of the point of intersection of these curves are 
the critical parameters of the IT:lT- condensate in this 
model: ~=v'2 and w,,=1 (cf., (8), (9), and (21)). 

For a> 1 the spectrum, as can be easily shown, has 
the form shown in diagram c. It is distinguished by a 
characteristic feature: the spectrum has a discontinu­
ity at the edges of which dIJ/dk = 00. Within the region 
of discontinuity (w .. + w~;'I' < O. This is an indication of 
the instability of the system with respect to the forma­
tion of the lT~lT- condensate. Thus, this simplified 
model correctly reproduces the principal results of the 
exact calculations. [4,9] 

We now turn to the model of Sawyer and Scala-
pino. [2,11] In this model a system is considered con­
Sisting of neutrons, protons and "bare" IT- mesons, 
"occupying" the single state with propagation vector k. 
In this discussion the degrees of freedom of the meson 
field are artifiCially restricted: the "bare" IT+ mesons 
are not taken into conSideration, and this corresponds 
to describing the IT- -meson field by the SchrOdinger 
equation instead of the KGF equation. Therefore the 
equation for determining the energy (chemical poten­
tial) of the IT- meson in contrast to (23) has the form 
(cf.,[5], formula (7), ii=O, cp-O) 

w=wo-n,n) fk'i Wow. (24) 

The second term on the right hand side represents 
the self-energy part ~(-) for the IT- meson. 

Equation (24) has two roots: 

Wo ( [ 4n'ft)fk' ]"') W=- 1± 1---- . 
2 wo' 

The upper sign corresponds to a IT- meson. For this 
solution the residue of the Green's function for the IT­

meson (1 - a~(-l law) is positive, as it should be. 
Moreover, when the interaction is switched off w- wt. 
It is this particular branch that was utilized in[5] in or­
der to prove the stability of the system with respect to 
the reaction n - p + IT- • 

Within the framework of the model considered in[2,l1] 
it is difficult to give a sensible physical interpretation 
for the second root of Eq. (24) for which 1 - a~(-l law 
< O. As follows from the analysis of the solutions of 
(23) given above, the second root should be interpreted 
(after replacing w by - w) as the IT: meson branch, i.e., 
as the bound state of a proton and a neutron hole (p, "ii). 
When the condition 1-4nIn1j2';1W:=0, which coincides 
with the critical condition obtained in[2,tll, is satisfied, 
the sum of the energies w .. + w~; vanishes (the two roots 
merge), and the system becomes unstable with respect 
to the appearance of the electroneutrallT~lT- condensate. 
It is not difficult to obtain the values of the critical pa­
rameters of the lT~1T- condensate in this model: 
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Due to the more complicated dependence of the en­
ergy of the system on k the expression for the gain in 
energy from the new phase EbZI(n) has the form analo­
gous to (22) only near the critical pOint. 

It is clear that the results obtained in[2,l1] describe 
only the qualitative aspects of the phenomenon since the 
pion is described by a SchrOdinger equation. Subse­
quently this model was improved for the case of two 
types of piOns, IT+ and IT-. [17] The simplicity of this 
model also made it possible to include in the discus­
sion nucleon correlations, the lTlT interaction[12] and 
the N~ resonance, [15] and this made it possible to cal­
culate the energy of the developed condensate in a suf­
fiCiently realistic manner. 

We now make a few remarks concerning the paper by 
Sawyer[20] which contains a critique of the method of 
investigating the IT condensation developed int3 ,4]. This 
critique is based on an incorrect classification of the 
roots of (23). Sawyer is surprised that when the lTN 

interaction is switched off there exists a solution with 
w - 0, which he erroneously ascribes to the IT- meson. 
Indeed, such a root is possessed both by Eq. (23), and 
by Eq. (24) of the simplified model, [2] but it corre­
sponds to a IT: meson. As has been indicated above, 
such a solution is valid only for w» kv};,). There is 
nothing strange in the fact that the energy of the bound 
state (p,"ii) tends to zero as mN - 00. Thus, this critique 
is based on a misconception. 

III. 1T CONDENSATION IN A SYSTEM WITH N=Z 

This section is devoted to an investigation of the IT­

condensation in isotopically symmetric nuclear matter 
(N=Z). As has been already noted above, due to the 
isotopic symmetry the instability in such a system oc­
curs simultaneously for all three types of pions IT+, IT-, 

lTD, and n,,'" O. 6nn. [8,9] The pion condensate arising for 
n> n" differs in two respects from the condensate of 
charged mesons in a neutron medium considered until 
now. First, it is static, i. e., the frequencies of the 
pions in the condensate are equal to zero, and second, 
the isotopiC vector of the condensate field cP ={cpt, CPa, 
CP3}(CP; = (cpt +iCPa)/v'2, cP~o = CP3) has, generally speaking, 
all three components different from zero. Therefore 
to the difficulties of determining the spatial structure 
of the condensate field which we have already encoun­
tered above, another one is added associated with the 
choice of the optimal isotopic composition of the con­
densate. A problem arises which is quite difficult in a 
realistic formulation concerning the finding of the en­
ergy of the system in the presence of a condensate 
which has a complicated spatial and isotopiC structure. 

For a qualitative solution of this problem the 
Thomas-Fermi approximation is a convenient method. 
The application of this method to the prdblem of the IT 

condensation is given in Sec. 1 of this chapter. We 
note at once that the condition for the applicability of 
the Thomas-Fermi method in the case of periodic po­
tentials is the condition ""1 4Jl;« 1. In actual fact the 
IT condensation occurs for k- p" and therefore, utiliz­
ing this approximation, we cannot expect good quantita­
tive accuracy. 
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Below in Sec. 2 the question is considered of the 
spatial distribution of the particle density and the spin 
density of the nucleons in the condensate field. It is 
shown that in a condensate field of a standing wave 
type modulations arise of the particle and spin density, 
while in a field of the form of a traveling wave these 
quantities do not change. 

1., The spatial and isotopic structure of the 'IT 

condensate. The Thomas-Fermi method. 

We consider a system of nucleons interacting with 
the classical field of a static pion condensate rp(r). If 
we do not take into account transitions of nucleons into N:a states, then such an interaction can be described 
by a time-independent potential 

(25) 

which is an operator in the space of spin and isospin 
variables. 

In future we shall normalize the condensate field rp(r) 
in such a manner that 

~ S q>'(r)d'r=a'. (26) 

U(r) has a particularly simple form when we are 
concerned with 11"0 condensation in a pure neutron me­
dium. U4J In this case, (/Jl = (/J2 = 0 and the field 

U(r)=-JoVqJ3, . (27) 

acts on the neutrons. In view of the fact that this case 
is of independent interest and is at the same time suf­
ficiently simple, we shall use it to derive the basic 
formulas which we then generalize to the case of a 11" 

condensation in a system with N = Z. Independently of 
the nature of the coordinate dependence of the field 
(/Ja(r) (it is important only that it should vary sufficient­
ly slowly) the axis of quantization of the spin at each 
spatial point can be chosen along the direction of V(/J3(r). 
Then the total energy- of the neutron with its spin par­
allel and antiparallel to V(/Ja (E*(p, r), respectively) will 
be determined by the expression 

The local values of the limiting momenta of the 
Fermi distribution of particles with the two compo­
nents of spin p.(r) and p.<r) are determined from the 
condition of constancy in space of the maximum energy 
of the occupied states: 

The particle number density n(r) and the spin density 
s(r) at the point r are given by the obvious relations 

nCr) =ndr) +n_ (r), (28) 

(29) 

where 

n±(r)= P±'(:) =.!!:. (-.!.:..) 'J, [1 ± /'~qJ"l 'J,. 

3rt 2 EF €p 
(30) 
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In formula (30) nand EF =p~/2m are the particle den­
sity and the Fermi energy in the absence of the con­
densate field. The value of eF is obtained from the con­
dition of conservation of the total number of particles 
after a redistribution in the field i. e., 

<n(r) )=n=PF'/3n' (31) 

(the angle brackets denote averaging over the coordi­
nates). The total energy of the new Fermi distribution 
of neutrons is calculated in accordance with the formula 

E(N)(r)= 1: 8+(p,r)+ 1:. 8_(p,r) 
p<p.{r) p<p.(f} 

1 
= --[p+, (r)+p_' (r) ]-/1 V<p,1 [n+(r) -n_(r)]. 

20mn' 
(32) 

The formulas obtained above enable us to find the 
energy of the system Without assuming that the meson 
field is small. But for simplicity we restrict our­
selves to a consideration of weak fields. By restrict­
ing ourselves to terms of the fourth degree in the con­
densate field and utilizing relations (30) and (31), we 
obtain the follOwing expression for the average value of 
the total energy of the system: 

£=<E(1<) (r) > + +[ <<p,'(r) H< (V<p, (r) )'>] 

1 mp, 
=Eo + -<<p,'+ (V<p.)'>-f--«V<p,)'> 

2 11.' 

f' 1 
+-4 ' ,[<V<p,)'>'+-«V<p,)'>] . 
. 11. VF 3 

(33) 

In the table are given the values of the energy of the 
different configurations of the field (/J3(r), among which 
there are one-dimensional, two-dimensional and three­
dimensional ones. We can see that the lowest energy 
belongs to the meson field of the form of a three-di­
mensional lattice: 

<p, (r) =y2/3a(sin kx+sin ky+sin kz). 

for which 

2 27 woz 
a=---

25 AD ' 

Here 

27 wo' 
£=Eo---

100 /" 

Wo'=1 +k'-/'k' mp, (1 +gnn)-' 
11.' ' 

(34) 

(Wo'<O). (35) 

3/'k' (35') 
1.0 = __ (1+gnn)-' 

41t 2vp 3 ' 

The factor (1 + g"n)-l takes into account the principal 
contribution of nucleon correlations. 

Thus, one can conclude that the most probable struc­
ture of the field of the 11"0 condensate in a neutron me­
dium is the three-dimensional lattice (34). It should 
be emphasized that this conclusion is based on the ap­
proximate method of calculation (11-« 4jfp) and that for 

,a-finaf solution of the problem concerning the structure 
of the 11"0 condensate in a neutron medium it is neces­
sary to carry out the calculation for k'" PF' Moreover, 
it is necessary to take into account the interaction of 
the 11"0 condensate with the condensate of charged me­
sons which also influences the structure of the con-
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The energies* of certain configura­
tions of the field of a 1f0 condensate 
in a neutron medium in the Thomas­
Fermi approximation. 

Meson neW 

1 'i'no = a (cos kx + cos ky + cos hi) 
2 'i'n.=a(coskx+cosky) .0/11 
3 'i',..= acoskx Uf .. 
4 <r,..=acpskxcoskycoskz .. lot 

densates in an essential manner. [It.!l] 

Utilizing formulas (28) and (29), we easily obtain the 
spatial distribution of the particle density and the spin 
density for neutrons in the field (34). Restricting 
ourselves to only the lowest terms in <p 3 , we 
obtain: 

n(r) =n[ 1+s'(cos 2kx+cos 2ky+cos 2kz) I. 

mp, fk'a' 
s(r)=-, Vql" s'=-8--'. 

It e, 

(36) 

We now go over to the case of symmetric nuclear 
matter (N=Z). As has been noted already, instability 
arises simultaneously for all three types of pions. As 
a result a static electroneutral condensate is formed 
in which all three components of the meson field" can 
differ from zero. The diagonalization of the operator 
U(r) (25) in this case is accomplished in a somewhat 
more complex manner, since in addition to a rotation 
in coordinate space it is also necessary to carry out a 
rotation in isotopic space. In the space of the states 
(pt ,pt, nt, nt) the operator U(r) is represented by a 
4 x 4 matrix, the eigenvalues of which X, are determined 
by a secular equation of the fourth degree: I U - X . 11 
= O. It is not difficult to obtain the explicit form of this 
equation: 

(A'-(Vql,)'-(V<j),)'-(V<j),) ') '-4[V<j), v<j),)' 
-4[Vql, V<j),)'-4[Vql, Vql,)'-8A[Vql, Vql,)V<j),=O. (37) 

The single-particle energies corresponding to two 
spin and two isospin states of the nucleon at each spa­
tial point are given by the relation 

e,(p, r)=p'/2m+A,(r), i=pt, Pt, nt, nt. 

It is clear that the eigenfunctions of the operator U(r) 
are linear combinations of the neutron and the proton 
functions. 

Utilizing the scheme of calculations described above 
it is not difficult to obtain the expression for the total 
energy of the system in the presence of the condensate 
in the general case. Obvious generalizations consist 
of the fact that in the system with N = Z not two, as be­
fore, but four types of nucleon states will undergo fill­
ing, while the value of the new Fermi energy of nu­
cleons fF must be obtained from the condition of con­
servation in the condensate field of the total number of 
nucleons. Restricting ourselves to terms of the fourth 
degree in the condensate field and expressing the com­
binations 
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1: <~l>, .E<~") 
• , 

appearing in E in terms of the coefficients of the secu­
lar. equation (37), we obtain 

E E + 1 < '+' , 1 ( 2mp,) =. 2 cp. cp, +ql. > +2 1-f -;> qVcp.)'+(Vql,)'+(Vql.)') 

. 1 t { 1 . -. - -
+-2 -,-a «Vql.)'+(Vql.)'+(Vcp.)')'+-<{ (V<j),) '+ (V<jJz)'+(Vq>.)'j') 

It v, 3 

(38) 

The fact that the coefficients in front of f! and f4 differ 
by a factor of two compared with (33) is associated with 
the fact that in an isosymmetric medium the nucleon 
density is defined as n = 2p~/31T!. From expression 
(38) it can be seen that for given values of I V<Pll , 
!V<pzl, I V<P31 the lowest energy corresponds to the 
case when they are all parallel. Moreover, for a given 
value of 

it is energywise advantageous to have the lowest value 
of 

It is evident that the optimal relationship between these 
two averages is attained under the conditiorf2l ] 

(Vql,)'+( Vq>,)'+ (v<j).) '=const. (39) 

It can be seen that this condition can be satisfied only 
by isotopically asymmetric solutions. Examples of 
one-dimensional configurations of this type are 

cp(r)=a{cos kx, -sin kx, O}, 

cp (r) =a {~ cos kx, ~ cos kx, sin kx} • 
1'2 1'2 

(40a) 

(4Ob) .. 

All one-dimensional configurations satisfying condition 
(39) have the same energy 

(41) 

where 

ro'=1+k'-fk' 2mp, _1_ 
. n' l+r' 

~=tk,_4 ___ 1_. 
3n'v,' (l+g-)' 

At the same time tI- = - c;} />..0. By the introduction of 
the constant g- we take into account the contribution of 
nucleon correlations in a system with N = Z. U.8] In 
heavy nuclei g-= 1.6. [Z3] 

For comparison we exhibit the energy .of an isotopi­
cally symmetric solution of the form 

cp (r) -l"Ta {sin kx, sin kx, sin kxJ, 
(42) 

In addition to the one-dimensional solutions (40) condi­
tion (39) is also satisfied by spherically symmetric 
configurations, for example by 
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q>(r) =a{cos kr, -sin kr, a}. 

It should be noted that meson fields satisfying condi­
tion (39) do not lead to modulations of density either of 
the neutrons or of the protons. [21] 

Thus, the Thomas-Fermi method has enabled us to 
calculate the energy of sufficiently complicated spatial 
and isotopic configurations of the condensate field. An 
essential defect of this method is the condition that the 
meson field should be of long wavelength: ';« 4p~. 
In[1?] the energy of the two simplest configurations (40a) 
and (42) is evaluated utilizing perturbation theory in 
terms of the amplitude of the condensate field for a 
realistic case k =PF. The results of the exact calcula­
tion confirm the qualitative conclusions reached in this 
section. 

2. Influence of the 11' condensate on the distribution 
of density and spin of nucleons. 

We obtain the spatial distribution of the particle den­
sity nCr) and the spin density s(r) of nucleons in the 
condensate field. For this purpose it is convenient to 
introduce the density matrix for the nucleons p. By 
definition, the variation of the density matrix in an ex­
ternal field is given by the expressionlS1 

(43) 

Here, Gu.(d is the exact Green's function for a nucleon 
in an external field, in the present case the field of the 
condensate; GA is the Green's function for cp :. O. The 
subscript A denotes the set of variables uniquely deter­
mining the state of the nucleon. In homogeneous nu­
clear matter>.. = (p, 0'). 

A change in the density of particles in the field of the 
condensate is associated with the change in the density 
matrix by the relation[Sl 

6n(r)= 1:. (6p)u''I'"''I',, (44) 
u' 

where >l!"A(r) is the complete system of wave functions 
for the nucleons in the unperturbed system. In our 
case these are plane waves: 

(the normalization volume is taken to be equal to unity); 
Xa is a two-component spinor. 

In the periodic field of the condensate the average 
density of the neutrons and of the protons does not vary, 
and therefore the diagonal elements do not make any 
contribution to (44). It is also clear that the contribu­
tion to the scalar quantity on(r) can be made only by the 
nondiagonal matrix elements corresponding to transi­
tions of a nucleon with emission or absorption of an 
even number of condensate mesons. In an isotopically 
symmetric field (42) such transitions in second order in 
terms of the amplitude are described by the Green's 
function 

a' 
C(p, 8, p-2k, 8) =fk'TG(p)G(p-k)G(p-2k) 
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(+) a" 
-211FI! (k,oo=0)G(p)G(p-2k) T' (45) 

The first term corresponds to the nucleon, and the 
second to the N* (1232) resonance in the intermediate 
state. F}:)(k, w = 0) is the amplitude of the resonance 
1I'N scatteriugl91: 

\+) 4k' 1 
411F" (k,oo=0)=-023k'-' OOI!=2.36. 1+ . OOI! 

From (44) and (45) we obtain 

(46) 

The quantity ~2 taking nucleon correlations into account 
is given by the formula 

~'=3~{f lJ)(kI2pF)-IJ)(klpF)· +l'(F~+)~Ill(!:-.)} (46') 
G v.' [1+g-(nlno)'J'<D(kI2pF»)' m PF • 

For the critical values of n and k and g - = 1. 6 we have 

2 aZ n-nc 6 ""0.5-,00--. 
VF nc 

In an analogous manner, one obtains the distribution of 
the spin density of the nucleons in the condensate field: 

s (r) = 1:. (6p)." '1',"0'1' ,. (47) 
,,' 

A contribution to s(r) is give~ only by matrix elements 
corresponding to the absorption or emission of an odd 
number of condensate mesons. For the field (42) in the 
lowest order in a we obtain 

(n) (P) (k)[ (n)'" (k)]-12m'PF . s, (r)=-s, (r)=e,jklll _ Hg- - III - --, -asinkz. 
2PF no 2pF :t 

We note that in the field of the 11':11'- condensate of the 
form of a standing wave (7b) there also occurs a modu­
lation of the nucleon density with the propagation vector 
2k. and an amplitude which near the critical point is 
proportional to the square of the amplitude of the con­
densate field. 

At the same time in the field of the 11':11'- condensate 
of the form of a traveling wave both for Z = 0, and also 
for N = Z the density of particles of each kind remains 
homogeneous while the local spin density is equal to 
zero. This is associated with the fact that in such a 
field nondiagonal transitions p-p± 2k. do not occur, 
while transitions which have spin symmetry, p-p±k 
are accompanied by a change in the isotopic index of 
the nucleon. It can be easily verified that in such a 
field only the matrix elements of the operator O'e'T+ de­
scribing the local spin-isospin distribution are differ­
ent from zero. 

IV. CONCLUSION 

In conclusion we give a brief formulation of the prin­
cipal consequences of 11' condensation for nuclear phys­
ics and astrophysics. 

In[3,4,91 and in the present paper a theory of 11' con­
densation has been developed for. infinite nuclear mat­
ter. But the calculations of the critical density of a 11' 

condensation in a system with N = Z undertaken in Refs. 
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3,9 have shown that it is less than the nuclear density 
(ne..: O. 6no). This has enabled us to draw a conclusion 
concerning the possibility of existence of a pion con­
densate in atomic nuclei. In order to apply this theory 
to atomic nuclei in article[23] a study has been made of 
1T condensation in a finite system. It turned out that in 
the interior regions of a heavy nucleus a periodiC me­
son field arises whose amplitude vanishes at the bound­
ary in a layer /)..: 1« R. The surface energy arising as 
a result of this is proportional not to the whole surface 
of the nucleus but to the surface of the equatorial sec­
tion and this favors an elongated shape of nuclei and 
can lead to isomerism of shape. The existence of a 
periodic structure must lead to the appearance of rota­
tion bands in the spectra of spherical nuclei. 

As analysis has shown, the available experimental 
data do not contradict an assumption of the existence of 
a pion condensate in atomic nuclei. Moreover, this as­
sumption enables one to make a number of phenomena 
agree with experimental data. Thus, the probabilities 
of Ml transitions calculated taking into account a one­
meson graph and 1T condensation[2i] have turned out to 
be in agreement with experiment and by a factor of 
severalfold greater than those calculated using the shell 
model or according to the theory of finite Fermi sys­
tems but without taking condensation into account. The 
same also applies to the probabilities of /3 transitions 
and to the position of 0-, T = 1 levels.£25] All these 
phenomena show that the nuclei in any case are very 
close to the point of condensation. In[26] it is shown 
that the presence of a 1T condensate in nuclei leads to 
an additional repulsive contribution to the P-wave 
terms of the optical potential of the 1T meson in a 1T 

mesic atom, which is not contradicted by experiment. 

If a pion condensate does in fact actually exist in nu­
clei, then one should seek its manifestation in experi­
ments involving scattering. In Ref. 27 it is shown that 
the anomalies in the differential cross-section for the 
scattering of an electron by a nucleus in the range of 
transmitted momenta q'" 600 MeV /e can be explained by 
the presence in the nucleus of modulations of charge 
density of the form cos2koZ (cf., (46» which result from 
a condensate field (42) of amplitude a'" 0.1. Inelastic 
scattering of polarized electrons and protons by ori­
ented nuclei must depend critically on the presence of a 
1T condensate. Corresponding anomalies in this case 
must become apparent at values of transferred momen­
tum lower by a factor of two q'" 300 MeV/c. 

Another, and possibly the most interesting, conse­
quence of the theory which was formulated already in 
1971 [1] is the possibility of existence of new objects of 
a type similar to nuclei: superdense neutron and super­
charged nuclei. [28] The stability of such nuclei is de­
termined by the negative energy of the 1T condensate. 
So far it is difficult to say whether such anomalous nu­
clei will be stable or metastable. In order to obtain an 
answer to this question detailed calculations are re­
quired of the energy of a developed 1T condensate, which 
are now only beginning to be undertaken. But there is 
no doubt that attempts to discover anomalous nuclei ex­
perimentally in collisions of heavy ions, in cosmic 
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rays etc. are both useful and timely. 

One of the most important effects of 1T condensation 
in neutron stars is the "softening" of the equation of 
. state of neutron matter compared to the one calculated 
without taking the phase transition into account. This 
must lead to a noticeable decrease in the maximum 
mass of stable neutron stars. The presence of a 1T 

condensate in neutron stars can lead to interesting elec­
tromagnetic effects. In particular, a system with such 
a condensate must apparently possess the property of 
superconductivity. So far it is not clear what kind of a 
macrostructure will be characteristic of a 1T condensate 
in a large system. Apparently, domains will be formed 
with different directions of the propagation vector in 
neighboring domains. Of interest is the question of the 
temperature properties of a 1T condensate: the critical 
temperature of transition into the normal state, the 
heat capacity of the system etc. The resolution of 
these questions will enable one to determine the role 
played by 1T condensation in the COOling of neutron stars. 

All these questions are under investigation at the 
present time. 

In conclusion, the authors express their gratitude to 
A. M. Dyugaev, E. E. Sapershtein, M. A. Troitskil, 
and V. A. Khodel' for valuable discussions. 
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Deep-inelastic lepton-hadron scattering processes are considered within the compound quasi-nuclear 
quark model. Both incoherent processes of scattering by individual quarks and coherent processes of 
scattering by bound systems of quarks (diquarks and triquarks) are taken into account. Scattering by 
diquarks is dominant for x:::: 2/3, and by triquarks for x:::: 1. The total contribution of diquarks to the 
structure functions is estimated to be approximately 10%, and that of triquarks to be about 1 %. 

PACS numbers: 12.40.Dd, 13.60.Hb 

1. INTRODUCTION 

The study of deep-inelastic lepton-hadron scattering 
processes makes it possible to obtain valuable informa­
tion on the structure of hadrons. The most striking 
experimental fact has been the Bjorken scale invari;­
ance, [1] which can be explained in the framework of 
Feynman's parton picture. [2] According to the parton 
ideas a hadron consists of structureiess particles­
partons, each of which carries a definite fraction x of 
the total hadron momentum. We may consider quarks 
as the partons, and such a quark-parton model gives a 
fairly good description of deep-inelastic processes. [3-6J 

There are, however, fairly serious indications that 
the quarks in a hadron exist not only as carriers of 
quantum numbers but also as real spatially separated 
objects. Such a quasi-nuclear nonrelativistic model of 
hadrons enables us to give a good description of their 
static properties, [7,8] makes the successes of SU(6) 
symmetry comprehensible, and leads to a number of 
relations, in agreement with experiment, [9] between 
the total hadron cross sections. The spatial separa­
tion of the quarks in a hadron is indicated by the pres­
ence of dips in the differential cross sections for pp­
scattering at high energiesUO ] and by the symmetry of 
the inClusive spectra in the center-of-mass frame of 
the colliding quarks in meson-nucleon interactions. (11l 

In a model with spatially separated quarks each quark 
carries, on average, t of the momentum of the nucleon. 
Therefore, deep-inelastic processes in the region x > t 
can arise as a result of coherent scattering of the lep­
ton by several quarks_ [12, 13] 
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It is obvious that, in the given case, in the scattering 
of a lepton with a large momentum-transfer squared q2, 
we can dis~egard the coherent interaction with quark­
partons only when they are pOSitioned at the same im­
pact-parameter distance: the contribution of such pro­
cesses falls rapidly for - q2 R2» 1, where R is the had­
ron radius (R 2 '" 2 Gey-2). For - q2 > 1 Gey2 the lepton 
interacts coherently with quarks separated by relatively 
small distances of the order of their radius rD. The 
lepton can begin to "feel" the structure of such forma­
tions of quarks (two quarks form a diquark and three 
quarks a triquark) only when - q2 ro »1. (The quark­
parton picture for strong interactions makes it possible 
to estimate the square of the quark radius: ro -O. 25 
Gey-2; see below, and also in[10,14].) For small transfers 
- q2:S; rii2 '" 4 Gey2, the lepton interacts with diquarks 
and triquarks as with a single whole. The problem of 
the interaction of a lepton with diquarks and triquarks 
for -I> 4 Gey2 cannot be solved uniquely a priori at 
the present time. Here it is possible that there is a 
rapid decrease of the form factors of the diquarks and 
triquarks and equally possible that there is a rather long 
delay before the onset of the fall-off regime (if the in­
trinsic radii of the diquarks and triquarks are less than 
the quark radius). The interactions between the quarks 
can also be such that the form factors of the diquarks or 
triquarks will not fall with increasing I. In this case, 
the corresponding diquark or triquark can be regarded 
as a new type of parton. 

In the present paper we consider the coherent inter­
action of leptons with quarks, when they are at com-
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