
Cooling of maHer by a high frequency resonance field 
V. E. Shapiro 

Physics Institute, Siberian Division, USSR Academy of Sciences 
(Submitted October 31, 1975) 
Zh. Eksp. Teor. Fiz. 70, 1463-1476 (April 1976) 

Several authors (Zel'dovich, 1974; Hansh and Schawlow, 1975; Shapiro, 1975), proceeding from various 
initial premises and employing different methods, have recently discussed the possibility of cooling a 
substance by means of high frequency resonant fields (under continuous action). This problem is further 
discussed in the present paper. The physical essence of cooling by means of periodic forces is analyzed. It 
is pointed out that there is a unity of the principles used in the various investigations. A number of 
examples of cooling a substance by an electromagnetic field are considered. It is shown, in particular, that 
strongly scattering but weakly absorbing media located in a multimode optical laser can be considerably 
cooled by a light beam (the efficiency is of the order of unity). 

PACS numbers: 65.90.+i 

1. INTRODUCTION 

Scattering of high-frequency energy by a system usual­
ly heats the latter, but cooling is also possible under 
certain conditions. This is caused by the dichotomy of 
the scattering process. It is obvious that scattering 
is due to nonlinear interactions in the system. The en­
ergy-dissipation process is accompanied here by a re­
distribution of the thermal fluctuations over the fre­
quency spectrum and over the motion modes inherent 
in the system. The resultant diequilibrium is in­
terpreted in a number of cases as the appearance of 
subsystems with various temperatures. This disequi­
librium leads to additional heat flow between the sys­
tem and the thermostat, wherein motions with higher 
fluctuation levels, give up heat to the thermostat on 
the average, and those with lower fluctuation levels 
draw energy. 

Imagine now that the coupling of the system with the 
external thermostat is not the same for the different 
frequencies or forms of motion. In practice, this is 
almost always the case. Then the rate of heat diversion 
to the thermostat via certain channels is not equal to the 
rate of heat flow from the thermostat via other channels. 
The resultant process is therefore a cooling of the sys­
tem if the alternating forces produce in the system a 
disequilibrium that is appreciable in comparison with 
the direct dissipation and is of the required sign. 

The thermodynamic picture is the following: the 
external forces, to maintain the thermal disequilibrium, 
perform work; the additionally scattered energy, to­
gether with the thermal energy of the system, goes to 
the thermostat. In the heater-evaporator-condenser­
heater refrigeration cycle, the energy transport is con­
nected with the displacement of the working medium. In 
the case analyzed here, on the other hand, energy is 
transferred continuously via temporal rather than 
spatial transformations. 

One of the effects suitable for cooling is that of a 
source of monochromatic forces of frequency much 
higher than the characteristic frequencies of the ther­
mal fluctuations in the system, but close to the fre­
quencies of the resonances that interact nonlinearly 
with these fluctuations. This situation is favorable, 
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for when the energy is pumped resonantly from the 
source to the rapidly oscillating subsystem, the en­
ergy exchange between the fast and slow motion be­
comes essentially unilateral: on one slope of the 
resonance curve the fluctuation energy flows only from 
the fast system to the slow one, and on the opposite 
slope the energy flow is reversed. This regular pro­
cess is quite general in character and is dissipative. [4] 

2. RESONATOR EXAMPLE AND ITS 
GENERALIZATION 

By way of example, let us analyze the operation of 
a device (see the figure) that makes it possible to damp 
mechanical vibrations effectively by means of a high­
frequency field. The body 1, which vibrates (say on a 
spring), forms together with cavity 2 an electromag­
netic resonator of frequency wo. Electromagnetic 
power at a frequency w close to Wo is fed from a source 
3. The oscillations x(t) of the body alter the frequency 
wo= wo(x), and the ponderomotive forces of the field 
perform work on the body. If the generator 3 operates 
continuously, the mechanical vibrations of the body are 
damped at w < wo. The excess energy is then absorbed 
by the resonator walls. 

Let us estimate the rate of damping of the vibrations. 
The electric oscillations in the resonator are de­
scribed by the equation 

q+20q+roo' (xl q-a cos rot, (1) 

where 0 = Wo /2Q, Q is the figure of merit of the resona­
tor, and the quantity a is determined by the power de­
livered by the generator. If q is normalized so that 
~(q 2 + w~ q2) is the energy of the field in the resonator, 
then the sum of the ponderomotive forces acting on the 
body is 

z 
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F.=-~q'~w.'. 
2 ax 

At x=O, forced oscillations of q, with frequency w, 
take place. If a displacement x(t) is produced, this 
regime changes, but with a delay relative to the changes 
of x. Consequently, work is performed during the x(t) 
cycle. The power performed on the field in the case of 
small oscillations x(t)- f lnt, with n« w, averaged over 
the time 21T/n, amounts to 

1 a ' , 
P(Q)=-(xF.>=2(x')P. (-~) ~S(Q), (2) 

w, ax /lQ 

S(Q)=lm{/1(w1+Q) - .'1(w~Q)}' /1 (w)=w,'-w'+i2/loo, 

where P", = 215{q2) = I5w2a2/ 1.6.(w) 12 is the power fed from the 
generator. If w < wo, then at all n we have S(n)/ n> 0, 
i. e., p(n) > 0, meaning energy is continuously drawn 
from the source of the vibrations of x and is trans­
formed into the high-frequency oscillations of q. The 
motions of x are damped. At w > Wo the ratio is S(n)/ 
n<o, i.e., p(n)<o and the reverse takes place-en­
ergy from the fast motions is transferred to the slow 
ones, and the motions of x tend to build up. 

The flux P is appreciable in high-Q oscillating sys­
tems (small 15). At the same time, as 15 - 0 the effect 
becomes weaker, for sooner or later a regime with 
15« n sets in and we then have an almost adiabatic, i,e., 
reversible change or passage through resonance. The 
effect vanishes also if the resonator is excited by a 
source that is not harmonic but has a spectrum that is 
broad in comparison with 1 (JJ - Wo 1 + 15. 

The described method was developed[5] to suppress 
macroscopic vibrations. It is pOSSible, however, to 
suppress also thermal vibrations of x(t), i. e., Brown­
ian vibrations. Let for example, body 1 together with 
the spring constitute a pendulum with frequency no« 15. 
Then the spectrum of the x(t) oscillations is concen­
trated in a frequency region «15 and we obtain for the 
rate of damping of the x(t) fluctuations· 

S~ ( 1 a 00, )' w, y 
P=" P(Q)dQ""(x')P. ~-a;- f7 (Hy')" 

where y = (wg - w2)/2I5w, (X2) is the average intensity of 
the vibrations. At thermodynamic equilibrium we have 
(X 2) = kT/2M, where M is the mass of the pendulum and 
kT is the Boltzmann factor. We have 

where L is the characteristic dimension of the field 
concentration of the field in the resonator. If we take 
a resonator with L = 1 cm, wo= lOB sec- l , and 15 = 104 

sec-t, then at M = 19, P w = 1 Wand at the best tuning 
(Y'" O. 6), an energy kT is transferred within -10-2 sec. 

If the body 1 is a good conductor at the working fre­
quencies of the resonator, or is a transparent dielec­
tric, then it experiences no microwave heating. Fur­
thermore, if the pendulum is in thermodynamic equi­
librium at P w = 0 with the field of the sources that cause 
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the Brownian fluctuations x(t), then the delivery of a 
power P Cd to the resonator initiates a lowering of the x 
fluctuation level, thus proving the feasibility of the 
cooling in principle. The flux of thermal energy from 
the body is initially equal to the flux P. With decreas­
ing fluctuation intensity, the flux P decreases in pro­
portion until it becomes weak enough to be commensu­
rate with the power of the external random-force 
sources. It is this which determines the limiting cool­
ing temperature. We note that one of the sources of 
the external forces is the thermal background of the 
electromagnetic radiation in the resonator. 

It is easy to proceed from this example to a more 
general situation. 

1. In the general case x is a multidimensional mo­
tion. It is convenient to represent it by a set of normal 
coordinates Xl, x 2 , •••• Then 

dw. aw.. aw.. 
-=--x,+-x"+ .... 

dt iJx, ax,-

For independent coordinates, the small thermal fluctua­
tions are independent, as follows from the Gibbs energy 
distribution; therefore 

< ( dw. ) ') _ ( aw. )' " . (aw,)' ., dt - a;.- (x,) + ax, (x, ) + .... 

Each motion leaves its imprint on the response of the 
high-frequency resonance, and the combined heat flux 
is the sum of the fluxes from each low-frequency vibra­
tion mode. 

2. A response is produced not only by the mechanical 
vibrations of the body, but also by its internal motions, 
if the latter lead to fluctuations of the electrical char­
acteristic. The resultant random modulation of wo(t) 
causes an additional transfer of heat from the body 1 
to the resonator. Let, for example, the body be a di­
electric and let the dispersion region be far from the 
frequency (JJ. Then the electric losses are small and 
can turn out to be much lower than the pump power P 
transferred to the thermostat (to the resonator walls). 
Particularly pronounced are the fluctuations of the 
permittivity and permeability near the phase-transition 
pOints of the medium. The damping of critical fluctua­
tions was discussed in[31, where the example used was 
a ferromagnet with a temperature close to the Curie 
pOint, placed in a microwave resonator. 

3. As stressed in[3], the high frequency resonance 
can be produced not only by a resonant excitation sys­
tem (resonator), but in the medium itself. If, for ex­
ample, the thermal contact of the external thermostat 
with such resonances is much closer than the contact 
with the subsystem of low-frequency motions, then at 
w < Wo the energy of the low-frequency fluctuations will 
be transformed upward in the spectrum and will leave 
the system. 

We point in this connection to a communication by 
Hansh and Schawlow[2] (published simultaneously 
with[3]), in which it is proposed to quench thermal 
translational motions of gas molecules by exposing the 
gas to monochromatic light of frequency close to the 
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absorption line of the gas. Hansh and Schawlow have 
noted the possibility of cooling the gas from 600 to 
0.24 oK by this method. Their arguments and esti­
mates were made in terms of the collisions of the gas 
molecules with the light quanta and were heuristic in 
character. In Sec. 3 we shall analyze this beautiful 
example again, but in terms of a vibrational approach, 
in order to cast light on a number of additional aspects 
of the phenomenon, which are of fundamental signifi­
cance. 

4. The capabilities of resonant cooling methods can 
be greatly increased by using a high-frequency oscillat­
ing system with a set of closely-spaced resonances. 
The transformation of the thermal energy takes place 
then as a result of random modulation of the resonance 
frequencies as well as of the parameters of the mutual 
coupling between the resonances and their coupling with 
the external source of frequency w. We note that the 
power flux transferred to the thermostat can exceed the 
sum of the contributions of the changes «dw k /dt)2> for 
each of the high-frequency resonances Wk. [3,41 

In Sec. 4 below we shall discuss a method for cooling 
a transparent (outside the absorption band) medium by 
placing it between the mirrors of a multimode optical 
resonator excited by a monochromatic beam. Accord­
ing to our estimates, this cooling method can be of 
practical interest. 

5. We point out a connection between the foregoing 
and the well-known method of dynamic orientation of 
spins by a periodic field, and the associated change in 
the spin temperature, as reported by Zel'dovich. Ul In 
the analysis of this problem, one uses a model of a 
quantum-mechanical spin system constituting two in­
teracting subsystems with partial-motion frequencies 
that differ by many orders of magnitude, the high-fre­
quency two-level subsystem being resonantly pumped 
by an external monochromatic field. If the problem is 
analyzed in terms of the vibrational approach, then it 
turns out that the effect is based in essence on the same 
ability of the resonance to produce unidirectional en­
ergy flow from one subsystem to the other. It is im­
portant that if no damping is introduced in the system 
there will be no continuous energy transfer to the fast 
system. The quantization of the motions does not play 
a fundamental role here. We note also that cooling is 
produced also when the distribution of the fluctuations 
in the spin system can not be described by an effective 
temperature. . 

3. GAS IN A RESONANT FIELD 

We shall adhere to the classical description; this is 
justified by the fact that we are interested in resonance 
in a suffiCiently intense light field. We confine our­
selves for simplicity to the case when the field intensity 
is much lower than the intensity that saturates the res­
onant transition. For the molecule-polarization oscil­
lations we then have a model that is close to (1): 

(3) 

where 1/(x, t) is a random thermal radiation field 
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that is delta-correlated in t, a~ are the amplitudes 
of the regular field of the oppositely directed waves, 
the frequency W is close to the resonant frequency Wo 

of the transition, 25 is the homogeneous width of the 
resonance wo, c is the speed of light, and x=x(t) is the 
spatial position of the molecule (we confine ourselves 
for simpliCity to the one-dimensional problem). In 
contrast to (1), the quantity fluctuating in (3) is not the 
frequency Wo but the frequency and amplitude of the 
external force. At x '= 0 we have, against the thermal­
background level, a regime of induced oscillations of 
q with frequency w. In the case of Brownian motion of 
x(t), this regime varies with a delay, and it is this de­
lay which causes the unidirectional energy transfer 
from the motions of x to the radiation. 

We choose for the sake of argument of coordinate q 
such that the quantity (ft + w~ 1)/2 represents the en­
ergy of the polarization oscillations (for an electric­
dipole transition with unit oscillator strength we have 
in this case a(x, t) = eEm-1/2, where e and m are the 
charge and mass of the electron, and E(x, t) is the elec­
tric field strength). Then the force exerted on the 
molecule by the field is F"qaa/ax, and the average 
flux density is 

To calculate P" we represent the functions cos(vx/c) 
and sin(vx/c) in the form 

. 
vx f" cOS-;;-= _~ e,aa.{Q)dQ, 

Then 

~ dvdQ 
q = SS e"v+O.)'H{v Q) --­

_00 '~(v+Q) , 
H= {ay+i~.)a. ++{ ay-i~y)ay-, 

ay±=a.±{j (v-w) + (a.±)·{j (v+w) +t]y±, 

(4) 

where 5(w) is the Dirac function, 1/; are the amplitudes 
of the expansion of 1/(x, t) in terms of the traveling 
waves exp[iv(t±x)/c)]. For the average power flux we 
get 

SS~SS iQ, dQ, dQ dv dv, p.=- _00 exp[i(v+v,+QH2,)t]<H{v,Q)H{v"Q,» ~(v+Q) 

(5) 
The correlation between the Brownian movement 

x(t) and the fluctuating optical radiation is a weak sec­
ondary effect, and if it is neglected the white noise makes 
no contribution to P". For the case of a standing wave 
a:. = a;,. = aw , the contribution from the regular field is 

- 'QdQ p.='ao"l <la.I'> ~;w+Q) + c.c. (6a) 

For a traveling wave (of the same intensity) we have 

P.=+ la.I'! <la.I'+I~.I'> ~i{~~~) + c.c. (6b) 

The gas is assumed to be rarefied enough to make the 
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molecule mean free path l» c/w. We recall that l= 1/ 
1Tnci, where n is the gas density and (J is of the order of 
the molecule diameter (Z-1O-3 cm at n = 1017 cm-3). In 
the case of a gas of homogeneous density and l» c/ w, 
using the result of Malakhov[6] for the shape of the cos1/! 
spectrum, when 1/!(t) is a Gaussian Markov process, we 
obtain 

(I a.1 ')=( I ~.I')""exp( -Q'/u') /2i;i u, (7) 

where u2= 2w2kT/Mc2 and M is the molecule mass. 

Substitution in (6) yields 

P.= la.1 'A (u)/400" (8) 
• t - ds 

Z(z)=- S e-·'-. , 
l'n _00 S-IZ 

where z,.= (li+ i(w ± wo)] /u and Z(z) is a tabulated func­
tion known from gas optics. [7] 

If the gas temperature is not too low, then u» 0 (but 
u2/,,} = 2kT/Mc2« 1). Then 

4u'1) (00,-00) 
A(u)"" [(00,-00)'+1)')' 

if 

if 

loo,-ool«u, (9a) 

100,-001 :>u. (9b) 

In the region of optimal tuning (wo - w -u) we have A -1, 
i.e., P" is independent of the density and temperature 
of the gas. At w = 1016 sec-I, 0 = 109 sec-I, and M = 10-22 
g, the values of u and 0 become comparable at T-3 oK. 
In the case of deep cooling, when u« 0, the quantity A 
behaves in accordance with relation (9b) at all detun­
ings if its maximum value is A-U2/02 « 1. 

We present an estimate of la",12/4wo. For a transi­
tion with an oscillator strength f we have 

la.I' ne' p 
--=f--, 

400, me 00, 

where p = cE2 /8lT is the light flux of frequency w, per 
unit area, with lTe2/mc = O. 0265 cm2/sec. At w = 1016 
sec-1 and p = 10-3 W / cm2 (E - 1 V / cm) we have lTe2p/ 
mcwo - 2 . 10-14 erg/sec, corresponding, at f = 1 and at 
the best tuning, to cooling of the x-motions of the mol­
ecules at a rate -102 deg/sec. On the other hand if we 
substitute p= 103 W/cm2 (this is the flux used by Hansh 
and Schawlow), we obtain a cooling rate of 1000 de­
grees in - 10-5 sec. 

n is interesting that this estimate coincides with that 
given by Hansh and Schawlow, [2] although it was ob­
tained by them from other considerations, using data on 
the radiative line width, the molecule mass, the gas 
temperature, and the field strength required to saturate 
the resonant transitions. Our final result, on the other 
hand, contains besides the condition of optimal tuning 
only one parameter-the oscillator strength. We note 
that a flux of 103 W / cm 2 may turn out to be large, in the 
sense of saturation of the transition, when the model 
(3) linear in q ceases to be valid. 

The total flux of the x fluctuation power converted in-
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to radiation, in the case of a rarefied gas, is deter­
mined by the quantity P" multiplied by the molecule con­
centration. 

Besides damping the translational motions of the gas 
molecules (the only motion considered in[2]), there is 
also damping of other modes of low-frequency vibra­
tions of molecules, if they influence the resonance pa­
rameters q (we recall Sec. 2.2). These vibrations 
are, for example, the rotational motions of the mole­
cules, since the optical polarizability of the molecules 
is practically never isotropiC. The effect is easy to 
account for within the framework of the model (3), by 
assuming that a depends not only on x but also on the 
molecule orientation angles. In the case of Brownian 
rotational motions of the molecule, additional random 
modulation of the right-hand side of (3) takes place, and 
by virtue of the delayed reaction of the regime of the 
q-oscillations to the rotations, the rotation energy will 
be converted into radiation in exactly the same manner 
as in the case of fluctuations of x. 

Let, for example, the molecule have a strongly pro­
nounced polarizability along one direction. Then al­
lowance for the rotation reduces to multiplication of the 
field amplitudes by cosqJ, where qJ(t) is the angle be­
tween the direction of the electric wave vector and the 
selected molecule axis. We now have in lieu of (4) 

If the field of the regular wave is linearly polarized, 
then qJ is the molecule orientation angle in the labora­
tory frame. Representing cosqJ in the spectral form 

cos Cjl = J e,o'1 (Q) dQ -- . 

and taking into account the statistical independence of the 
x(t) and qJ(t) fluctuations, we obtain in analogy with (6) 

p.=lao l'f-S(lao (Q)I')(11(Q,)12) iQdQdQ, +c.c., 
_00 ,,(ooHHQ,) 

I I f-S I I iQ,dQdQ, p.= a.' (a.(Q) ')<11(Q,)I') +c.c., 
_00 Ll (oo+Q+Q,) 

We assume in the estimates that (4;2)= 2kT/J, where 
J is the moment of inertia of the molecule; this is cor­
rect at T» T .. = h2/8rJk, where h is Planck's constant 
(T .. is usually of the order of several units or several 
fractions of a degree Kelvin). The qJ (t) fluctuation 
spectrum falls off at frequencies lower than or of the 
order of O.=l"I(kT/M)I/2. Recognizing that J<M(J2, 
we have 

<<jJ') 2kT Ml' l' 
--;;.-->-~1. 

Q.' J kT cr' 

We therefore obtain for the fluctuation spectrum of 
cosqJ, in analogy with (7) 

t Q') <11(Q)I') ",,--=--exp(-- , 
21'nw w' 
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Since 

w' 4kT Me' 2c' 
-=--->->1 
u' J 2w'kT ro'a' ' 

it follows that the rate of damping of the rotational mo­
tions is approximately 

and the damping of the x motion is sharply weakened 
in comparison with (8). Now P (P" and PIP) is maximal 
at Wo - w - w, i. e., at detunings greatly exceeding the 
Doppler width u. At the maximum we have PIP -la..,l2/ 
4wo, and the ratio (P,,/p,,)mu$.u/w-10-2 • 

Similar manipulations can be performed also for the 
case of an elliptically polarized wave a",. 

The background of the radiation scattered by the 
molecules was not taken into account in the foregOing 
(the field of a", was assumed given). It is obvious that 
it cannot play any role as n - 0, since the cooling rate 
per molecule P, does not depend on n or T at u» 0 
or at w» 0 and at optimal tuning, and is equal to 1 a", 12/ 
4wo. Nor did we take into account the heat transferred 
to the x and cP motions from the "hot" modes of motion. 
These are, in particular, the oscillations of the po­
larization (of frequency CPo). The collisions bring about 
a rather rapid energy exchange between the molecule 
vibrations whose frequencies are commensurate with 
wo. These modes of motion become heated. However, 
once the molecules leave the irradiation zone (or once 
the field a", is turned off), the energy of these motions 
is radiated much more rapidly than the heat transfer 
to the x and cp motions, since nonradiative transitions 
in a rarefied gas are negligibly weak at normal and,low 
temperatures. This ensures (disregarding the Walls) 
the possibility of cooling the gas. 

To what temperatures can the gas be cooled? Hansh 
and Schawlow[2] connect this limit with the condition 
u - 00, where 00 is the natural line width (00 = limn_ 00). 
According to calculation P*,O for all T, but as T-O a 
regime with u« 0 and w« 0 sets in, and the rate of 
cooling falls off like u2/02 or ur/02 • The COOling limit 
is determined, on the one hand, by the decrease of P, 
and on the other by the increase of the heat transfer 
from the hot motions. In principle, therefore, the limit 
in T can correspond also to u« 00 , We note that as the 
gas becomes cooled relative to the background tem­
perature 1], this background also begins to contribute to 
the heating. In our model (3) this corresponds to the 
appearance at a", *' 0, of a correlation (H(II, n)H(IIlo n1», 
which was neglected when the results (6) were obtained 
from (5). Since the particle collisions violate this cor­
relation, it manifests itself stronger the smaller u/ (0 
- 00), The smallness of u/(o - 00), however, does not 
exclude the possibility of u « 00 • 

When estimating the limiting temperature one must 
also take into account the possibility of quenching of 
various motions that are quantized. In particular, the 
rotational motions are quantized. There is a factor 
(which we have purposefully disregarded in the preced-
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ing analysis), that gives rise to an additional quenching 
of the x and cp motions. The point is that in the deriva­
tion of (7) and (10) the gas was assumed to be homo­
geneous and isotropic. But since a= a~, cp), the time­
averaged force (F,,) acting on the molecule and the 
torque (F,,) = (q8a/8cp) are both functions of x and CPo 
For low-frequency (<< 0) motions of x and cp in the field 
of a linearly polarized standing wave we have 

2 0) 6)02-0)2 2rox 2 

<F.>""-8Ia.1 -;;-I~(w) I' sin-e-cos cp, 

(002-(1): (OX'. 
(F.>"'-8Ia.I' I~(ro) I' cos'-e-sm 2cp• 

At wo> w the molecules tend to align themselves along 
the field (cp = 0) and to land in its antinode (x = 0). I} An 
important role is played in this problem by the homo­
geneity of the gas at distances x - c/ wand its isotropy 
at angles cp -1. The potential energy corresponding to 
these deviations is 

If the incident light flux has a high intensity, so that n 
exceeds kT, then the gas becomes inhomogeneous and 
anisotropic, the intensities of the x and cp fluctuations 
decrease, and the cooling effect becomes weaker. At 
w = 1016 sec-t, 0 = 109 sec-I, p = 103 W /cm 2, and!= 1 the 
value of 1 aw 12/20w becomes comparable with kT at T 
-0.4°K. 

We note that Hansh and Schawlow have proposed to 
cool the gas by isotropiC irradiation, i. e., by opposing 
light fluxes. However, all the estimates (including the 
estimate of the potential TI) are practically the same for 
a standing wave as for a traveling wave. 

4. TRANSPARENT MATTER IN MULTIMODE 
OPTICAL RESONATOR 

We consider a situation wherein the light flux has a 
low intensity, so that w in estimates of the work per­
formed over short times the connection between the 
polarization of the medium and the field can be regarded 
as linear. Let the connection be local. Far from the 
absorption bands it can then be described,by a real 
permittivity tensor 

We expand the electric field E(r, t) in a resonator filled 
with a medium in terms of the set {E~(r)} representing 
the normal modes in the system at e:; eo: 

E(r, t) = .E q.(t)E.(r). 

• 
We use the normalization 

where o~ is the Kronecker symbol and the integration 
is over the volume V of the resonator. Maxwell's equa­
tions take in this representation the form 
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d' 
ii.+Il.q.+oo.'q. = 1: dt' (a'nqn) +/,+/;') , (11) 

a'n=- 4~ f E,e_En dr, 

where wk is the natural frequency of the mode k, the 
parameters Ok take into account the absorption in the 
mirrors and the diffraction losses, Ik(t) are the sources 
of the regular excitation of the mode k and are deter­
mined by the intensity and geometry of the beam incident 
on the mirror from the outside, and/kC) are the sources 
of the thermal excitation and their intensity is such that 
at/k=O they cancel the energy outflow - Ok(q~), so that 
thermodynamic equilibrium obtains in the system. The 
random process~C) can be regarded as o-correlated 
in the time t. 

When the resonator is illuminated with light of fre­
quency W we havelk=/oke,wt+c.c. We consider the 
forced oscillations of q(t) produced above the level of 
the thermal background. We denote by {qOl' q02, •.. } 
the amplitudes of the forced oscillations of frequency 
(JJ at 8 =8 o. The time fluctuations of 8 lead to modula­
tion of this regime. Owing to the finite Q of the reso­
nances (Ok is finite), the electric regime varies with a 
delay relative to the variation of 8 (t). It is this which 
makes it possible for the work to differ from zero in 
one cycle of a periodic (random) variation of € ~ • The 
work per unit time is on the average 

if· 1\'1 . 1'=- - <EEE>dr= - "'"" <q,qna'n)' 
8n 2 '.' 

(12) 

At P> 0, the fluctuation energy is transferred from the 
medium to the radiation, and is then dissipated because 
Ok is finite, so that the medium is cooled. At P< 0 the 
effect is reversed and the medium is heated. 

We estimate P by starting from (11) and (12). We 
represent €~ in the spectral form 

and obtain from (11) and (12), accurate to terms quadra­
tic in the small f~ and!, 

p=\'1f[ iQ(oo+Q)' +c.c.]B,dQ, 
"'"" oo.'-(oo+Q)'+i(oo+Q)Il. • _00 

(13) 

.... 
In this calculation, the fluctuations of € ~ and t c ) were 
assumed to be uncorrelated. Such a model is suitable 
for the investigation of the rate of the initial cooling 
stage, to which we confine ourselves. 2) 

Inasmuch as nw» kT for optical frequencies wand 
ordinary temperatures T, it follows that the intensity 
of the thermodynamic fluctuations of 8~, meaning also 
the Bk(n) spectrum, decreases exponentially at fre­
quencies much lower than w. Recognizing also that 
Bk(n) = B k(- n) > 0, it is easy to verify that resonances 
(JJ k > w make positive contributions to P, and wk < w nega-
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tive ones. A small contribution is made by high-Q 
resonator modes for which I wk - w I :s ns' and 0k:S ns , 

where ns is the characteristic frequency of the de­
crease of Bk . Consequently, to attain the cooling effect 
the spectrum of the high-Q resonances {w k } must be 
dense in the band (w, w + ns) and be widely spaced (or 
nonexistent) in the band (w - ns , w). 

We assume next that: 1) the resonator dimensions 
are large both in comparison with A and in comparison 
with the range of the excitations of the medium that 
make the main contribution to the light scattering, 3) 

and 2) that 10k =/0 00k' i. e., the external beam excites 
only one resonator mode with index O. The first condi­
tion makes it possible to approximate the wave field 
Ek(r) by a three-dimensional harmonic structure, this 
being equivalent to superposition of four standing waves 
with wave vectors k,(k), i= 1, 2, 3, 4. Thus, aim is a 
sum of 64 terms, each proportional to e(x, n), with 

dlt.Q)= ~ f e(r,Q)e'''dr 

with x from the set x(k, n) = ± k, (k) ± kJ(n); i, j = 1, 2, 3, 
4. By virtue of condition 2) we have 

B,= Iq,I'< la"I'> = --,!,_p E d,< Idlt, Q) I'>, (14) 
260) ;«0,111 

21l,1/,I' 
P, = (0)0'-0)') '+00'6,' 

where Po is the power fed to the resonator from the 
source, while the parameters d x are determined by 
the symmetries of 80 and e~ and of Eo(r) and Ek(r). It 
is taken into account in (14) that (e(x, n)e(xl, n)*o 
only at x + Xl = O. Inasmuch as only oscillations with 
I w k - wi :s ns« (JJ are Significant in (13), it can be as­
sumed that Ix I :s 41T/A. 

When conSidering the contribution to €~ from various 
modes of motions of the medium, two limiting cases can 
be distinguished. In one case the excitations are propa­
gated in wavelike manner (e. g., elastic Debye waves), 
with 

< Idlt, Q) I'> = ~ < IE, (It) I'> Q,'6, 
Jl (Q,'-Q')'+4Q'6,' , 

(15a) 

n" = n(x) is the dispersion law, and 0" = o(x) is the wave 
damping decrement. In the second case the excitations 
propagate in diffuse manner, with 

1 (J 

<1£(It.Q)I'>=-<le,(It)I'> Q'+' " (15b) 
J1 Ox 

ax = Xx 2, and X is the diffusion coefficient. A contri­
bution in the form (15b) is made to 8~, for example, 
by fluctuations of the entropy or of the chemical poten­
tial. This part of 8~ determines the Rayleigh scatter­
ing of the light. The part in the form (15a) is due to 
Mandel'shtam-Brillouin scattering and to Raman scat­
tering (for more details on the 8 spectra see, e. g., 
Fabelinskil's book[Sl). ~ 

We substitute (14) and (15) in (13) and integrate with 
respect to n, recognizing that the only essential oscil-
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lations are those for which Ii~, Ox, lix, and CT" are much 
smaller than w. For the spectrum (15a) we obtain at 
o »Ii" 

~""~~(le!(x)I,)d,g![ oo/Q, _ oo_'Q, ]. 
p ~ ~ 2/\ (00 '-00 ')'+00 'g' (00 '-oo_')'+oo_'g' 

o 11 x(O,1I.) 0 It + + 1 It 1 

and for the spectrum (15b) 

where w,.= w ± Ox, g1 = Ii,.+ 21i", and g2 = Ii~+ 2a". We 
note that x (0, k) and d" are quite irregular functions 
of k(k). Therefore if a set of resonances {w~} with 
close values of Ii,. exists and there is no sharp anisot­
ropy in the system (Le., in EO and in the distribution 
of the wave vectors k(k)}, then we can regard x in the 
double sums approximately as a parameter independent 
of k, which is continuously distributed in the interval 
1)( I ~ 47T/X, and we can assume d" = 1/64 e~ . 

Let us estimate the contribution made to P by the 
isotropic part of e~ for the case of an isotropic medium. 
We assume that (I E(x) 12):;; (e!) (over scales I x I ~ 47T/X, 
the dependence of E on)( is usually significant only at 
critical points of the thermodynamic state of the medi­
um}. Then, as can be easily verified, 

where H is the extinction coefficient (more accurately, 
its part due to isotropic fluctuations of eJ. 

In the most favorable case, when all the resonances 
of the resonator of frequencies w~<w have in a band 
lix» O. close to w a low Q, Ii,.» 0 .. = kT In, and the densi· 
ty of the high-Q resonances w~> w with Ii~::: Os is high, 
we obtain 

(16) 

where H1,2 is the part of H due to the corresponding type 
of motion of the medium, JJ.=N/No, No= 87TV/WX3 is the 
number of all the oscillations of the volume V in a unit 
frequency interval, and N is the density of the high-Q 
modes for which 1i,.:5 Os. The quantity (02) is the aver­
age of O~ over X in the interval Ix I <4JT/X and (O"ln(w/ 
g2}) is averaged both over )( and over the distribution 
of Ii~. In the estimates it is assumed that the reso­
nances {W,.} with close values of Ii fill uniformly a broad 
(> Ii) frequency band. 

We present numerical estimates, assuming wo/lio 
- wlr/Ii,. -1010 and JJ. -1. We take by way of example the 
medium to be pure air under normal conditions. The 
molecule mean free path in it is l- 10.5 cm, i. e., X/Z 
- 5, and the medium can be approximately regarded as 
continuous and the dispersion neglected. According to 
the handbook data (see e. g., [8]), the main contribution 
to H is made by scattering from the adiabatic (- H1) and 
isobaric (- H2) density fluctuations. We take into ac­
count the fact that 0 2/ w2 - v2 / c2 _10-10, where v is the 
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speed of sound, and that 

< 0 OJ > (0) 00 • -In- --In---lO-
6 0 g, 60 2(0) 

(since (0")- XW 2/C2 and X'" 0.2 cm 2/sec). For air the 
total value is H- 3x 10-7 cm-1 (at X= 4350 .A). It fol­
lows from the Landau-Placzek formula that 

where c. and c" are the specific heats at constant 
pressure and volume, and for air (c. - c,,)/ cu '" o. 4, We 
thus obtain 

pJpo-tO-H. P,/Po-lO-'. 

If the medium chosen is a pure liquid such as benzene, 
then we have H'" 10-3 cm-1 and, assuming that the con­
tribution to H due to density fluctuations is of the order 
of H, we obtain the estimates 

For solutions of polymers and proteins, H -10-1 cm-1 

and can be even larger; P1 and P z increase correspond­
ingly. 

We note that part of the scattering in the media is 
connected with thermal excitations not of the acoustic 
modes but of the activation modes of the vibrations of 
the medium, for which (02)>>W ZV2/C2 . For examples, 
for the above-mentioned liquids an appreciable con­
tribution to H1 is made by the conformation vibrations 
of the molecules with frequencies 0-1011_1013 sec-t. 
Another example is provided by transparent ferroelec­
trics with large electro-optical constants, in which the 
greater fraction of the scattering is due to polarization 
oscillations with frequencies of the same order. We 
note that we must have 0< Os' At T= 100 OK we have 
0=/w2- 2x 10.3• At H1-10-2 cm-1 and (02)/W 2 -10-5 we 
obtain P 1 /Po-I. 

The foregoing estimates show that the cooling effect 
can be quite appreciable for weakly absorbing but 
strongly scattering media. We recall that the calcula­
tion was carried out for an ideally nonabsorbing medi­
urn. At a finite but small absorption it is necessary to 
replace Ii,. in the calculations by Ii,. + wXD, where X= x/ 
27T and D is the absorption coefficient (the light intensity 
is extinguished by a factor 2.7 over a length D-1). The 
Joule heating power of the medium amounts to 

p =p oo'1.D 
D , (llo'+oo''1.'D'}'I. 

The cooling will obviously take place if P exceeds PD • 

Under conditions when H1 or Hz prevails, this means 
that for the cooling we should have 

We have no data on the values of D for media with large 
H. It follows from the physical considerations men-
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tioned in Sec. 3 that the requirement that the absorption 
be small in comparison with the scattering can in all 
cases be satisfied for gases. 

5. CONCLUSION 

Thus, the cooling of matter by a high-frequency field, 
which seems paradoxical at first glance, does indeed 
follow from rather elementary considerations. The 
effect lends itself to experimental observation and one 
might think also to applications. 

In this paper the cooling problem was considered 
under conditions of a relatively weak external alternat­
ing field. With increasing field, various unaccounted­
for nonlinear processes in the system will come into 
play (in particular, the nonlinearity of Eqs. (1), (3), 
and (11) with respect to q). It is important that higher­
order nonlinearities can either weaken or enhance the 
cooling effect (depending on the sign of the anharmon­
icity). We note also (sel;!l4] on this subject) that unidi­
rectional energy fluxes are produced not only at the 
fundamental resonance W - W k , but also in nonlinear 
resonances of higher orders (e. g., at the parametric 
resonance W - 2 wk). 

lIThe quenching of slow motions in high-frequency resonances 
is always accompanied by changes in the effective rigidity ~ 
of these motions. For the examples discussed in the 'text, 
the changes in the susceptibilities of the slow motions are 
connected by the Kramers-Kronig relations. 

2lAtfk= 0 in the thermodynamic state, the average work above 
the thermal radiation background at fluctuations of t:_ is al­
ways equal to zero. It can be disregarded also in the case of 

small deviations from this regime. On the other hand if 
fk(t) causes accumulation of a finite differe-nce between the 
temperatures of the medium and of the radiation (i. e., the 

- temperature of the resonator walls), then work is performed 
on the average, i. e., a correlation appears between t: _ and 
f(cl. The resultant heat flux ultimately balances the flux (13); 
it is this which determines the establishment of the stationary 
temperature regime of the system. 

3lExcitations with large free paths usually fluctuate slowly in 
time, i. e., they contribute to Bk(n) at 0'" O. However, as 
0-0(0« Ok) the factor preceding Bk in (13) is small, so that 
the contribution to P from these fluctuations is negligible. 

4 lWe recall that H-I is the thickness of the medium over which 
the light intensity is attenuated by the scattering by a factor 
2.7. 
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If a superconductor is exposed to microwave radiation or if sound propagates through a superconductor, 
stationary electric fields arise in such a superconductor and decrease with the distance from the boundary. 
We obtain equations which describe the distribution of these fields and the boundary conditions for them. 
We discuss methods of observation and find the correction to the frequency of the Josephson radiation if 
one of the superconductors is irradiated by uhf radiation or sound. 

PACS numbers: 74.20.Gh 

1. INTRODUCTION 

We study in the present paper how electric fields 
arise in a superconductor under the action of micro­
wave radiation or longitudinal sound. Rieger, Scala­
pino, and Mercereau[l] and Tinkham and Clarke[2] were 
the first to indicate the possibility that there might ex­
ist stationary electric fields in superconductors. They 
showed that if a current passes through a S-I-N con-
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tact, electric fields arise in the superconductor which 
decrease far from the boundary at a diffusion distance 
L 2 = DT Q in superconductors with a gap[2] and at a co­
herence length in gapless superconductors. [1] The 
time T Q of the relaxation of the excitations between two 
branches of the spectrum ~p>O and ~p<O (~p=p2/2m -/l, 
p is the quasi-momentum of the electrons, /l the chem­
ical potential of the normal metal, and D the diffusion 
coefficient of the normal electrons) caused, for in-
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