
tioned in Sec. 3 that the requirement that the absorption 
be small in comparison with the scattering can in all 
cases be satisfied for gases. 

5. CONCLUSION 

Thus, the cooling of matter by a high-frequency field, 
which seems paradoxical at first glance, does indeed 
follow from rather elementary considerations. The 
effect lends itself to experimental observation and one 
might think also to applications. 

In this paper the cooling problem was considered 
under conditions of a relatively weak external alternat
ing field. With increasing field, various unaccounted
for nonlinear processes in the system will come into 
play (in particular, the nonlinearity of Eqs. (1), (3), 
and (11) with respect to q). It is important that higher
order nonlinearities can either weaken or enhance the 
cooling effect (depending on the sign of the anharmon
icity). We note also (sel;!l4] on this subject) that unidi
rectional energy fluxes are produced not only at the 
fundamental resonance W - W k , but also in nonlinear 
resonances of higher orders (e. g., at the parametric 
resonance W - 2 wk). 

lIThe quenching of slow motions in high-frequency resonances 
is always accompanied by changes in the effective rigidity ~ 
of these motions. For the examples discussed in the 'text, 
the changes in the susceptibilities of the slow motions are 
connected by the Kramers-Kronig relations. 

2lAtfk= 0 in the thermodynamic state, the average work above 
the thermal radiation background at fluctuations of t:_ is al
ways equal to zero. It can be disregarded also in the case of 

small deviations from this regime. On the other hand if 
fk(t) causes accumulation of a finite differe-nce between the 
temperatures of the medium and of the radiation (i. e., the 

- temperature of the resonator walls), then work is performed 
on the average, i. e., a correlation appears between t: _ and 
f(cl. The resultant heat flux ultimately balances the flux (13); 
it is this which determines the establishment of the stationary 
temperature regime of the system. 

3lExcitations with large free paths usually fluctuate slowly in 
time, i. e., they contribute to Bk(n) at 0'" O. However, as 
0-0(0« Ok) the factor preceding Bk in (13) is small, so that 
the contribution to P from these fluctuations is negligible. 

4 lWe recall that H-I is the thickness of the medium over which 
the light intensity is attenuated by the scattering by a factor 
2.7. 
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If a superconductor is exposed to microwave radiation or if sound propagates through a superconductor, 
stationary electric fields arise in such a superconductor and decrease with the distance from the boundary. 
We obtain equations which describe the distribution of these fields and the boundary conditions for them. 
We discuss methods of observation and find the correction to the frequency of the Josephson radiation if 
one of the superconductors is irradiated by uhf radiation or sound. 

PACS numbers: 74.20.Gh 

1. INTRODUCTION 

We study in the present paper how electric fields 
arise in a superconductor under the action of micro
wave radiation or longitudinal sound. Rieger, Scala
pino, and Mercereau[l] and Tinkham and Clarke[2] were 
the first to indicate the possibility that there might ex
ist stationary electric fields in superconductors. They 
showed that if a current passes through a S-I-N con-
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tact, electric fields arise in the superconductor which 
decrease far from the boundary at a diffusion distance 
L 2 = DT Q in superconductors with a gap[2] and at a co
herence length in gapless superconductors. [1] The 
time T Q of the relaxation of the excitations between two 
branches of the spectrum ~p>O and ~p<O (~p=p2/2m -/l, 
p is the quasi-momentum of the electrons, /l the chem
ical potential of the normal metal, and D the diffusion 
coefficient of the normal electrons) caused, for in-
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stance, by phonons, increases when the transition point 
T. is approached like (Tc _ T)-1 / 2. [2] 

Artemenko and Volkov have in a recent papert3J ana
lyzed the appearance of a thermo-electric field in a 
superconductor. The existence of these fields is con
nected with the fact that under the action of an external 
perturbation there occurs a redistribution of quasi
particles over the two branches of the spectrum ~J/> 0 
and ~,,< O. Such an asymmetric distribution means that 
the quasi-particles produce a space charge. Because 
of the neutrality condition this charge is compensated 
by a redistribution of the superfluid component and this 
leads to the occurrence of a gradient in the chemical 
potential rI>. However, since the force acting on the 
condensate and leading to its acceleration is equal to 

op'/ot=eE+ V ill =eF. (1) 

there appears in the stationary state an electric field 

1 
E=--Vill. 

e 
(2) 

We emphasize that this field is the gradient of a scalar 
potential cp and only in the conditions given is it pro
portional to the gradient of the chemical potential. 

We use for the description of the photo- and acousto
electric fields the kinetic equation[4] 

an, + Ol!, an, al!. an, } 
- -----+l{n =0 at op or Or tip • 

and the neutrality condition 

6N=6 S d't".[u.'n.+v.'(1-n.) j. 

When a sound wave or uhf radiation is present 

1.=;.+iIl+'-,.(p) u,.+Y;Alm (p) U,.U' m +p.'/2m; 

iIl=~(~+e«p). p.=_1_(VX- 2e A). 
2 at 2m c 

U.'=I/,( 1+1,1e.). V.'=I/,( 1-~,1e.). 

(3) 

(4) 

(5) 

(6) 

(7) 

Here dTp=2d3pj(2rr)3, X is the phase of the condensate 
wavefunction, ~f.(P) and 'Yfldm(P) are the constants of the 
linear and non-linear interaction between the electrons 
and sound in a normal metal. 

It follows from (1) that i8x/8t is the electrochemical 
potential. If we write the distribution function in the 
form nJ/ = no(ep)+ I p, where no(eJ/) is the equilibrium dis
tribution function of the eXCitations, we have from (4) 

(8) 

Here ~fk(P) and 'Y'ltlm(P) are the quantities ~f"(P) and 
'Ywm(P) averaged over all directions of p. Equation (8) 
is the equation for determining rI> which through Eq. (2) 
is connected with the electric field B. 
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2. THE ACOUSTO·ELECTRIC FIELDS IN 
SUPERCONDUCTORS 

Let there be a longitudinal sound wave incident on the 
surface of a superconductor. It then follows in zeroth 
approximation from the neutrality condition that (see, 
e. g. [5]) 

while the effective linear potential for the interaction 
with the wave is 

iIl,=[A .. (p) -Ai> (p) ju". (9) 

Linearizing the kinetic equation and changing to Fourier 
components we have for the linear correction to the dis
tribution function 

t(l) ( ) - ioo (D !!.. an. 
• q.oo - -ioo+tqv;./e,+I, • e. !'e,' 

(10) 

where Ip is the linearized operator for the collisions of 
the excitations with impurities and phonons, while we 
have chosen no(£p) as the zeroth approximation. 

To obtain an equation for the stationary chemical po
tential we average Eq. (8) over time and take the Fou
rier transform with respect to the coordinates. We 
then have 

(11) 

The angle brackets indicate time-averages. We have 
from the kinetic equation for the function (/~2\ 

( .) • (O(D aj(I» 
ikv~+i. (f~'».=~ -'-.'-

e, 8. ar dp • 

a 6. < Oj~I» AI){ <I) • an 
-v-- iIlp - -([< /. }>.-(pv.>.-. as. e. ar. a8. 

(12) 

Here i (1) {j~1)} is the term in the expansion of the col
lision operator which is linear in the wave amplitude 
and which in the case of impurity scattering can be 
written in the form (see Appendix) 

Introducing a new function 

(14) 

we can use the equation for 1~1) to write Eq. (12), up to 
terms of order WT,It« 1, where W is the frequency of 
the wave, in the form 

S A A a 0/;1) 
{ ikv-.!..+ l,.+l,m,} (1j).).--( iIl'at) 

~ oL. 
(I) (n 

_(p~.) an. +( oill • .k[!..l!....-v aj. 1) -8,. (15) 
08. or e. op aS. • 

We have already said that the scale length for 
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changes in <I> and hence in (I/J.) is much longer than the 
mean free path so that we can use the diffusion approx
imation for (I/J.). To do this we multiply the equation 
by 1i(~ - ~.) and integrate over all p. We write 

<;p.>= S. dT.<5(6-6.) <1/J.>. 

Since limp (I/J.) = 0 we get then, subtracting from (15) the 
equation summed over p and expanding in the small 
parameter kl« 1, 

(16) 

Substituting {i6) into (15) we get 

(17) 

Here D= V~Ttr/3, where Ttr is the transport relaxation 
time in the normal metal. 

Multiplying (17) by sign~ and integrating over alIi; 
we get after simple transformations 

(18) 

We have used here the fact thatf!l) changes sign if we 
make simultaneously the substitutions p - - p and ~. 
- - 1;., while the collision operator preserves the sym
metry properties of the function on which it acts with 
respect to ~. and p, and we have introduced the trans
port relaxation time, defined as 

J "{ (II} (' 1 lsi J (II dT.vI f, Ii ~,-6) = -- dT,vf. <5 (;-1;.). 
'fIr E 

(19) 

Using the property of the collision-operator matrix 
elementsW 

(20) 

we can write the second term on the left-hand side of 
Eq. (18) in the form 

(21) 

Artemenko and Volkov[31 have shown that close to the 
transition point we can with good accuracy replace the 
expression 

by the relaxation time so that (21) takes the form 

T' ~ 
T.-I""a-- (a-I). 

eD' T 

According to Gal'perin et ale [61 the spatial change in the 
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sound energy denSity Sis 

~ = -r,8 (r) =-J dT. <~ 1.(1) iJ~.), 
Or e. dr 

(22) 

where r. is the absorption coefficient for sound in a 
superconductor, Bearing in mind that in (18) the elec
trons near the Fermi surface are the important ones we 
can take the transport relaxation time from under the 
integration sign. Since the term af!l)/a~. inf!2) does 
not contribute to the expression for the potential <1>, be
cause f~l) is odd under the simultaneous substitutions 
p- -p and ~ - -~, we can use (22) to get from (11) and 
(18) 

( 
2 1) { '"f} ild', .' N n k +- <$>.+-8. =--8.-lkp,-. 

V p~ N N 
(23) 

Here w is the sound speed, N the total electron density. 
St the k-th Fourier component of S(r), Nn = N - Ns the 
normal component density, and N. the superfluid com
ponent density. Equation (23) describes in the r-rep
res entation the diffusive spatial distribution of the 
chemical potential (<I» when a source is present. 

Before discussing the boundary conditions to Eq. (23) 
we find an expression for the current in the supercon
ductor when V<I> and the second wave are present: 

J=e J dT,\"j,+eN,v,. (24) 

Using (15), (16), and (14) we get the following expres
sion for the current: 

1 iJv 
(Ji)=eN~v$i +-Oi/lp.It+JitlC-eDik -. -', 

e dXk 
(25) 

where 

.". e J _ '., < (I) UCl>,) J, =-- d"T,,(e)Slgnl;, f. -
In Or 

is the acousto-electric current, evaluated and analyzed 
in[6] 

We see from (25) that there is a contribution to the 
total current from the diffusion current which is con
nected with the gradient of lis, which turns out to be 
proportional to V<I> only when T - T", differing from it 
by a quantity of the order of t:&/T« 1. To find the com
plete set of equations it is therefore necessary to find 
an equation for II.. This can be done in a way similar 
to the one used to obtain the equation for <1>. To do this 
we multiply Eq. (17) by E/1; and integrate over all ~. 
We then have 

Dk'v,(k) + J dT, ~' i .. <1/J,> 
1;, 

f T" < (II V$,) . 1 
=ik dT,~sign6' I. ~ • -ikp, 70. 
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Again, using the property (20) of the operator [Ph and 
introducing the relaxation time, which by definition 
equals 

( an, ) -. ~ e. an, 1. 
- I,h--a =-slgn~p, 
aBp ~p ep T, 

we get an equation for IIs(k) using the expression for the 
acousto-electric current: 

( 1) ik{ 1.} Dk'+-:;: v.(k)=--;- J"+-;(lP .. (27) 

Since divJ = O~ we have from (25) and (27) 

div N.v.-v.lT.=O. (28) 

Near the transition point r:1 is the same as rei, dif
fering from it by small terms of the order I:::../T. The 
equation for lis has the form of a continuity equation for 
the superfluid current, so that - lis plays the role of the 
deviation of the superfluid density from its equilibrium 
value while rs is the speed of coming into equilibrium. 
Tinkham and Clarke[2] call lis the imbalance. At the 
superconductor-vacuum boundary the component of the 
current density normal to the surface must vanish, 
J.= O. On the other hand, since quasi-particles are 
elastically reflected from the boundary, their distribu
tion function satisfies the condition that the flux of 
quasi-particles with a given energy through the bound
ary must vanish, i. e. , 

(29) 

where P. is the quasi-momentum component normal to 
the surface. The condition (29) is valid for both spec
ular and for diffuse reflection from the boundary. 
Since the total current is described by Eq. (24), it fol
lows from (24) and(29) that VSll= 0, i. e., the normal 
component of the superfluid velocity also vanishes at 
the boundary. These boundary conditions were used 
in[3]. 

We now consider the S-S' boundary to two supercon
ductors and restrict ourselves to situations when the 
magnitude of the gap in superconductor 1 is much larger 
than in superconductor 2 which is close to its transition 
point, i.e., T- Tc2 «1:::..1• The number of quasi-parti
cles with energies E > 1:::..1 is then exponentially small. 
On the other hand, quasi-particles with energies E < 1:::..1 

undergo Andreev reflection at the boundary, i. e., their 
distribution function satisfies the condition 

n(p, sp)=n(p, -~.). (30) 

From (30) and the definition of lis it follows that lis van
ishes together with its derivatives up to terms of order 
T/J.L. 

We now turn to the boundary conditions for the deter
mination of the chemical potential (<1». To do this we 
introduce the flux 

. f I~.I 1= dT.V-f •. 
8. 

(31) 
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Using (14) and (16) we have 

. { '"f} aN D aN 1. N. I=-DV (<!»+-S -+--r.s+-(l.P._ 
pw' all N all e' N ' 

(32) 

where an'" e2rtrN/m is the conductivity of the normal 
metal. At the superconductor-vacuum boundary vs• = O. 
Since condition (29) is satisfied at the superconductor
vacuum boundary, we also have 1.=0. From (32) and 
the vanishing of the normal component of the superfluid 
velocity follows that 

v {(<!»+-.l,s}/ =~/ . 
pw D N. 

(33) 

At the boundary of two superconductors with widely 
differing gaps we have because of (30) 

Using the expression for the flux i we can write Eq. 
(32) as a continuity equation: 

div i+6nITQ=O, 

(34) 

where Bn'" - (<I» BN/BJ.L is the change in the electron den
sity due to the change in the chemical potential. 

We now find the distribution of the acousto-electric 
field in an open superconductor sample along which a 
sound wave propagates along the x-axis. The solution 
of Eq. (23) with the boundary condition (34) is trivial 
and is of the form 

1 a(<!» s,r. 1 [ ( X) ] 
E.,= ---;-a;-= eN 1-(Lr.)' exp -T -(Lr.)'exp(-r.x) 

1 '"fr. 
---exp(-r.x). 

e pw' 
(35) 

The electric field thus decreases exponentially with dis
tance over two lengths Land r;. It is interesting that 
at the point 

2L 
x,= - --In (LL) 

HLr. 

the electric field changes sign (when we neglect the 
contribution due to the non-linear interaction of the 
wave). It is clear that lis behaves Similarly; because 
the total current vanishes the velocity Vs is not uniform 
over the sample and therefore takes on the value cor
responding to the absence of an electric field and the II. 

obtained by Gal'perin et al. [6] only at distances x» L. 

3. PHOTO-ELECTRIC FIELDS IN A 
SUPERCONDUCTOR 

In this section we construct a theory for the appear
ance of stationary electric fields in a superconductor 
when it is irradiated by a microwave field. The phys
ical reason for the appearance of these fields lies in the 
fact that the high-frequency currents induced near the 
surface give under the action of the magnetic micro-
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wave field a stationary Hall current of the excitations 
in the bulk of the superconductor as a result of which 
an opposite gradient of Vs occurs which cancels that 
current. At the same time there appears a gradient in 
the chemical potential 4l as a consequence of the ab
sence of space charges, and an electrostatic field 
E= - e-1V4l. 

If a microwave of frequency W < ~ is incident upon the 
superconductor-vacuum boundary, the correction to the 
distribution function is in the linear approximation 

f~" (q, (0) (36) 

where, as before, the zeroth-order distribution func
tion is no(E',). We shall use the index zero to indicate 
the values of the fields obtained from the solution of 
the linear problem. 

To obtain the equation to determine the stationary 
fields we average (8) over the time and Fourier trans
form over the coordinates. ill that case 

(37) 

For the function f !2) we get from the kinetic equation 

(. ~. A) (2, < af: " ) Ikv-+l. <f. >.=- v.,--
f. or • 

( a ( ) at:") . an. 1 (I' + -a pv .. -- -(pv.)--<l( '{f. }> •. 
r op. af (38) 

USing for (I (1){f~l)})~ its expression in terms of the 
linearized collision operator for scattering by impuri
ties (see Appendix) and introducing the function 

<'l e. af. 
.p.=f. -TP.,ap' (39) 

we get the following equation for (z/i.)t: 

1. 6. A} . on, 
IkYe;+I. (¢'>'=-(PY')ae + 

( a(8.aj.) .e~ al,) + p.,- -- +- vXHoJ-,- , 
ap £, at • c up. (40) 

which is valid up to terms of order "1t/TPhVF« 1, where 
"1t is the penetration depth of the high-frequency field. 
This parameter was used by us in deriving (40) and en
abled us to drop the term linear in the wave amplitude 
in the expansion of the phonon-scattering operator. 

The subsequent procedure for obtaining the equation 
is fully analogous to how we derived the corresponding 
equation for sound. We therefore only give the final 
expression, bearing in mind that microwave fields are 
transverse, i. e., that kl Pso, 110: 

( -V' +~)< III +£) =div_1_<[ (J,-e1V.v.,)X HoI> • (41) 
L- 2m Nc 

Here 

774 SOy. Phys. JETP, Vol. 43, No.4, April 1976 

J, (00) =-iooa(oo)p.,le+eN.v ••. (42) 

It is necessary to note that Eq. (41) is valid only in 
the normal skin effect case when the penetration depth 
of the microwave field into the superconductor is much 
longer than the mean free path. This is just the rea
son why in Eq. (42) for the current the uhf conductivity 
at q= 0 occurs, 

(43) 

To obtain the boundary conditions for Eq. (41) we 
proceed similarly to what we did before, viz.: we 
evaluate the flux i. We have 

(44) 
The boundary condition is obtained from the require
ment that on the boundary i. = 0 and vs .. = 0: 

V (<11 +P .. ' )' = - _1_< [(J,-eN.v •• ) X Ho1>ln • 
2m • Nc 

(45) 

in the case WTtr» 1 

J,(oo)-eN.v .. =eN.v.,. 

As a result (41) takes a simple form: 

( , 1)( P"') e N • . [ -V-+-;- <11+- =--. dlV< v"XHo» 
L- 2m c N 

(41a) 

with the corresponding boundary condition 

< P"')·, e N. V <11+- =---11' <[v.,XHol>ln . 
2m II C 

(45a) 

If, however, WTtr« 1, the imaginary part of the con
ductivity is small compared to the real part and 

J.-eN.v.,=Rea( oo)E.( (0). 

The expression for Rerr(w) has been analyzed in detail, 
for instance, in[7J and close to To it is, with logarithmic 
accuracy, the same as the conductivity of the normal 
metal. 

The electric field distribution obtained from the so
lution of Eq. (41) with boundary condition (45) has a 
form similar to the distribution for the acousto-electric 
field, with only that difference that 1"; is replaced by 
the penetration depth of the microwave field into the 
superconductor which at low frequencies is the London 
penetration depth and at higher frequencies is the skin 
penetration depth. The equation determining the degree 
of imbalance has the form (28). There occurs then in 
the expression for the current a term connected with 
the drag of the excitations by the microwave field and 
analogous to the acoustic-electric current. Bearing in 
mind that the scale of the change in II s is much longer than 
the mean free path we have for the photo-electric current 
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e' J (I) 
(JPhoto)=_ d-rp-r,,(E)([vXHolf. >, 

me 

where 'T tr(e) is the total transport relaxation time: 

1 1 I~.I 1 
-=--+~; 
'Tt:r 'timp Bp 'tp 

(46) 

1/'Tpa:. T 5 let is the time for the relaxation of the mo
mentum by phonons. When W'Ttr» 1 we havef~l> 
'" - (pvsQ) Bno/SE, and 

1 o photo) = -0.(0) < [v •• X HoI}, 
c 

(47) 

where 0'8(0) is the static conductivity of the supercon
ductor given by Eq. (43). 

Near the transition point 

When W'Ttr« 1 

o photo} = a.ILK· < [E. X HoI}, 
e 

JJ.'H is the Hall mobility in the superconductor. As 
T-T/> 

{ ~ [ -rp -rp ]} ILK'''''IL. 1+- -+In- . 
2T 2Timp 'timp 

4. THERMOELECTRIC FIELD IN 
SUPERCONDUCTORS 

(48) 

We have already noted that the problem of a thermo
electric field in a superconductor was discussed by 
Artemenko and Volkov. [3] In this section we wish to 
make more precise a number of physical points. 

When there is a temperature gradient present, the 
kinetic equation for the correction to the distribution 
function takes the form 

~. al. ~ ~. an. . an, 
v--+I.I.=(vVT)---(vP·)-a " 

8. ar T a8. 8. 

Averaging (49) over the direction of p we get 

~-
v--a +1 •• 1.=0. 

8. r 

(49) 

(50) 

Substracting (50) from (49) and iterating in terms of 
kl« 1 and 'T1 .... « 'TPh we get 

_I ~. aT. _I { ~. an. . Jan,} I.=T.-I,mpv--+I,m. (vVT)-T -a -(vp. ~a . 
Bp or Bp 8 p 

(51) 

Substituting (51) into (50) we have for /p the equation 

(52) 
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If we work close to the transition point we can, as 
before, obtain a closed equation for cI> by introducing 
the relaxation time.for the disbalance TQ• To do this 
we multiply (52) by sign~ and integrate over all~. As 
a result we have 

( 1 ) N.. 6 s- an, -V'+- 1Il=--divp,+eV'Tan - ~'d~-. 
L' N 'i['T' iie 

(53) 
, 

Here an is the differential thermo emf of the normal 
metal. 

In the spatially uniform case the last term vanishes. 
In the stationary state Ps also vanishes. We therefore 
obtain the equation[S] 

(-V'+lIL') III =0. (54) 

As before, the boundary condition arises from the van
ishing of the flux i. Without giving the detailed calcula
tions we give only the final result 

6 s· an, VIIlI.=-ea.VT-.--T• ~'d~-:--,. 
n iJe 

(55) 
, 

We evaluate the current when a temperature gradient 
is present using the distribution function (51): 

J =eN.v.-DVv.-Tj. VT+a.(E+e- 1 V Ill) . (56) 

Here l1s is the thermoelectric coefficient[S]: 

where l1n is the thermoelectric coefficient ill a normal 
metal. We note that the expression for the current is 
valid for any temperature in contrast to the equation 
for lis which is valid only close to Tc: 

(-V'+1IL')".=0. (57) 

The boundary conditions are the vanishing of the nor
mal components of V s and of the total current. In the 
stationary case 

(58) 

It follows from (54), (55), (57), and (58) that 

(59) 

Notwithstanding the fact that close to the transition point 
the ratio of the integrals is close to unity, the differ
ence between cI> and lis is one of prinCiple and is impor
tant far from the transition pOint. 

As ~ - 0, the problem arises how the expressions ob
tained, for instance for the current, change to the cor
responding ones for a normal metal. We discuss this 
using the example of the thermoelectric effect. As 
~ - 0 we have Ns - 0 and the superfluid current there-
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fore vanishes. There arises between the conductivity 
and the diffusion coefficient in the normal metal the 
Einstein relation, and we can thus neglect V<I>, intro
ducing a new chemical potential: 

As a result, as a_ 0 (53) takes on the usual form of the 
expression for the current in a normal metal when the 
Ohmic current is proportional to the gradient of the 
electrochemical potential. In conclusion we dwell upon 
the ways of observing electric fields in superconduc
tors. It has been noted already[3] that the thermoelec
tric fields, like the acousto-electric ones can be mea
sured using Tinkham and Clarke's method. [2] In that 
experiment the quantity q; is measured directly. On 
the other hand, as the superfluid velocity reaches its 
stationary value only at distances much larger than L 
we can directly measure the spatial dependence of II. by 
studying the way the phase difference which arises, for 
instance, due to the acousto-electric effect[6] on the 
sample size. 

Yet another method for measuring <I> consists in 
studying the frequency shift of the microwave radia
tion in a Josephson junction. It was shown inn], where 
the corresponding measurement scheme is described, 
that the frequency shift of the Josephson radiation, 
when one of the superconductors· is in equilibrium 
while in the other one the value of the chemical poten
tial q; is non-vanishing, is 

~Ctl (x) =2~ (x)/Ii. (60) 

We assume that the contact is a point contact and one 
can therefore measure the chemical potential in a given 
point. We estimate the change in the frequency of the 
radiation. According to (35) 

~ 21. Lr. 
Ctl .... = Nliw l+Lr.' (61) 

where 10 = wSo is the sound energy flux denSity and w is 
the sound velocity. If 10-1 W/cm2, N-1022 cm-3, 

L-1O-2 cm, I'. - 10 cm-\ w= 3 x lOs cm/s, we have 
aw- 106 S-1 and can easily be measured. 

I wish to thank V. L. Gurevich and V. I. Kozub for 
useful discussions and G. E. Pikus for his initiative 
which started the present work and for critical remarks 
which were exceptionally useful. 

APPENDIX 

We show how the term linear in the wave amplitude 
in the expansion of the collision operator reduces to 
Eq. (13) in the case of impurity scattering. 

We have 

776 

~ (s d'p' [ a 1 (I) (1) > \I.~,:~{f:I)})= p., (2:n:)' A ••. (v-v') or. 6 (£.-£ •. ) (f. -i., ) 

d" ri +( Ill. S-P-{- [A •• 6(e.-r.'! I 
(2:n:) , a£. 
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a [ I} (1) i') > +- A •• ,6(r.-e.') (t. -f.') . (A. 1) 
as.' 

Here 

(2lt) • 
A •• ,=2:n:N.--, -If .. ,I'(u.u,,-v.v.,)', 

m (A. 2) 

N, is the impurity denSity andfpp' is the amplitude for 
the scattering of the electrons in the normal metal by 
the impurities. 

By a simple partial integration we can write Eq. 
(A. 1) in the form 

A (I) (I) ( a A (1) > A {( af~l)} 
(/'m.{j. })= <D. as. l,m.{i. } -/'m. Cll'aI." 

( J d'p' [ a (e, ) a (e" )] (1) 11) > - P.. (2:n:) , 6(e,-e.,) ap 6. A .. , +ap;- ~A .. ' (t. -f.' ) 

. {e. ( af,(l)} ( a [e. A (1)] > 
--I,mp s. P"a;- + P"-;YP ~p I.m.(f.} . 

(A. 3) 

One verifies easily that if we neglect terms in P.O/PF 
«1 which arise when differentiating the scattering am
plitude fpp' we find the following relation 

a (e, ) P"ap 'f."Ap. =0. (A.4) 

Indeed, using the equality fp=E p' we have 

~[~( 1 + s,s.·-~')] =0. 
up sp e.£. 

We then finally get 

(A. 5) 

1 )We note that the strong dependence of the Hall mobility in a 
superconductor on the phonon relaxation time is connected 
with the fact that this mobility is proportional to Tir as in a 
normal metal. Since the impurity relaxation time increases 
as ~p -0, excitations with ~p ~ aTlm/ T, make a considerable 
contribution to the Hall mobility. At the same time the cri
terion for the applicability of the initial equations is the con
dition h lmp « 1. The criterion for the applicability for the 
last expression has thus the form aTlmp» T,/ Tlmp' i. e., it is 
exceedingly rigid. However, even when this criterion is 
violated, the phenomenological expression for the photo-elec
tric current has, of course, the form (48) , but with another 
definition of the quantity 1%. 
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A nonstationary theory of a Z-pinch in n-InSb is developed by taking into account quadratic volume 
recombination and electron-hole scattering. The time scans of the electric field intensity are calculated for a 
sample under prescribed current conditions. It is shown that the scans are oscillatory as a result of 
excitation of an ionization domain in the crystal under pinch conditions. If electron-hole scattering is taken 
into account the oscillations can arise only in a definite current range corresponding to a strongly 
developed pinch. The frequency and amplitude of the oscillations are calculated as functions of current and 
of the recombination and scattering parameters. The pinch radius, pinch time, and shape of the current
voltage characteristics are determined. It is shown that the dependence of the pinch radius on current is 
nonmonotonic (possesses a minimum) under electron-hole scattering conditions. The theoretical results are 
compared with available experimental data, some of which are explained for the first time. Most of the 
calculations were carried out with a computer. 

PACS numbers: 71.85.-a 

1. The Z pinch phenomenon in a gas plasma wherein 
the plasma is compressed by the magnetic field of its 
own current, is well known. [1,2J Much later, Glicks
man and Steele[3J observed this phenomenon in the elec
tron-hole plasma of a semiconductor by investigating 
the anomalies of the resistance of InSb samples with 
electronic conductivity (n-InSb) in the impact-ionization 
(interband breakdown) regime at low lattice tempera
tures (Tc = 77 OK). It turned out that at large currents 
(I> 5 A) the plasma resistance decreased when the sam
ples were located in a longitudinal magnetic field (H liE, 
where E is the electric field intensity at the sample) 
comparable in strength with magnetic field of the cur
rent (Hili)' Glicksman and Steele have advanced the hy
pothesis that the anomalous resistance of the samples, 
which occurs at H=O, is due to pinching of the plasma. 
When the plasma contracts its resistance increases, 
since the processes of quadratic volume recombination 
and electron-hole scattering, which decrease the num
ber of particles[4J and the electron mobility, [5J become 
stronger. The pinch effect can become weaker and the 
plasma resistance can decrease in a longitudinal mag
netic field. Glicksman and Steele's guess was soon 
confirmed[6,7J by a series of experiments in which this 
phenomenon was revealed by using direct procedures 
for observing strong contraction of the plasma. It 
turned out[8J that the destruction of the pinch in a longi
tudinal magnetic field is due to the development of a 
screw instability, [9J which leads to an anomalous es
cape of plasma to the sample surface. A number of 
subsequent studies[1G-12J have shown that the plasma 
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contraction in n-InSb under given-current conditions 
evolves in time in a rather complicated manner. Thus, 
for sufficiently large current the time sweeps of the 
field intensity (E) at the sample have an oscillatory 
character. It was shown in[10J that the frequency and 
damping time of these oscillations increase with the 
current. On the other hand, it is noted inUlJ that these 
oscillations appear in the current transition region to 
the state of strong plasma contraction. It is shown 
inU2J that the pinch oscillations appear in a larger 
range of currents when the pinch is already developed, 
but the oscillations vanish at larger values of I. 

It will be shown here that this phenomenon has in
deed a complex character and depends strongly on the 
initial crystal parameters that determine directly or 
indirectly the role of the electron-hole scattering (im
purity concentration, mobilities and lifetimes of the 
non-equilibrium carriers, etc.). At present there are 
two (theoretically justified) points of view concerning 
the nature of these oscillations. According to[13J the 
oscillations of the field E can be due to the magneto
thermal character of the pinch, when the heating of the 
lattice and the thermal ionization in the region of strong 
contraction play an essential role. In the given-cur
rent regime, periodic heating and cooling of the lattice 
in the pinch channel can take place, and the sample 
conductivity oscillates correspondingly. This concept, 
however, can hardly be used to explain the experiments 
performed with short pulses (7 pulse $ 10-6 sec) and rela
tively weak currents (I < 20 A), when the lattice is 
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