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A nonlinear theory of magnetic Landau damping of a helicon moving at a certain angle to a stationary , 
magnetic field is developed. It is shown that trapping of particles by moving magnetic bottles formed by 
the force lines of the magnetic field and magnetic field of the wave is effective in the field of a strong wave. 
Trapping of the particles results in modulation of the velocity component along the stationary magnetic 
field. The conditions of resonant interaction between the particles and wave are then violated and the 
helicon damping coefficient decreases. In the case of strong nonlinearity the damping coefficient is 
proportional to (wo1")-I<I, where Wo is a characteristic oscillation frequency of the trapped particles and 
1"-' is the collision frequency. Estimates are presented which indicate the possibility of observing the effect 
experimentally. 

PACS numbers: n.IO.Di 

1. INTRODUCTION 

In two metals with unequal electron and pole densities, 
at low temperatures and in the presence of a magnetic 
field, low-frequency electromagnetic excitations-heli­
cons[11-can propagate. These excitations were ob­
served in many metals (see, e. g., the literature cited 
in the reviews[2,31). 

Helicons experience both collisionless and collision­
induced damping. The latter is quite small in pure 
metals at a cyclotron frequency we much higher than 
the collision frequency T- 1

o When helicons propagate 
along a magnetic field parallel to the symmetry axis of 
the crystal, there is a single mechanism of collision­
less damping, namely cyclotron damping, which ap­
pears at kR > 1 (k is the wave vector and R is the Lar­
mor radius). In the region kR < 1, which is of greatest 
interest from the point of view of experiment, helicons 
propagating at an angle fJ to the magnetic field experi­
ence magnetic Landau damping. At not too small an­
gles fJ and at I k.' »1 (k. is the projection of k on the 
direction of the magnetic field Ho and l is the electron 
mean free path), the magnetic damping prevails over 
the collision damping. 

The linear theory of the Landau magnetic damping 
was constructed by Kaner and Skobov. [4] The purpose 
of the present paper is to construct a nonlinear theory 
of the magnetic Landau damping. We shall show below 
that a helicon of sufficiently large amplitude can have 
a damping coefficient much smaller than the damping 
coefficient of a weak wave. Estimates that demonstrate 
the feasibility of experimentally observing this effect 
will be presented. 

Let us stop to discuss the physical picture of the 
phenomenon. Let a helicon propagate at an angle (] to 
a magnetic field directed along the z axis, and let the 
wave vector k lie in the yz plane. The spectrum of the 
metal is assumed to be isotropic and quadratic. The 
magnetic field of the wave H is polarized here circular­
ly in a plane perpendicular to k, and has the compo­
nents 
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H.-H sin (k,y+k,z-mt) , 
H,-Heoseeos (k,y+k,z-mt) , H.=-H,tge, 
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(1 ) 

where H is the amplitude of the magnetic field of the 
wave and W is its frequency. The electric field lies in 
the xy plane, with 

E Vph H E.=-~H., .= ceose .. ceose 
(2) 

where Vpb= w/k is the phase velocity of the wave. 

The longitudinal component E., as is well known, is 
small in comparison with E" and Ey and will henceforth 
be disregarded. We shall assume that kR« 1; in addi­
tion, in metals we also have w (k)« we' This means 
that the motion of the electrons in the field of the wave 
in a constant magnetic neld Ho constitutes rapid rota­
tion on a Larmor orbit whose center moves in fields 
that vary slowly in space and in time. 

It is easily seen that in the region kR« 1 the helicon 
interacts effectively with particles having orbits with 
centers that move in a constant-phase plane of the wave 
and for which the condition k.v.= w is satisfied. As a 
result of the action exerted on these particles by the 
wave electric and magnetic field components E" and Hy , 

the center of the orbit accelerates in the z direction and 
the particle energy changes. This leads to the mag­
netic Landau damping. 

To consider the nonlinear effects it is necessary to 
take into account the fact that the magnetic field of a 
strong wave greatly distorts the motion of the resonant 
particles. This occurs in the following manner. The 
magnetic force lines of the field Ho+ H form a system 
of twisted moving magnetic "bottles." The planes of 
condensation and rarefaction of the force lines are per­
pendicular to k. The magnetic bottles trap resonant 
particles. The centers of the Larmor orbits of the 
trapped electrons execute, besides translational motion 
with velOCity w/k., also oscillation along z with a char­
acteristic frequency 

( hsine )'/' (jJo=kzv, -2- , (3) 

where v F is the Fermi velocity, and h = H/Ho• In a 
weak-field wave the frequency of such oscillations is 
much lower than the collision frequency T- 1; the trap-
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ping is then insignificant and the linear theory is valid. 
In the field of a sufficiently strong wave, the period of 
the oscillations is too short for the particle to be scat­
tered. In this case, owing to the modulation of the ve­
locity VI" the conditions for resonant interaction of the 
particles with the wave are violated and the damping 
coefficient decreases. At the same time, since the 
helicon spectrum in the region kR« 1 is formed by all 
the electrons of the Fermi surface, and the trapped 
electrons lie in a narrow velocity region Iv ... - w/k.1 
-w,jk ... «v F , the real part of the helicon spectrum is 
not changed by the trapping. 

The mathematical formulation of the theory is based 
on a solution of the Boltzmann kinetic equation by the 
method of characteristics, which are the trajectories 
of the particles in a constant magnetic field and the 
wave fields, These trajectories will be considered in 
the next section. 

It should be noted that our problem is analogous to a 
certain degree to the problem of nonlinear absorption 
of longitudinal sound in conductors, which was con­
sidered in the interesting papers of Gal'perin, Gure­
vich, Kagan, and Kozub. [5,6] In both cases, the de­
crease of the damping coefficient is connected with the 
trapping of the particles, but in one case the trapping 
is due to the action of the longitudinal sound-wave field, 
and in the other to the presence of magnetic bottles. 
The problem of nonlinear cyclotron damping of helicons 
in a collisionless ionospheric plasma was considered 
by Bud'ko, Karpman, and Pokhotelov. [7] 

2. PARTICLE TRAJECTORY 

The nonlinear increment to the equilibrium distribu­
tion function is conveniently sought in a coordinate sys­
tem that moves along the z axis with velocity vo=vpJ 
cose. It is easy to verify that in this coordinate sys­
tem there is no electric field (we neglect the component 
E,.) and the magnetic field of the wave, accurate to 
terms of order (vpbl C)2, is equal to its value in the lab­
oratory frame. 

Let us consider the particle trajectories. Their mo­
tion is described by the equation 

dv e 
m-=-[vX(H,+H)l. 

dt c --
(4) 

where H is given by formulas (1), and e and m are the 
charge and effective mass of the particle. We introduce 
the variable ~ = k.,y+ k,.z and express (4) in the cylindri­
cal coordinates v., Vu <1>, where v,,= V.1 cos<1>, v., 
=v.1sin<1>: 

¢J=cu.{1-h :: (cos~cOS6Sin«1l+sinscos«1l)-hcos;sin6}. 

v~=-cu,hv J- (cos S cos «1l cos 6-sin «1l sin s). 
ziJ-=-(v/vJ-)zi,. 

In order for the system (5) to be closed, it must be 
supplemented by an equation for ~, which takes the 
form 
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(5) 

4 (. ~) ---at = k,v J- sin «1l+k,v,=cu, k,R sin «1l+k,R ~ • (6) 

whereR=v.1/wc. The energy conservation law v 2 =v! 
+ v~= const follows from (4). Inasmuch as in the con­
sidered coordinate system the waves interact effective­
ly with particles in the velocity region Iv,.1 ~max{(k ... Tt\ 
(.Llo/k.}«V.1""VF' when considering the equations of mo­
tion it is assumed that v ... « v .1. In view of the small­
ness of h, kR, and v,./v.1' Eqs. (5) and (6) can be in­
vestigated by the method of averaging over the fast 
variations of the phase <1> ([8], Sec. 25). In our case, 
however, the analysis becomes simpler. In view of 
the smallness of v,./v.1' we can neglect the variation of 
v.1 and put V.1 "" v. Taking into account also the small­
ness of the parameter h, we can neglect the small mod­
ulation of the angular velocity and assume that <1> = wct. 
Allowance for the small modulation of the angular ve­
locity would lead to inessential corrections in the equa­
tions of the characteristics (12). 

We shall seek the solution of equations (5) and (6) in 
the form ~ = "f - k.,R cos<1>, v.= v,., where "f and v,. de­
scribe the motion of the center of the Larmor orbit, 
and the term - k.,R cos<1> describes the rapid variation 
of the coordinate y of the electron as a result of the 
rotation. Averaging with respect to <1> in (5) and (6), 
confining ourselves to terms of first order in k.,R« 1, 
and changing over to the dimensionless variable 

ii, 
s= v.('/,h sin 6)'1.· 

we obtain 

ds ----at = -cu, sin S. 

where Wo is defined by formula (3). The integral 
J'e= h 2 - cos"f = const follows from (7). 

Introducing 

x=sign s[2/(~+1) 1'". 

we obtain an equation for ~: 

d~ = 2cu. 1/1-x'sin,l 
dt x f 2 • 

(7) 

(8) 

the solution of which is expressed in terms of the 
Jacobi amplitude. It is easily seen that IKI ranges 
from zero to infinity. If 0< Ixl < 1, then ~ can assume 
arbitrary values and the motion of the particle is infi­
nite with respect to~. These particles will be called 
untrapped. At I xl> 1, the motion of the particle is 
finite and the turning points are determined from the 
condition that the right-hand side of (8) vanish. These 
particles will be called trapped. In the next section we 
shall find the distribution functions of the trapped and 
untrapped particles. 

3. DISTRIBUTION FUNCTION 

In a coordinate system that moves along the z axis 
with velocity vo, the Boltzmann kinetic equation takes 

G. A. Vugal'ter and V. Va. Demikhovskii' 740 



the form 

at at e at 
v.-+v.-+-[vXCH.+H)]-+lU}=O, au az c ap (9) 

where i{/} is the collision integral. (We assume that 
the temperature is low enough and that the electrons 
are scattered primarily by impurities. In this case the 
collision integral is linear in I.) We have left out from 
(9) the derivative aI/at, which is proportional to the 
small damping coefficient of the wave. 

We seek the solution of (9) in the form 

t-F,(v+v.)+g,(U, z), 

where Fo(v) is the equilibrium distribution function. 
Changing over to the variables 

we obtain 

. ag 
(k,L',+k,v.c (8, v,)sm I!)~ - hw,v1.(Il, v,) 

X[cos <D cos; cos a-sin <D sin 61~ + w,~+ [{g} 
GV, a III 

, VpheH [ sin <D sin s ] =-F, (v+v,)--v1.(e,v,) cosl!)coss- . 
c c~A 

Here 

(10) 

F~ is the derivative of the distribution function with re­
spect to energy. In the coefficient of the derivative 
ag/aip we have omitted the inessential terms of order 
h« 1 (see Sec. 2). 

Instead of ; it is convenient to change over in (10) to 
the variable 

- V1. 
s=s+k~-cos <D, 

00, 

which describes the motion of the center of the Larmor 
orbit. We next expand in terms of kyvJ.(e, v.)/we « 1 up 
to terms of first order. The resultant equation, just 
as (10), is linear in g, so that we can separate in it 
that part of the distribution function (which we deSignate 
gl), which describes in the region kR < 1, w« we the 
resonant interaction of the particles with the wave, and 
consequently also the Landau absorption. It is easy to 
verify that the equation for gl should contain in the 
right-hand side only the expression 

VpheH -
-F,' (v+v,)--k,v1.'(e, v,)sin 6, 

2cw, 

which is connected with the component H.,. Recogniz­
ing that the particles effectively interacting with the 
waves are those from the narrow region 

1. e., the distribution function gl differs Significantly 
from zero only in a narrow velocity region v., we can 
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neglect in the collision integral the arrival terms and 
write this integral in the form i{gJ:::: T-1g1, where Tis 
the time of departure from the state p to the resonance 
region. In view of the smallness of v., we can also 
put vJ.(e, V.)::::V.L(I!, O)=V.L(e)= (2me)1I2. 

Taking the foregoing into account, we write the equa­
tion for gl in the form 

ag, [ - _ -
k,v,--=- hw,v1.(e) cos I!) c~ scos a-sin I!) sin 6 

as 
v1.(e)";' - ] og, + k, --(cos' I!) sin 6 cos a+sin <D cos <D cos 6) -0-
~ ~ 

ag, _, F '( ) VpheHk I()' -+00,.---+'1' g,=- , v+v. -2- ,v1. 8 sm!;. 
"I!) coo. 

(11) 

Neglecting in the coefficient of the derivative ag/av. 
the terms that oscillate rapidly in ip (see Sec. 2), we 
obtain the following equations of the characteristics: 

~= dv, 
k.v. -'/,hk,v1.'(Il)c~6sin€ 

dl!) dg, 

IDe -T-'g,+U ' 
(12) 

where U denotes the right-hand side of (11). 

From (12) follows the integral of motion 

:M=v.'/v,'h sin a-cos ~_i/2S'-COS ~ 

(see Sec. 2). The equation for gl has a solution peri­
odic in ip, with a period 21T in the form 

_ v If!H 6 I!) , -I!) _ 
g,(s, I!), 8,J'tS) =-Fo' (v+vo)-P-k.R· S exp (--) sins(I!)')dl!)' 

2c _00 Wc't 

(13) 

where ~(ip') is the solution of the equation 

dfw) = 2000 (1-,,' sin' f( I!)') ) 'I, , 
dl!)' 00," 2 

(14) 

which passes through the point ~(ip' = ip)=~. 

We consider separately the trapped and untrapped 
particles. For the trapped particles (!'It I < 1) the solu­
tion (14), as noted above, is expressed in terms of the 
Jacobi amplitude 

(15) 

Here ipo(~, ip) is the value of ip' at which the curve ~(ip') 
arriving at the point (~, ip) passes through the point 
'f = O. 

Substituting (15) in (13), we obtain the distribution 
function gl ut of the untrapped particles. To calculate 
the integral we use the expansion of sin'f(ip') in a Fou­
rier series [9]: 

sin ,[(Ill') = 2sn.{~(Ill'-Ill'(r. I!)), ,,}cn{~W -IlJ,('[, Ill», ,,} 
roo'"' . . Cl)oX , 

_( 2n )'~ nq"(") . ( nnw,. ' ··-Ill ) 
- "K(,,) ~ i+q'n(,,) sm ID,,,K(,,/Ill -Illa(s, » , 

n_' 

where K(x) is a complete elliptic integral of the first 
kind 
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q(x)=exp ( nKOI~). 
K(x) 

Elementary integration yields 

, v$eH (2n )'I:~ nq"(x) g,.,=-F, (v+v,)--k.R' --
2c xK(x) n_, 1+q'"(x) 

X 1 {(' . (nnF(~f2,x») 
(OOcT)_2+(nncoo/wcxK(x»2 OOc T)- SIn K(x) 

nnw, ( nnF (V2, x) )} - cos 
w,xK(x) K(x) . 

(16) 

Here F(V2, x) is an elliptic integral of the first kind. 

To calculate the distribution function of the trapped 
particles g1 t( Ix I> 1) it is convenient to break up the 
integration region into intervals of length 4>(x), where 
el> (x) is the angle through which the particle rotates on 
the Larmor orbit with "energy" :1e = 2/x2 - 1, executing 
~ complete oscillation in the "potential" well. If ~1 and 
~2 are respectively the left-hand and right-hand turning 
points, determined from the condition :16=- cos~, then 
it is easily seen that 

Breaking up the integral in (13) in integrals over the 
segments (el>, el> - el>(x», (el> - el>(x), el> - 2el>(x» ... and 
making in each integral a change of the integration 
variable of the type el>' - el>' - nel> (x) (n = 1, 2, ... ), we 
obtain 

(- ,., ) , VpheH 
g" S, 'V, e, x =-Fo (v+vo)-- k,R' 

2c 

1 "'+"'(Kl <ll-<ll' _ 
X (<ll()f ) 1 S eXP(--)sinS(<ll')d<ll'. exp x meT - -ll (OcT 

(13a) 

Without loss of generality, we can assume that the 
trapped particles oscillate in a well containing the point 
~ = O. It is obvious that ~1 = - ~2' We denote by el>o(~, el» 
the value of el>' closest to el> at which the particle passes 
through the point ~ = 0 as it moves along a trajectory 
passing through the pOint (~, el>). Then, as can be easily 
verified, the equation of the trajectory takes the form 

~(<ll') { 000 -} - 1 -2-=am -(<ll'-<ll,(s,!ll»,x , !ll<<ll'<<ll,(s,!lJ)+-!lJ(x); 
W,x 4 

~(<ll') {W' (' - 1 )} --2= -am ~,x !ll -!lJ.(s,<ll)-2!lJ(x) ,x , 

<ll,(~, !lJ)+I/.Cll(x)<Cll'<Cll,(~, <ll)+3/.Cll(x); (17) 

~(Cll') { 000 - } 
-2-=am ~(!ll'-<ll,(s,<ll)-<ll(x»,x , 

<ll,(~, Cll) + 3/. <ll (x) <<ll'<<ll+Cll (x). 

We next expand sin~(el>') in a Fourier series. For 
concreteness we assume 

(the generalization to other regions of 4>' is obvious). 
According to[9l, we have 

. -, 2 {w.x , - 1 } 
81Il s(ClI )-T,;Isn 1Il.lxl (ClI -ClI.(;, ClI»'7 
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Carrying out the integration in (13a), we obtain the dis­
tribution function of the trapped particles 

1 
(w.t) -,+ (nw,(n-'/,)fw,K(x-'»' 

X{ (W,T)-' sin ( n(~~~~~;xl F( ~ ,x)) 

_ nw,(n-'/,)x cos (n(n-'f,) Ixl F( ~))} (18) 
(t),lxIK(x-') K(x-') 2 ,x • 

The derived formulas (16) and (18) for the distribution 
function enable us to obtain the nonlinear damping coef­
ficient. 

4. NONLINEAR DAMPING COEFFICIENT 

As noted in the Introduction, the magnetic Landau 
damping is connected with the action exerted on the 
electrons by the field components E" and Hy. In the 
linear theory, the damping is determined by a single 
component (Tn of the conductivity tensor. [4) In the non­
linear regime, when the field of the wave changes the 
trajectories of the resonant particles, we shall calcu­
late the damping by using a relation that connects the 
work done by the wave on the particles with the change 
of the wave energy. This relation is written in the 
form 

{) . 
- <W) = 2 1m (t) <W) = - (JE(rt». 
at 

(19) 

The angle brackets denote averaging over the period of 
the wave, 

is the electromagnetic-wave energy averaged over the 
period, [10) and E and H are the complex amplitudes of 
the wave field and are defined by relations of the type 

In our case, the helicon energy is in essence magnetic, 
i.e., (W):::: IHI 2/161T. As follows from the foregoing 

(jE(rt) ) = (j,.E. (rt) >. 

The energy absorbed by the particles will be calcu­
lated in an immobile coordinate system by using the 
formula 

(20) 

where the current j" is given by 
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_------Fnl 
~n 

2 

'. co 12m.) Ire 
2em' 

j.= (2,,)' J de J dv, J dID v.l(e, v,)gl cos ID 
o -(2m&)I,. 0 

(21) 

(the current Ix: has the same values in the moving and 
in the immobile coordinate systems). It is next neces­
sary to substitute (21) in (20), change the order of in­
tegration with respect to q, and ~, and change over from 
integration with respect to the variables ~ and v" to in­
tegration with respect to the variables ~ and x. It is 
also necessary to take into account the fact that, in 
view of the smallness of VO/VF' we can put FG(v+vo) 
::::: - o(e -8F)' In the integration with respect to q, it is 
necessary to use the fact that for any functionf(~) which 
is periodic with a period 21T, the following relation 
holds at k~R« 1: 

211 :t:+ArR COS ¢I R 

J dlDcoslD J d~f(~)cos(~-k.RcoslD)="k.R J d~f(~)sin~. 
1) -:n+AvR {'os ~ _11 

The integration with respect to ~ can then be easily 
carried out by making the change of variable ~ 
= 2 am h, x} and subsequently expanding sin(2 am (T, x)) 
in a Fourier series (in analogy with the procedure used 
in Sec. 3). 

As the result of the transformations, we obtain from 
(19) and (20) the nonlinear damping coefficient 

is the linear damping coefficient of the helicon, 'Yt and 
'Yilt determine the contributions of the trapped and un­
trapped particles, respectively, with 

+- dx E- (n- I/) 'qln-I (X-I) (00 1:)-1 
1.=128,,' S '---~:.:.'::!-----

x'K'(x-') n_' (1+q,n-, (x-'»' (ooo'r) -'+(,,(n-'/,)/K(x-'» 2' 

(22) 

(23) 

At WOT« 1 the trapping is negligible and the linear 
theory is valid. Indeed, in that case the particles con­
tributing to the absorption are those from the region 
Iv,,-vol-(Tk,,)"i, which corresponds to the values 

Iv,-v,1 1 
s= -->1 

vF('/, h sin 8) '. 00,1: 

(untrapped particles). Replacing in (23) 
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(0001:)'+ (xK(x)/:nn)' 

by 21Tno(x) and using the fact that as x-O 

-- 4 
K(l'1-x') '''In-, 

x 
q"(x) (X)" 

(1+q'n(x»' "" 4" ' 

we obtain 'Yilt"" 1. As can be easily seen, 'Y t - u.'oT « 1. 

The results of the numerical calculation of 'Yt and Ywt 
are shown in the figure. It is seen from the figure that 
in the region '''''oT«1 the quantity rDirlta='Yt+'Ywt tends 
to unity. It is interesting to note that as WoT ~ 1 the 
ratio r Dir ltD is close to unity, even though the contri­
bution of the trapped particles to the damping, as seen 
from the figure, is comparable with the contribution of 
the untrapped particles. At WoT» 1 it follows from (22) 
and (23) that 'Yt+'Ywt is proportional to (WoT)-l. A nu­
merical calculation (see the figure) yields 'Yt + 'Yilt::::: 2/ 
WoT 0 The contribution of the trapped particles is here 
approximately three times larger than the contribution 
of the untrapped particles. 

It can be shown that formulas (22) and (23) and the 
plots in the figure describe also the behavior of the 
damping coefficient of a strong longitudinal sound wave 
in metals, if Wo is taken to mean the characteristic fre­
quency of the oscillations of electrons trapped by the 
sound wave. [5,6] 

Experimental observation of the decrease of the heli­
con absorption coefficient with increasing amplitudes 
should be carried out in a region where the frequencies 
and the magnetic fields are such as to ensure satisfac­
tion of the conditions I k "Il » 1 and kR «1. An appre­
ciable decrease of the damping coefficient, as follows 
from the results of this paper, takes place at WoT i:! 1. 
Assuming by way of estimate T = 5X 10-10 sec, Ho= 4 

X 10 4 Oe, kR = O. 3, and assuming that the Fermi veloc­
ity and the carrier density n have values typical of 
metals, namely v F-108 cm/sec and n -1022 cm-a, we 
find that at a power of flux density 1 W /cm 2 delivered 
to the sample the parameter WoT is equal to three, and 
the damping coefficient is decreased by approximately 
one-half. At the indicated values of the parameters, 
the condition I k "Il» 1 is well satisfied. Simple esti­
mates show that at a flux density 1 W/cm 2 the heating of 
the electron system by the helicon is negligible. 

The authors thank A. A. Andronov for useful discus­
sions and V. N. Dutyshev for the computer calculations. 
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The Raman scattering (RS) spectra of crystals of the homologous calomel series, possessing at room 
temperature a tetragonal structure with a single linear molecule Hg2X, (X = Cl, Br, I) in the primitive cell 
(space group D4h 17) are investigated in the 10 to 300'K temperature range. When the crystals are cooled 
below T, = 185'K (Hg,Cl,) or T, = 143'K (Hg2Br2) the RS spectra undergo a number of qualitative 
changes (appearance of new lines and splitting of degenerate oscillations), which point to a structural 
transition of the lattice to the orthorombic phase D2h 17 with a double unit cell. Polarization of the RS 
spectral lines of the low-temperature phase is measured in samples made monodomain by uniaxial 
compression. The structural transition is analyzed within the framework of the phenomenological Landau 
theory of second-order phase transitions. It is shown that in Hg2X, crystals a transition of the displacement 
type is due to lattice instability with respect to oscillations from the acoustic transverse branch (soft mode) 
at two non-equivalent X-points on the boundary of the Brillouin zone of the tetragonal phase. The 
transition is characterized by a two-component order parameter and is accompanied by a spontaneous 
strain in the basal plane of the D4h 17 lattice ("improper" ferroelastic). Five of the six new RS-spectrum 
lines predicted by the theory are found below T,. The intensities of the new lines (normalized by taking 
into account the temperature dependence of the phonon occupation numbers) and widths of the doublet 
splitting are linear functions of the squared frequency of the soft mode. The parameters of the model 
thermodynamic potential for calomel are determined from data on the dependence of the soft-mode 
frequency on the temperature, on the uniaxial compression, on the magnitude of spontaneous strain, and on 
the monodomainization threshold stress. The jumps in the specific heat and elastic constants at the 
transition point are estimated. 

PACS numbers: 78.30.Gt, 64.70.Kb 

The study of the RS spectra has revealed[7] that at 
temperatures lower than Te = 185 K (Hg2Clz) and Te 

A new interesting group of materials, halides of mono­
valent mercury, Hg~2' X = CI, Br, I, was recently 
synthesized[l] in the form of synthetic single crystals. 
These isomorphic compounds have a unique crystal 
structure at 20°C, consisting of parallel chains of 
linear molecules Hg2XZ, which are relatively weakly 
coupled to one another. The molecules form a body­
centered tetragonal lattice DU with one molecule per 
unit cell. [2] The chain structure of the Hg2XZ crystals 
leads to an extraordinarily strong anisotropy of their 
phYSical properties. Thus, the crystals of calomel 
(HgzClz) have a very large elastic anisotropy (one of the 
sound velocities is the lowest of the velocities known in 
the condensed phase and is comparable with v. in aires]), 
and has a record value of optical birefringence (~n 

= 143 K (HgzBrz) they undergo a number of qualitative 
changes that point to a phase transition. The main ef­
fect consists in the appearance, in the first-order RS 
spectra, of additional weak lines at T'" Te, which are 
missing at T> Te. [7] The existence of a phase transition 
was directly confirmed by observation of the domain 
structure of HgzClz and HgzBrz at T< Te. [S] According 
toes], at T'" Te the tetragonal point group of the crystal 
D4h is lowered to the centrosymmetrical orthorhombic 
group D Zh, with onset of spontaneous deformation; the 
samples can become single-domain by uniaxial com­
pression (a "pure" ferroelastic). 

= +0. 65[4]). In[s.6], investigations were made also of 
the spectroscopic properties of Hg~z single crystals, 
namely the m spectra and the Raman scattering (RS) 
spectra. 
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In this paper, to explain the microscopic nature of 
the phase transition in Hg~2' we report a detailed in­
vestigation of the RS spectra of the compounds Hg2Clz 
and HgzBr2 at T'" Te. The clear-cut manifestation of 
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