
Phonon zero sound in degenerate germanium in a 
quantizing magnetic field 

D. A. Andreev, I. P. Ipatova, and A. V. Subashiev 

A. F. loffe Physico-technical Institute, USSR Academy of Sciences 
(Submitted October IS, 1975) 
Zh Eksp. Teor. Fiz. 70, 1412-1418 (April 1976) 

The modification of the optical oscillation spectrum for homopolar semiconductors analogous to 
degenerate germanium, caused by the interaction with electrons in a quantizing magnetic field, is 
considered. It is shown that the effective attraction between the electrons through the phonons leads to the 
appearance of a new branch of the zero sound type. The velocity of the phonon zero sound depends on the 
magnetic field strength and may vanish at certain threshold values of the field. Under such conditions, a 
phase transition involving a lowering of the lattice symmetry may occur. 

PACS numbers: 63.20.Kr 

Electron-phonon interaction in degenerate homo polar 
semiconductors leads to an appreciable renormalization 
of the frequencies of the optical phonons. [1,2J The 
change in the frequency of the optical phonons with in­
crease in concentration of the free carriers in germani­
um and silicon has been observed experimentally in 
Raman scattering. [3,4J 

Modification of the phonon spectrum in homopolar 
semiconductors (of the n-Ge type) ill a quantizing mag­
netic field is studied in the present work. It is shown 
that the electron-phonon interaction leads to an effec­
tive attraction between the electrons in this case, due 
to tranSitions with Lin = 0 (n is the number of the Landau 
level). A new undamped, unscreened branch of the 
zero-sound type appears in the vibrational spectrum, 
with a velocity less than the Fermi electron velocity. 
The velocity of this "zero sound" depends on the mag­
netic field and vanishes at certain values of the fie ld. 
In the simple case of a Single filled Landau level in 
n-Ge, this threshold value is equal to 

Hth=2mcep/3'1'2'1'~;"he, 

where m is the mass of the electron, C is the velocity 
of light, E F is the Fermi energy in the absence of a 
magnetic field, 1;0 is the constant of electron-phonon 
interaction, h is Planck's constant, and e is the c.harge 
on the electron. 

At H> Htllf the cubic configuration becomes absolute­
ly unstable and a redistribution of the electrons in the 
Brillouin zone takes place. This is accompanied by a 
shift of the sublattices. A phase transition of such a 
type has been studied phenomenologically by Kochelap 
and Sokolov. [5J This conclusion is valid when a homoge­
neous phase transition takes place. 

1. CALCULATION OF THE POLARIZATioN 
OPERATOR IN A MAGNETIC FIELD FOR n-Ge 

The effect of electrons on the spectrum of long-wave 
optical vibrations has been studied previously by Demi­
khovskii and Protogenov[6J for the case of polarization 
oscillations in an ionic crystal. The electron-phonon 
interaction in degenerate homopolar semiconductors 
differs essentially from the polarization interaction. It 
contains an important contribution of short-range 
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forces. [7J As has been shown earlier, £1,4J it leads to 
such a redistribution of the electrons over the ellip­
soids that oscillations of the electron density and cur­
rent are absent in the mean over the Brillouin zone. 
It is important that, for long-wave optical oscillations, 
the matrix element of this interaction depends on the 
electron quasimomentum p. In the case of n-Ge, the 
electron ellipsoids are small in comparison with the 
distances between them in the Brillouin zone; there­
fore, we can neglect the dependence on the quasimo­
mentum POi - p, where POi is the location of the center 
of the ellipsoid, in the limits of an individual ellipsoid. 
The diagonal matrix element of the electron-phonon in­
teraction depends only on the direction in the given el­
lipsoid UJ: 

(1) 

where I;~ is the polarization vector of the oscillations 
of the lattice branch j, M is the mass of the ion, Wo is 
the frequency of the optical phonon, No is the number 
of atoms in a unit volume, D is the constant of the de­
formation potential. Account of quantization of motion 
of electrons in the magnetic field in this case cannot 
have an effect on the form of the matrix element of 
electron-phonon interaction. 

The Hamiltonian of the electron phonon interaction 
has the form 

Hth = 1:, (sIV1(r)e"'ls') a,+a.· (b.l+b:!:.I) , 
.;.'jqjJ 

(2) 

where a: and a& are the creation and annihilation opera­
tors of the electrons, b;J and bqJ are the creation and 
annihilation operators of phonons, and the diagonal ma­
trix element (s I Vj(r) I s') is calculated in terms of the 
wave functions of the electrons in the magnetic field and 
is identical with VJ(po,) from (1) in our approximation. 

The spectrum of optical phonons is determined from 
Dyson's equation, which has the form 

(3) 

for an isolated branch j. Here DoJ(q, w) is the Green's 
function of the free phonon, and the polarization opera­
tor IlJ(q; w) is calculated by perturbation theory for the 
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case of weak interaction of the type (2). 

The frequencies of the phonon spectrum are obtained 
from the equation Djl = 0, i. e., 

where llJ(q, w) is expressed in terms of the electron 
Green's function Go with account of (2): 

Il;(q, w)li(q-q')= - (2n~~: h'w) dpI dp,dw, 

XVi (P,) Go (PI+q, P" 00,+(0) Vi (p,) Go (p,-q', Ph 00,). 

For an isotropic electron spectrum of metals lo­
cated in a magnetic field, llj(q, w) was calculated by 
Blank and Kaner. [8] In this case, RellJ determines 

(4) 

(5) 

the modification of the phonon frequencies in the pres­
ence of electrons, and Imllj gives the Landau damping 
of the corresponding excitations. In Ref. 6, regions in 
the (w, q) plane were established in which the Landau 
damping was different from zero. The results were 
shown in Figs. 1 and 2 of Ref. 9, where the region of 
existence of the Landau damping is shaded. 

We are interested in the modification of the phonon 
spectrum of long-wave optical phonons in a degenerate 
semiconductor of the type n-Ge, where the electron 
spectrum is essentially anisotropic and consists of four 
ellipsoids, located along the diagonals of a cube. We 
shall consider optical phonons with wave vector q, di­
rected along a fourfold axis. As was shown in Ref. 1, 
for phonons propagating along symmetry directions 
there is no screening of the effects from the interac­
tion (1), since there are groups of carriers that are 
symmetric relative to this direction and whose electron­
current-density oscillations add up to zero. 

The electron concentrations in the semiconductors 
are smaller by 2-3 orders of magnitude than in metals, 
and therefore the quantum limit EF'" IiO, where 0 is 
the cyclotronfrequency, is easily achieved in a mag­
netic field. Only several lowest Landau levels are 
filled here. Since the distance between the ellipsoids 
is much greater than the Fermi momentum in a semi­
conductor and correspondingly larger than the magnetic 
momentum P»PF'" (mIi0)1/2, then we can neglect the 
interellipsoidal transitions in (5) and write down the 
polarization operators in the form of a sum over the 
ellipSOids: 

11 ( ) ( ') 1Bi ~ J d d d ; q,w Ii q-q = (2nli) , Ii'wo ~ P,' Po 00, 
; 

(6) 

where the index i denotes the number of the ellipsoid. 

We can also carry out such a transformation of co­
ordinates in momentum space in Eq. (6) that the prob­
lem reduces to the case of the isotropic electron spec­
trum described by Landau oscillators. In each compo­
nent we can choose the coordinate axes along the prin­
cipal axes of the llipsoid and deform the reciprocal 
space in the following fashion: 

(7) 
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netic field in coordinate space will be transformed as 
follows (see, for example, Ref. 7): 

(8) 

It is seen from (7) and (8) that if q II H in the initial 
system of coordinates, then they will be directed at an 
angle with respect to one another in the deformed sys­
tem. In this case, generally speaking, electron tran­
sitions not only with t:.n = 0, but also with t:.n¢ ° make 
a contribution to the renormalization of the phonon spec­
trum. However, as is shown in Ref. 10, in the long­
wave limit, the principal role in the renormalization 
of the phonon spectrum in the case of low frequencies 
will be played by transitions with t:.n = 0 as before. 

We now carry out a rotation of the deformed set of 
coordinates about the X axis so that the Z' axis coin­
'cides with the direction of H'. Then, in the new coor­
dinate system, 

H ... =H, .. =O, 

[ m. m, ]'" H," = IHI -;;-sin' a +-mcos' a ; 

g ... =g. (m/m.) '/0, g." 
Igl (m/m,) 'I. sin 2a(1-m,/m.) 

2(m.sin'a/m+m,cos'a/m)'" • 

( m. m, )'" q,"= Igl -msin'a+-mcos'a • 

(9) 

(10) 

where a is the angle between the directions [111] and 
[100]. For n-Ge, 

cos a= 1/13. (11) 

We now make use of the expression for llj(q, w) ob­
tained by Blank and Kaner[8] for the isotropic electron 
spectrum, substituting HII and qll in it in the form (9) 
and (10). We then get 

Rell;(q,w)=_~_emH ~ 2V/(p,,) 
2n-Ii' cq; liwo 

~ M' I [(q-Pm)'-p.']'-(2mliw)' I 
X~ .m (p)ln [(q+Pm)'-p.']'-(2mli(o)' ' 

n,m 

() n emH ~ 2V/(p,,) 
Imll; q 00 =----- ---

, 2n'h' cq ; hw, 

X ~M.m' I/o[em(p;O) -q,) ]- lo[e. (p,('» ]I; 
n,nl 

e. (p,(') 1- em (p,(') -q) = 00, 

where 

p.=[2m[e,(H) - (n+'/,)IiQ]l"'. 

Here 

Mnm (p) = e-P/' p,m-n'/' L~;"D~~ .• ) (p), 

p=C (q.'+q,')/2eHIi. 

(12) 

(13) 

(14) 

(15) 

Using the explicit expression (1) for Vj(p), we get 
Rellj(q, w) in the form of a sum of three contributions, 
corresponding to three possible polarizations of the 
optical phonon. The cross terms in the polarization 
vanish: 

Re 11·( (0) = 4~ !!E.. ~ M '( )In, [(q-Pm),-p.']'-(2mllw)', 
' q, , v,q"- .m p [(q+pm)'-p.'j'-(2mhw)' 

'.m 

(16) 
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2. VIBRATION SPECTRUM IN A QUANTIZING 
MAGNETIC FIELD 

(16a) 

Substituting (16) in (4), we get the equation for the 
determination of the excitation spectrum: 

N , I [(q-Pm)'-p.']'-(2ml1ro)' I 
1:, M.m (p)ln [(q+pm)'-Pn']'-(2mflro)' n,» __ O 

1 v,q ro'(q) - roo' 
4~o flQ roo' 

(17) 

Here N is the number of the upper filled Landau level. 

For an isotropic electron spectrum p=O and M~m(P) 
= <S"m, and there are no transitions with l:1n"* O. [9J In the 
case of n-Ge we have m" = my* ma; consequently p"* 0 
and M~m differs from zero at n"* m. Transitions with 
l:1n"* 0 take place because of the anisotropy. However, 
as Protogenov and Demikhovskii have shown, [10J the 
nondiagonal elements Mnm are small in terms of the 
parameter q« (eH/c)1/2 in the case of long-wave pho­
nons, and can be neglected. Equation (17) differs from 
the corresponding equation of Ref. 10 in that, because 
of the non-Coulomb character of our electron-phonon 
interaction, the right side contains only the first de­
gree of q and does not contain poles at the frequency of 
the transverse optical phonon. Account of the acousti­
cal phonons, expressed in terms of an addition to the 
Green's function of the acoustic phonons on the right 
side of Eq. (17) does not change the character of the 
equation in the low-frequency region. 

ImIIJ from (13) determines the damping of the excita­
tions whose spectrum is obtained from (17). The ex­
preSSion (13) for ImIIJ differs from that obtained by 
Blank and Kaner[BJ only in the anisotropy, which can 
be removed by the transformation (9), (10). Therefore, 
the regions of (w, q) with non-vanishing Landau damping 
are the same in our case as those found by Demi­
khovskit and Protogenov. [6J These regions are shown 
in Ref. 9 in Fig. 1 by the cross-hatched region (for 
the case of a single filled Landau level) and by solid 
lines (for the case of two filled Landau levels). 

We investigate the undamped solutions of Eq. (17) in 
the regions I, n, IV. In region I(w ~wo), we get the 
renormalized optical phonon: 

N 

w'(q)= w,' + (~+8~0 QroO'~N q')"'. ~N= ~ p.. (18) 
2 4 nm'v ~ • 

In the case of a single filled Landau level, this ex­
pression reduces to 

In Fig. 1 of Ref. 9, the branch (19) is indicated by 
thick lines in region I. 

In region of type IV ("petal-shaped") in Fig. 2 of 
Ref. 9, the solution in the case of two filled Landau 
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(19) 

levels has the form of a sound wave with velocity 

uo'+u,' 4~oflQ ( + ) {(uo'-u,')' + (4toflQ) S2= ______ Uo U1 ± 
2 mv. 4 mVF 

[ 4~ flQ ]}'I. x(uo+u,) ':'vF (uo+u,)-(uo-u,)' • (20) 

where the electron velocity is 'ttn=p,,/m. The two solu­
tions in (20) correspond to two acoustic branches. One 
solution is similar to the acoustic plasmons, found 
earlier in metals by Konstantinov and Perel', UlJ and 
the second to second sound, which we shall discuss be­
low for a Single filled Landau level. 

We now consider the region n ("bell-shaped"). In 
the quantum limit eF(O)« nO only a single Landau level is 
filled; region II is small and extends from q = 0 to 2q 
= 4 f2 e F(O) PF(0)/3nO. A solution of Eq. (17) at w« Wo 
can be obtained in this case at any q within the limits 
of the bell-shaped II (see Fig. 1 in Ref. 9): 

(O'=q'{( uo·+L) -uo..!..cth (-~)}. 
4m' m 8~oflQ 

(21) 

In the limit oflongwaves, at q« nO·8~0/VF' this solu­
tion corresponds to zero-sound oscillations of the elec­
trons interacting through the optical phonons. The ve­
locity of this phonon zero sound is equal to 

2 (mv,')' ( - (flQ )1) 8'=_ -- v,' 1-31'2·4 to -- . 
9 flQ mv.' 

(22) 

It is then seen that a threshold value of the magnetic 
field exists: 

(23) 

For this value, S2 vanishes. At H> Hth the velocity S2 
is negative and corresponds to absolute instability of 
the cubic configuration of the lattice, which leads to a 
phase transition with a lowering of the symmetry of the 
crystal. 

The threshold values of the magnetic field, at which 
S = 0 and phase transitions of the specified type take 
place, also exist in the case of two, three, and more 
filled Landau levels. The equations for the threshold 
values of the field can be simply obtained by setting s 
= 0 in (17) in the long-wave limit. We then have 

1 N 1 -'I. to"'-2' 1 
- ~1iQ[eF(H)-(n+-)1iQ] -,-=-. 
2 ~ 2 m'·v. 8 

(24) 
n_O 

We note that the condition of instability of the lattice of 
type (24) was obtained by Migdal, U2J in the form 

(25) 

For a Fermi surface consisting of four ellipsoids, , 
=4'0' and this condition is transformed into '0 = 1/8. 
As is seen from the definition (16a), '0 is proportional 
to the electron density of states at the Fermi level '0 
=Am2vF =An(EF ). Then, in place of (25), we have 

An(e.) ='/ •. (26) 
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The condition (24) that we have obtained has exactly 
the same struc ture, but in it, n( E F) signifie s the e lec -
tron density of states at the Fermi level in a magnetic 
field. 

A phenomenological theory of the phase transition of 
such a type, due to the interaction of electrons with 
acoustic phonons, was constructed for an arbitrary 
number of electronic Landau levels by Kochelaev and 
Sokolov. [5] The difference in the electron-phonon in­
teraction with acoustic and optical phonons, which is 
important for the determination of the renormalization 
of the phonon spectrum, does not appear in the case of 
establishment of the transition point. Correspondingly, 
Eq. (24) for the determination of the threshold values 
of the field, and in particular, Htb from (23) for a single 
filled Landau level, coincide with the values found in 
Ref. 5, with accuracy to replacement of the constant of 
the deformation potential for the optical oscillations by 
a similar constant for acoustic oscillations (see Eq. (21) 
in Ref. 5). 

At H<Htb the quantity S2 increases to the value 

which corresponds to initial filling of the second Landau 
level and a modification of the regions of damping from 
those of Fig. 1 to those of Fig. 2 in Ref. 9. Our solu­
tion of the zero-sound type in this case transforms into 
the solution in region IV (20). Here the positive solu­
tion for S2 is initially absent in region II (which cor­
responds to the second region of instability in Ref. 5). 
Upon further decrease in H, the zero-sound solution 
reappears. These oscillations of the velocity of zero 
sound have the same nature as the giant oscillations in 
the absorption of sound by metals. [13] 

It should be noted that solution (21) vanishes at finite 
values of q close to 2Po for the case H = Htt" which cor­
responds to an instability of the Peierls type. How­
ever, in the case of not too low temperatures, the maxi­
mum value of II close to the threshold of Landau damp­
ing is finite. Therefore, the minimum value of the fre­
quency w is close to q:::. 2Po is positive and vanishes only 
at q=O. 
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In a magnetic field of H:::.105 Oe, the cyclotron fre­
quency 0:::.1013 sec-1 is greater than the Fermi energy 
in semiconductors with n:::.l017 cm-3 and E F/ Ii:::. 1012 

sec-1• In strongly doped semiconductor, the collision 
frequency can be of the order of EF/Ii and the obtained 
branches will be diffuse. Therefore it is deSirable to 
carry out experiments, for example, in pure germani­
um with optical pumping of electrons to n::.1017 cm-3. 

Thus, there is a possibility in principle of observa­
tion of the branches mentioned. Such an observation is 
made difficult by the fact that the corresponding oscil­
lations are not accompanied by oscillations of the elec­
tron density and interact weakly with the external elec­
tromagnetic field. However, such oscillations can be 
found in light scattering and should give a picture simi­
lar to Brillouin scattering, but with a strong dependence 
on the magnetic field H. 
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