
the estimates obtained that for T = 10-9 sec generation 
by beats requires intensities four-five orders of mag­
nitude higher than the intensities required for genera­
tion by absorption, i. e., 1011 _1012 W /cm2 • 

It is interesting to compare the characteristic inten­
sities of resonance and nonresonance pumps. This can 
be done for broad-band pumping, using the result of 
the paperl:4] for J* in the case of resonance pumping by 
beats: 

r (resonance beats) 
(7.5) J. (nonresonance beats) 

The analogous ratio for absorption is, as follows from 
(3.23), simply the ratio of the coefficients of two-pho­
non and one-phonon resonance absorption: 

J' (resonance absorption) 
(7.6) r (nonresonance absorption) 

i. e., the resonance and nonresonance pump efficiencies 
differ less in generation by beats than in generation by 
absorption. 

The authors express their gratitude to S. V. Iordan­
ski! and V. L. Pokrovskil for a discussion of some as­
pects of the paper. 
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An exact solution of the problem of the motion of a polariton in an inhomogeneous crystal is found with 
allowance for spatial dispersion, if the energy of the bottom of the exciton band (optical phonons) linearly 
depends on the coordinates. Outside the region of the turning point for excitons, the polaritons represent 
either excitons or electromagnetic waves. In the region of the turning point, where the effects of the mixing 
of exciton and electromagnetic waves are large, transformation of some waves into others takes place, 
where the efficiency of such a conversion process depends on the degree of inhomogeneity. The properties 
of electromagnetic waves upon propagation in the directions of increasing and decreasing energy of the 
bottom of the band are found to be different, a reflected wave being present in the first case and absent in 
the second. The difference is also manifest in the dependence of the fraction of eleCtromagnetic wave 
energy transformed into exciton energy on the direction of motion. The non·equivalence of opposite 
directions becomes very pronounced in the case of a gradual inhomogeneity; for one direction of 
propagation the electromagnetic wave is completely reflected, and for the other direction it is completely 
transformed into excitons (optical phonons). The latter process may be utilized for the generation of a 
coherent exciton beam. The physical nature of the phenomenon is explained and criteria are discussed for 
the applicability of the results to inhomogeneities of another type. 

PACS numbers: 71.85.Ce 

The problem of determining the spectrum of polari­
tons in an inhomogeneous crystal has a number of char­
acteristic features distinguishing it from the corre­
sponding problem in a homogeneous medium. From a 
macroscopic point of view, the distinctive feature con­
sists in the fact that in the presence of spatial disper-

sion it is impossible to characterize an inhomogeneous 
medium by a dielectric constant which depends on the 
wave vector. However, if the effects of spatial dis­
persion are unimportant, one can introduce a dielectric 
constant that depends on the frequency and coordinates, 
but has in the polariton part of the spectrum singulari-
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ties as a function of the coordinates. From a micro­
scopic point of view, polaritons represent mixed states 
of the electromagnetic field and excitons or phonons. 
In an inhomogeneous crystal the role of the effects of 
mixing changes upon movement of the polariton from 
one region of space to another. As we shall see, this 
may strongly influence the motion of the quasiparticles 
and may also lead to their mutual interconversion. 

The exact solution of the problem of the motion of 
polaritons in a medium with a specific (depending lin­
early on the coordinates) inhomogeneity is found in the 
present article. The question of the applicability of 
these results to inhomogeneities of another type is also 
discussed. 

The investigation is carried out for the case of po­
laritons which are formed when electormagnetic waves 
and excitons are mixed (i. e., for light-excitons[1J). 
However, the results can be applied to an investigation 
of the interaction of electromagnetic waves with pho­
nons and magnons in inhomogeneous crystals. 

1. FORMULATION OF THE PROBLEM AND GENERAL 
SOLUTION 

In order to determine the spectrum of mixed electro­
magnetic and exciton waves in an inhomogeneous crys­
tal, it is necessary to find a consistent solution of the 
time-dependent Schrodinger equation and of Maxwell's 
equations. An electromagnetic wave of frequency w 
excites an exciton, an oscillating dipole moment ap­
pears which in turn influences the propagation of the 
electromagnetic wave. We shall assume that the fre­
quency w is close to the excitation frequency of some 
exciton band, and the influence of the other bands on 
the propagation of electromagnetic waves can be ne­
glected. Let the inhomogeneity of the system consist 
in the fact that the variation of the energy of the bottom 
of the exciton band is a linear function of the single 
variable z. The z dependence of the exciton effective 
mass can be neglected if "smooth" states are investi­
gated (a slowly varying field over the period of the lat­
tice). We shall investigate polariton waves propagating 
along the inhomogeneity, i. e., along the z axis. 

In the cases indicated above the fundamental system 
can be obtained in the same way, for example, as[2J, 
where the propagation of electromagnetic waves in an 
impurity crystal was investigated. The solution of the 
Schrodinger equation and Maxwell's equations reduces 
to finding the solution of the following system of equa­
tions: 

. , n' d''l' pE(z) 
(tloo-lt,-D z) 'l' (z)+ ~----;w- = ---;;;;-' , 

(1 ) 

d'E 00' 4,.,p·oo' 
di' + 7 e,E (z) = - v';c' 'l' (z), (2) 

where E(z) is the electric field strength of the electro­
magneticwave and >It(z) is the probability amplitude for 
the excitation of excitons, P is the dipole moment, re­
ferred to an elementary cell, of the transition to the 
excited state, £ 0 denotes the contribution to the dielec­
tric constant from the other states of the crystal which 
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are far removed from the exciton band under considera­
tion; we assume that f 0 does not depend on wand z; 
g' ° denotes the excitation energy of the bottom of the ex­
citon band for z = 0, D' is a coefficient characterizing 
the inhomogeneity, and Vo denotes the volume of an ele­
mentary ce 11. 

Equations (1) and (2) are valid for Frenkel excitons 
as well as for excitons in the Wannier-Mott model. 

Let us solve the system of Eqs. (1) and (2) by La­
place's method 

'l'(z) = S 'l'(k)e;k'dk, E(z)= S E(k)e""dk. (3) 
c 

The condition 

'l' (k,) e;k,,_ 'l' (k,) e;"'=O (4) 

must be satisfied at the ends kl and k2 of the contour C. 
The specific choice of the contour depends on the pro­
cess under investigation. This choice will be made be­
low. 

Substitution of relations (3) into Eqs. (1) and (2) leads 
to the following solution: 

'l' (z) =a S f(k)dk, 

where a is a constant, 

f(k)=exp{iki+i~!!:...}( k+k.);1, 
3 k-ko 

z=z-zo. Z,= (fioo-lto)/D', ~=fi'/2m'D', 

k,=OOB.'I,/C, 1=2,.,00'1 p 1'/c'v.k,D'. 

(5) 

(6) 

(7) 

(8) 

At the point z=O(z=zo) the energy /iw is equal to the 
excitation energy of the bottom of the exciton band. 

We shall call this point the turning point although this 
designation is arbitrary. The true turning point for 
excitons would be the point z = 0 in the absence of the 
interaction of excitons with electromagnetic waves. 

Condition (4) can be satisfied if the ends of the con­
tour C depart at infinity into a region where f(k)-O. 
Investigation of the integrand expression (6) indicates 
that the contour may depart at infinity into the follow­
ing sectors of the complex k plane: 

for {3>0 

O<arg k<n/3, 2n/3<arg k<n, 4,.,/3<arg k<5n/3; 

for (3<0 

n/3<arg k<2,.,/3, n<arg k<4,.,/3, 5,.,/3<arg k<2,.,. 

The function f(k) has two branch pOints, k =± ko. A 
cut exists between the points - ko and ko, and crossing 
this cut leads the contour onto another sheet of the Rie­
mann surface. 

A t large distances from the turni~ pOints (z -± co) 
the regions near the saddle points k1,2 =± (Z/(3)1/2 and 
the regions near the branch points k =± ko give the major 
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FIG. 1. Dependence of the energy of the 
bottom of the exciton band on the coordi­
nate. The arrows indicate the directions 
of the energy fluxes of the electromag­
netic waves and excitons; the solid ar­
rows are for case A and the dotted ar­
rows-for case B. 

contribution to the integral (5). In the first case the 
contributions to the integral correspond to exciton 
waves, and in the second case they correspond to elec­
tromagnetic waves-waves in an inhomogeneous medi­
um, but still not bound among themselves. The latter 
property is associated with the fact that at large dis­
tances from the turning point the frequency w differs 
markedly from the excitation frequency of the bottom 
of the exciton band. Then the effects of mixing are 
negligible and the waves become independent. How­
ever, the relationships between the amplitudes of the 
exciton and electromagnetic waves are different as i 
-- co and z-oo. 

Thus, the individual polariton waves are not inde­
pendent in the presence of an ihhomogeneity: a conver­
sion of one kind of wave into the other kind takes place 
in the vicinity of the turning point. In order to investi­
gate the energy relationships of these conversions, it 
is sufficient to investigate the asymptotic behavior of 
the solution (5) as z-±co. By chOOSing different con­
tours C, we investigate the most important processes 
in practice. 

2. INTERCONVERSION OF POLARITON WAVES 
AT AN INHOMOGENEITY 

Let the slope of the inhomogeneity be such that D' > O. 

A. An electromagnetic wave is incident from the 
right on the turning point, the effective mass of the ex­
citon is positive, {3>0 (Fig. 1, the solid arrows). The 
integration contour C is shown in Fig. 2. For z> 0 the 
integrand rapidly decreases with removal of a point on 
the contour upwards from the real axis. A region of 
order k -1/z gives a contribution to the integral. Let us 
make the substitution i(k + ko) z = t in the integrand, and 
let us expand the integrand function in a series in pow­
ers of the small parameter t/koz. As a result we ob­
tain the following asymptotic expression for 'Ir(z) as i 

2Tta . 
'l' (z) "" -_--.-(2koz) -., 

zr(-q) 

x exp {-ikoz-i~ ko' _1::..} [ 1- (~ko '+~) 1 ~il ] , 
3 2 2ko Z 

(9) 

where r(- iy) is the gamma function. Relation (9) de­
scribes an electromagnetic wave which is incoming at 
the turning point. 

Now let us consider the region z < O. Let us deform 
the contour C in such a way that it approaches the point 
-ko from below, since for z<O the integrand of expres­
sion (5) decreases (Fig. 2) in the lower half-plane of 
the complex k plane. In order to evaluate the integral 
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in this case, it is also necessary to take into account 
the contribution from the saddle point kl = - (I Z 1/(3)1/ 2, 
the contribution being counted twice, on two sheets of 
the Riemann surface. Thus, it is necessary to con­
sider the region near k = - ko and k = kl in order to eval­
uate the integral for z_-oo. This corresponds to the 
fact that two polariton waves may exist in the present 
region: exciton and electromagnetic. 

The contribution to the integral coming from the im­
mediate vicinity of the point ko is calculated in the same 
way as for z > 0, but the contribution from the region 
k;::, kl is calculated by the method of steepest descents. 
Here it is necessary to take the condition I kl I »ko as 
Iz I_co into consideration. After integration we obtain 

'Y(z)"''Yel(Z)+'Yexc(z), z .... -oo; (10) 

'Yel(z)= Zr~r:il) (-2koZ)-'T exP{ -ikoz-i~ k~' _ 3;Tt}[ HO( ~ )], 
(11) 

'Yexc(z) '" a"'~ exp {_ i~z (!. ) "._ iTt} (1-e-"T) (1- 2ilko~'I') 
(_Z~)'/ 3 ~ 4 Izl'l. ' 

(12) 

where 'lre1(z) is the probability amplitude for the excita­
tion of molecules, corresponding to an electromagnetic 
wave, and 'lr0XC(z) is the analogous probability amplitude 
corresponding to an exciton wave. 

From relations (9)-(12) follow criteria on i, for 
which one can confine attention to the maximal terms 

Izi '1·~21k$". 
z~ IHill (~ko'+1/2ko). 

(13) 
(14) 

One can neglect retardation in the investigation of exci­
ton waves upon fulfillment of the criterion (13). The 
dispersion law of the electromagnetic waves is the same 
as in a homogeneous medium upon fulfillment of the 
criterion (14). These criteria are more stringent, the 
weaker the inhomogeneity. 

Let us find the electric field strength from Eq. (1). 
Substituting the value of 'Ir from formulas (9) and (10) 
into Eq. (1), we obtain the following result as i-co 

D· Y-;; 2Tta . { ko' lTt} 
E(z)"'----.-(2koz)-Qexp -ikoz-ip--- , 

p r(-q) 3 2 
(15) 

and for z- _00 we find 

k" 

FIG. 2. Integration contours of the integral (5) associated with 
investigation of case A. 
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kz 
z>o 

Ie, k' 
2<0 

FIG. 3. Contours of integration of the integral (5) for investi­
gation of case B. The solid, dashed, and dot-dashed lines pass 
on different sheets of the Riemann surface. 

D''Ivo 2na _. {. _ . ko' 31n} 
E(z) ""'---r( .) (-2koz)-'T exp -zkoz-zj3---- . 

p -q :~ 2 

The electric field, accompanying the exciton wave, 
rapidly decreases with increasing distance from the 
turning point (E exc - 1 Z r5/4 ) and one can neglect it. 

(16) 

Let us examine the energy relationships. In a medi­
um with spatial dispersion, the energy flux consists of 
two terms: a flux of electromagnetic energy and a 
flux of "mechanical" energy, carried by the particles 
of the medium. [3J The latter is related to the motion 
of excitons. For regions of space far away from the 
turnign point, the exciton and electromagnetic waves 
are independent, and their energy fluxes can be cal­
culated by the usual method. 

The flux of incident electromagnetic energy is given 
by 

So=cl'e,1 EI '/2n=2nD' CJ) 1 a I' (l-e-"·'·). (17) 

From formula (16) we obtain the result 

(18) 

for the flux of electromagnetic energy in the transmitted 
wave. Let us calculate the energy flux of the exciton 
wave according to the formula 

(19) 

where Paxc is the momentum operator of the excitons. 

Substituting the value lJIoxc from formula (12) into 
formula (19), we find 

(20) 

One can easily show that the exciton wave's flux of elec­
tromagnetic energy and, on the other hand, the elec­
tromagnetic wave's flux of mechanical energy fall off 
rapidly with increasing 1 Z I, and these fluxes can be 
neglected. 

Thus, after passage through the turning point the 
electromagnetic wave with flux So which is incident on 
the inhomogeneity is decomposed into two waves-the 
electromagnetic wave (18) and the exciton wave (20). 
Let us analyze the obtained results in terms of their 
dependence on the parameter Y. For a physical analy-
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sis of the results it is convenient to represent expres­
sion (8) for Y in the following form: 

2n1=2n'8,JD''t-., (21) 

where :?p=41TIP 12/VOg'0 denotes the energy of the longi­
tudinally-transverse splitting for excitons, D'A is the 
change over a distance equal to the wavelength of the 
electromagnetic wave in the energy of the bottom of the 
band due to the inhomogeneity. 

From formulas (18) and (20) it follows that if 21TY 
«1, then 

(22) 

In this case the energy losses by the electromagnetic 
waves on excitation of excitons are small. In the other 
limiting case 21TY ~ 1 

(23) 

Thus, a complete conversion of the electromagnetic 
wave into an exciton wave takes place in the presence 
of a gradual inhomogeneity. It follows from relation­
ships (20) and (21) that complete conversion will occur 
if the change in energy of the bottom of the band over a 
wavelength is smaller than f, p/10. 

B. The electromagnetic wave is incident on the 
turning point from the left, {3 > 0 (Fig. 1, the dotted 
arrows). The integration contour for this case is 
shown in Fig. 3. As z- co the contour encompasses 
the point ko, and only one wave exists, moving from 
the turning point to the right. As z- -co it is neces­
sary to deform the contour such that it will pass below 
the point ko• As a result the contour will pass through 
the saddle point kl and will twice, on different sheets 
of the Riemann surface, encompass the point - ko• The 
integral over this part of the contour describes a wave, 
moving from the turning point to the left, i. e., a re­
flected wave. 

Omitting the detailed calculations, let us write down 
the result for the energy fluxes of the reflected S~!ft 
transmitted S;~, and exciton sexc waves as a function of 
the incident flux So. 

Asz--co 

(24) 

but for z_co 
(25) 

From relations (24) and (25) it follows that upon in­
cidence on an inhomogeneity in one case the electro­
magnetic waves are not reflected at all, andin the other 
case they are partially reflected from the turning point. 
For 21TY« 1 the intensity of the reflected wave is small, 
and the intensities of the exciton and transmitted 
waves are determined by formulas (22). On the other 
hand, for 21TY ~ 1 we have 

V. I. Sugakov and V. N. Khotyaintsev 820 



"­, 
k" -kol .<0, I 

, I 

" 
FIG. 4. Integration contours of the integral for investigation 
of case C. 

(26) 

in contrast to expressions (23). In this case the elec­
tromagnetic waves are completely reflected from the 
turning point. 

Thus, the inhomogeneity behaves as a membrane 
which transmits electromagnetic energy completely, 
converting it into the energy of excitons when the mo­
tion is in the direction of decreasing energy of the bot­
tom of the exciton band, and completely reflecting it 
when the motion of the electromagnetic wave is in the 
direction of increasing energy of the bottom of the ex­
citon band. 

C. An exciton wave is incident on the turning point 
from the left, f3 > O. In the neighborhood of the turning 
point the exciton wave will be partially converted into 
electromagnetic waves. Such a problem may arise in 
connection with investigation of the problem of excitonic 
luminescence. The integration contour for this case is 
shown in Fig. 4. In the neighborhood of the turning 
point the energy flux Sexe of the excitons is converted 
into the energy flux S~:i of the reflected excitons and the 
energy fluxes S:~r and S~; of the electromagnetic waves 
which are moving in different directions. Computation 
of the energy fluxes leads to the following results: 

as z--oo 

(27) 

as z-oo 

(28) 

For 21TY« 1 (a "steep" inhomogeneity) the excitons 
are completely reflected; for 21Ty;;:;1 (a gradual inhomo­
geneity) the excitons are completely de-eXCited, i. e. , 
transformed into electromagnetic waves propagating in 
the direction of the exciton's motion. 

D. The case of a negative effective mass, D' >0, 
/3 < O. For m* < 0 the exciton states are localized to the 
right of the turning point Zo (Fig. 1). In the neighbor­
hood of the turning point, excitons with k'" kl < 0 are ex­
cited by the electromagnetic waves, but they transport 
energy in the positive direction of the z axis (since the 
effective mass of the excitons is negative). 

It turns out that the results obtained in cases A, B, 
and C (formulas (18), (20), (24), and (25)) remain valid, 
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but the expressions describing exciton fluxes in the re­
gion z < Zo should be carried over into the region z> Zo 

and their signs should be reversed. The formulas for 
the flux of electromagnetic energy remain unchanged. 

3. DISCUSSION 

1. Criterion for the applicability of the obtained 
results to other problems. Let us assume that the co­
ordinate dependence of the energy of the bottom of the 
exciton band is determined by the function D(z). The 
turning point Zo is found from the relation 

hCll=8o+D(zo). (29) 

Let us expand D(z) in a series in powers of Z. One can 
neglect the quadratic terms if the condition 

D" (zo)z<D'(zo). (30) 

is satisfied. H the criteria (13) and (14) for the ap­
plicability of the asymptotic expansion are valid in the 
region of fulfillment of condition (30), then in the region 
of interaction between the waves (z - zo) one can regard 
the inhomogeneity as linear, and all of the formulas de­
rived in the preceding section are valid. It is only ne­
cessary to assume that the quantity D'(zo) depends on w 
according to formula (29). Thus, the criterion for the 
applicability of the obtained results to a potential of dif­
ferent shape has the form 

(31) 

2. Physical interpretation of the effect of asymmetry 
in the properties of polaritons with respect to the direc­
tion of propagation. For a very gradual inhomogeneity, 
one can assume that in each region of space the polar­
iton branches have the same shape as in a homogeneous 
crystal (Fig. 5). As the polariton moves from the 
right to the turning point, the bottom of the exciton 
band descends slowly in the region of space corre­
sponding to its position. On Fig. 5 this is equivalent 
to movement of the point, characterizing the state of 
the polariton, upward along curve 1. For a very slow 
variation of the energy of the bottom of the band there 
is a gradual transition of the polariton state along 
branch 1 from the region w< Ito/n, where branch 1 de­
scribes electromagnetic waves, to the region w> Ito/n, 
where branch 1 describes excitons. Thus, in the pres­
ent case complete conversion of electromagnetic energy 
into excitonic energy takes place in connection with the 
polariton motions. Incidence of the electromagnetic 

FIG. 5. The dispersion law for a polari­
ton in a homogeneous crystal. 
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waves from the left onto the turning point is equivalent 
to downward motion along the dispersion curve (Fig. 5). 
In this case a gradual transition to branch 1 is impos­
sible, and the electromagnetic waves are completely 
reflected from the turning pOint. 

3. Some remarks. One can describe processes in­
volving the scattering of excitons by lattice vibrations 
and defects by introducing an imaginary correction to 
the exciton's energy, ito- ito - ir/2. In this connec­
tion all preceding formulas remain in force, but z is a 
complex number and, according to formula (12), the 
wave function and the energy flux of the excitons are at­
tenuated in space. In this case the transformation of 
the electromagnetic-wave energy into excitons is an ir­
reverSible process and should be observed as the ab­
sorption of electromagnetic waves. 

The difference between the fluxes of the incident and 
transmitted electromagnetic waves does not depend on 
the direction of motion of the incident wave and is given 
by (1 - e-Z'l') SO. The presence of a reflected wave and 
the fraction of energy transformed into excitonic energy 
depend to a marked degree on the direction of motion 
of the incident wave. It should be noted that the asym­
metry in the properties of polaritons with respect to 
the direction of propagation in an inhomogeneous crys­
tal is not related to the effects of spatial dispersion, 
but is related to the singularity of the dielectric con­
stant. Inorder to neglect spatial dispersion, one 
should set m* -co in the initial formulas and one should 
set f3- 0 in the solution (5). In this case the integral 
(5) exists if It 0 has an imaginary correction (otherwise 
it diverges for z =0). After neglecting the effects of 
spatial dispersion, it is found that all of the formulaS 
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for electromagnetic energy fluxes remain unchanged 
(with the exception of case C, Sec. 2). Energy fluxes 
of the excitons are not present. Naturally, the law of 
energy conservation associated with the passage of the 
electromagnetic wave through the inhomogeneity is 
still not satisfied. This is explained by the fact that, 
with the introduction of an imaginary correction and 
by discarding the exciton fluxes, we arrive at an ex­
amination of a dissipative process. Allowing for spa­
tial dispersion would explicitly allow us to trace where 
the transformed energy of the electromagnetic field 
goes (in the present case it goes into the excitation of 
excitons), and would allow us to investigate the inverse 
process (the emission of electromagnetic waves-case 
C, Sec. 2). 

The investigated effects may be applied in order to 
generate a coherent beam of excitons. In the usual 
method for the excitation of excitons, involving the ab­
sorption and creation of a phonon, excitons moving in 
different directions are created. If the exciton's mean 
free path 1- z where z satisfies condition (13), then in 
the presence of a gradual inhomogeneity light may be 
completely transformed into excitons which are moving 
in a single direction. 
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