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The contribution of van der Waals forces to the thermodynamic characteristics of a nematic liquid crystal 
film is calculated. Reorientation of the liquid crystal under the action of van der Waals forces can take 
place in sufficiently thin films. The. thickness of the transition layer from surface orientation to volume 
orientation. due to the van der Waals forces. is determined for thick films. 

PACS numbers: 68.45.+w 

1. INTRODUCTION 

The general theory of van der Waals forces[1] has 
been repeatedly applied to various inhomogeneous con­
densed systems in recene years [2.-4] (see also the re­
view of[S]). The contribution of long-wave fluctuations 
of the electromagnetic field to the thermodynamic char­
acteristics of an infinite nematic medium was deter­
mined by Dzyaloshinskit, Dmitriev, and the author. [3] 

The special importance of van der Waals forces for 
such "soft" systems as liquid crystals, for which the 
fundamental short-range forces are not very large, 
was also noted there. However, in all the specific ex­
periments and applications, one is dealing with a thin 
layer of the liquid crystal (film thickness -102-103J.J.) 
placed between two isotropic faces. The fluctuations of 
the electromagnetic field in such a layered system will 
naturally differ from the case considered previously. [3] 

Such a system also differs from the classical prob­
lem, [1] siRce the orientation of the liquid crystal can be 
inhomogeneous over its thickness. Therefore, all the 
corresponding calculations should be repeated. 

The general expressions for the free energy of the 
long-wave fluctuations are set down in Sec. 2. Section 
3 is devoted to the investigation of thin films. As is 
usual in the theory of van der Waals forces, the cri­
terion is some characteristic wavelength ;\0 in the ab­
s:>rption spectrum of the body. For thicknesses l«;\o, 
the orientation of the liquid crystal is uniform and is 
determined by the boundary conditions (short-range 
forces). The energy of the fluctuation field is general­
ly less. However, by virtue of the anisotropy of the 
system, the van der Waals energy has a minimum at a 
definite orientation of the long axes of the molecules of 
the liquid crystal (the director) relative to the normal 
to the film. If this orientation does not coincide with 
the surface, then a reorientation should take place upon 
decrease in the thickness, associated with the growth 
of van der Waals forces upon decrease in the thickness. 
Thick films are considered in Sec. 4 (l» ;\0)' The ori­
entation in this case is determined by an integral equa­
tion. The analytic solution is found in the case of sym­
metric boundary conditions, which corresponds experi­
mentally to an identical medium on both sides of the 
liquid crystal film. There is a transition layer in this 
case in which the orientation of the molecules changes 
from a surface one, given by the short-range forces, 
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to a volume one, determined by the van der Waals 
forces. In this same section, we consider the forces 
associated with the Oseen- Frank elastic moduli. If 
the elastic modulus K is large in comparison with the 
van der Waals forces, then the orientation is described 
by a differential equation. The van der Waals forces 
in this case are equivalent to a weakly inhomogeneous 
magnetic field. A critical thickness exists, therefore, 
beginning with which the orientation is the liquid crys­
tal will be non-uniform. 

2. THE FREE ENERGY OF LONGWAVE 
ELECTROMAGNETIC FLUCTUATIONS OF A 
NEMATIC LIQUID CRYSTAL FILM 

We now consider a plane layer of a nematic liquid 
crystal of thickness l. We choose a set of coordinates 
in which the normal to the plane surface coincides with 
the x axis (see the drawing). In the region x > 1 there 
is a thick isotropic covering (in this particular case, 
air) with a permittivity fl' For the region x<O, there 
is an isotropic medium with a permittivity £2 (the sub­
strate). We write the permittivity tensor of the liquid 
crystal 0 < x < 1 in the form 

In this formula, fa is the dielectric anisotropy; n is 
the vector of the director. 

(1) 

As has already been mentioned in the Introduction, 
the thermodynamic properties of the system are deter­
mined by the temperature Green's function of the elec­
tric field, D 1ko This quantity satisfies the correspond­
ing Maxwell's equations: 

[8.,(r, i\ wi) w'+(rot').,]DIh(r. r', w) =4ltw'll (r-r') Il.... (2) 

In Eq. (2), the permittivity e Jk enters in the case of an 

9 n 
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imaginary value of the frequency. 

By symmetry of the problem, everything is uniform 
in the yz plane. We can therefore transform every­
where to the Fourier components in the coordinates y 
andz: 

where p is the radius vector in the yz plane. In con­
trast with Ref. 11, where one of the axes y or z could 
be directed along the vector q, we must carry out our 
calculations for an arbitrary direction of q. This is 
connected with the fact that we will need to calculate 
integrals of several D functions in what follows. 

At x > l or x < 0, Eqs. (2) are solved in trivial fashion 
(for convenience, it must be assumed that 0 < x' < l, and 
then Eqs, (2) are homogeneous), In the region O<x<l, 
in the case of an arbitrary distribution of the director, 
it is not possible to solve this equation, We therefore 
use the practical smallness of lIa in liquid crystals (IIi 

11 3-0.1-0.01), It will be shown in Sec. 5 how the for­
mulas are modified if lIa is not small, but the director 
departs but little from the equilibrium uniform orienta­
tion. We shall therefore in this section seek the 
Green's function and the energy of the fluctuation field 
in the region 0 <x < l in the form of an expansion in 
powers of £a. 

The boundary conditions corresponding to continuity 
of the tangential components of the intensities of the 
electric and magnetic fields reduce to the requirement 
of the continuity of the quantities 

d [ q.q,] 
D.J, dx D •• --;zDT •• (3) 

Under these conditions, cr, (3, y denote the components 
in the yz plane and w~= IIIW 2 + q2. The equation that is 
satisfied by D all can be separated from the rest of the 
system (2) and has the following form: 

(4) 

The remaining functions D , _ are expressed in terms of 
Dall with the help of simple differentiations. 

The set (2)-(4) with the boundary condition (3) re- .. 
duces to algebraic equations in the zeroth order in Ea' 

The free energy in this case will be a linear function of 
the dielectric anisotropy. After uncomplicated but 
cumbersome calculations, we obtain 

(5) 

In this formula 

(6) 

The function D~~) is obtained from (5), (6) by the re-
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placement of Y I by JI f = (w~ - q~)/ (wi - q2) and by a simi­
lar replacement, fl.1I reduces to fl.", 

The free energy in this approximation, according to 
the general theory, is U ] 

1 -
BF= 8n' S dCJ) f drD .. (r,r,CJ)B.N,.(r), (10) 

where Nu = n, n_. 

Considering that the distribution of the director de­
pends only on the x coordinate, and using Eqs. (5)-(10), 
we can obtain the contribution of the van der Waals 
forces to the free energy of the liquid crystal film. 
However, the resultant expression diverges. This is 
connected with the fact that the fluctuations with small 
wavelengths, which have no relation to the inhomoge­
neity of the body, make an infinite contribution to OF. 
(Their contribution is the same both in homogeneous 
and inhomogeneous bodies having the same value of £ 

at the point in question.) These divergences can be 
eliminated either in explicit fashion by a cutoff of the 
D functions in the momenta, or by a corresponding cal­
culation of quantities pertaining to the homogeneous 
system. Thus we subtract in (5)-(10) the values which 
are obtained at W3 = WI = W2: 

(11) 

In Eq. (11), S is the area of the surface of the liquid 
crystal, (I (x) is the angle between the normal to the 
surface and the director. 

The expression (11) in principle solves the problem 
of the van der Waals contributions to the thermodynamic 
quantities of the liquid crystal film in first order in the 
dielectric anisotropy. For convenience, we denote the 
corresponding quantity per unit area as 

f~~'w={jF/S. 

In order to find the free energy in second order in 
the dielectric anisotropy, we must determine the D 
function in first order in lIa: 

(12) 

BF(') = 8~,j dCJ) f dr V::) (r, r, CJ)Be .. (r, iJ CJ) I). (13) 

• 
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Making use of the fact that Dl~) is the Green's function 
for the corresponding Dl~) of the homogeneous equation, 
we get 

6F('l ('l 1 
-s-= tVdW=---J ea'dwJ dxdx" 

32,,' , 

x J d'q{D~:l (x, x", q)Dm• (x". x, q)N;m (x")N,.(x) J. (14) 

The quantities D:~) satisfy the boundary conditions (3) 
in (14) with the required accuracy. 

3. THIN LAYER OF LIQUID CRYSTAL (/«Ao) 

As is easily seen from the expressions (11) and (14), 
the principal contribution is made by the components of 
first order in "a (Eq. (14) has an additional smallness 
- (l/XO)2 in the thin film limit). In (11), it is convenient 
to transform from q to a new variable p: 

q=w[e,(p'-1) p'. 

We also introduce the quantities SI = [e,le3+ p2 _ 1]1/2, 
in a fashion similar to Ref. 1. 

Because of the presence of exponential factors in ~y 
and ~., the essential contribution tof~~~ is made by 
p» 1 (at l« Xo). In this case 81'" S2'" p; ~y'" ~,,=~, 
where 

A (e.+e,) (e,+e.) (2 'I, I) 1 
'-' = exp pe, w -. 

(e.-e,) (e,-e,) 

Finally, by introducing the dimensionless variable 

u=2Ipwfe--;, 

we get from (11), 

(I) 1 I 00 00 ea 1 [ (X ) E,+E. /vdW=--, J dx J dw J u'du-- -2-exp u-u- --
641 e, d 1 e.-e, 

o 0 0 

( X) e,+e, ] 1 I 00 00 i 
-exp u -I -- cos' e + - J dx J eaw' dw J - u du 

e,-£, 81 d 
o 0 0 

( ( X) e,+e. (X ) E'+£') X -2-exp u-u- ---cxp u- -- sin'S. 
1 E.-E, 1 E,-e, 

(15) 

(16) 

(17) 

The orientation of the director in a thin layer of a 
liquid crystal will be constant throughouL Therefore, 
the quantities sin2e and sin2e can be removed from un­
der the integral signs and the integral calculated over 
the coordinates. In this case, the inhomogeneous com­
ponents diverge at the boundary. This is connected 
with the fact that the van der Waals forces formally 
make an infinite contribution to the surface energy. 
Actually, this circumstance means simply that the sur­
face energy is determined by the short-range forces 
that were not considered in (11). To remove this di­
vergence, we must require the vanishing off~~~ at w l 

= W3 and w2 = W3 separately. We calculate the surface 
energy in the same way. With account of this fact, 

.('J _ 1 Joo Ea d Joo 'd [(e,+e.) (8,+e,) • '1]-' 
IvdW---- - W It II e -
. :12/' e, (e,-e,) (f3-e,) 

" , 

X[ u+ (e'-1) e.£,-£,' ] cos' e. 
(e.-e,) (£,-e,) 

(18) 
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In writing out (18), it has also been taken into ac­
count that the second component in (17), which is pro­
portional to sin2e, is much less than the first in the 
lim it l« Xo 1) (in relation to (l/Xo)2) • As was already 
noted above, the surface contributions from the short­
range forces should be added to (19). Phenomenolog­
ically, the corresponding surface energy can be writ­
ten down with account of the symmetry requirement 
n - - n, introducing the surface tension component T: 

fsur=-r(nv) " (19) 

where II is the normal to the surface. 

The coefficient T can be either positive or negative, 
depending on the medium located on the boundary. The 
total energy from (18) and (19) is given by 

hill, 
F=-r cos' e - pcos' e, (20) 

_ 1 Joo e. d Joo 'd [(e'+E') (E,+e,) • 1]-' 
(00-- - w U u e-

32 e3 (e3-e.) (E,-E,) , , 

(21) 

It is seen from (20) that a critical thickness 

(22) 

exists (at T > 0). At l > lci> the orientation is deter­
mined by the surface conditions (short-range forces). 
At T > 0, this requires the director to be parallel to the 
boundary e = rr/2. However, at l < lCl' the van der 
Waals forces become Significant and the orientation be­
comes perpendicular to the boundary 9 = O. In order 
that the effect just noted take place, it is necessary that 
the critical thickness not be too small. In the opposite 
case, the condition of applicability of the macroscopic 
treatment will be violated at such distances. The cor­
responding estimates will be given in Sec. 5. 

We also note that the entire treatment in this section 
relates to thin films with uniform orientation. There­
fore, the boundary conditions on the director should be 
identical at both surfaces of the liquid crystal. Here 
the condition (22) is valid for any of the boundaries of 
separation, but we should take the corresponding maxi­
mum coefficient of surface tension or their sum for T. 

4. THICK LAYER OF A LIQUID CRYSTAL (/»Ao ) 

For thick films, we need to consider, along with (11), 
the component of second order in e a , - ([/XO)2. Fur­
thermore, depending on the ratio of the dielectric an­
isotropy to the film thickness, this term may even be 
the principal one. As was noted above, the orientation 
in the thick film is generally nonuniform a Therefore, 
along with the van der Waals forces, the short-range 
Oseen-Frank forces can also playa decisive role: 

to='!"'J (ve)'dx, 
2 

(23) 

where K is the elastic modulus (for brevity, we assume 
Ku = K22 = K 33 ). 

As has been shown previously, [3] the long-range van 
der Waals forces make a contribution to the free ener-
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gy in the region of "large" distances (see [3] and below) 
of the same form as (23). We should therefore assume 
that K is the elasticity modulus renormalized by the 
long-range forces. If the short-range forces signifi­
canUy exceed the van der Waals forces, then we have 
over the entire range of variation of the thickness 
formula (23), to which there are contributions of first 
order in the dielectric anisotropy (Eq. (11». We there­
fore first concern ourselves with the transformation of 
this expression. 

We make a change of variables (16) in the first-order 
free energy, but we now use the dimensionless quantity 
u in place of the frequency w. Then we have in the ar­
gument of the permittivity a quantity that is close to 
zero in the limit l»Ao. These static quantities can be 
taken outside the integral sign, and the remaining inte­
gral with respect to u can be calculated in terms of 
elementary functions. Omitting the calculations which, 
with accuracy to within the inhomogeneous components, 
are similar to those carried out in Ref. 1, we obtain 
the following expression for the free energy: 

(') 1 e.(O) 1 r' ,[ (A B, C')' a 
/vdW=- 128]1; e,(O) l' J dx ,- (1+x')' - (2-x')' cos 

o 

( E, G,) . , ] 
- D,- (1+x')'- (2-X')' 8m a . (24) 

In this equation, £a(O) and £3(0) are static values of the 
permittivity, and we nondimensionalize the coordinate 
x(;c' = x/l), 

A_3 1 SW dP (s,(O)-p)(s,(O)-p) 
'-"2 e,'I,(O) p' (s,(O)+p) (s,(O)+p) , , 

B 3 1 'S-dP (s,(O)-p)(s,(O)-p)' 
'=2 e,'I,(O) p' (s, (0) +p) (s,(O)+p)" , 

C,=~_1_ f- dP (s,(O)-p) (s,(O)-p)' 
2 e,'I,(O) p' (s,(O)+p) (s,(O)+p)' , 

(25) 
D,=3-1--S dp p'-1 (e3(0)8,~0)-e,(0)p)(e,(O)8,(0)-e,(0)p) 

e,'I,(O) p' (e,(O)s,(C)+e,(O)p) (e,(O)s,(O)+e,(O)p) , 

E,=~_1_'S- dp p'-1 ~e,(0)8,(0)-e,(0)p) (e.(O)s,(O)-e,(O)p)' 
2 e,'I,(O) p' (e,(O)s,(O)+e,(O)p) (e,(O)s,(O)+e,(O)p)' , 

G, =~_l-S- dp p'-1 (e,(O)s, (O)-e, (O)p) (e,(O)s,(O)-;-e, (O)p)' 
2 e,'I,(O) p' (e,(O)s.(O)+e,(O)p) (e,(O)s,(O)+e,(O)p)' , 

In writing down Eqs. (24), (25), we have subtracted the 
infinite surface energy, just as was done in Sec. 3. 

Thus the contribution of the van der Waals forces to 
the free energy of the film is given by the following 
formula for l» Ao (as deduced from (23) and (24»: 

h t K 
F=- I~ S dx:A(x')cos'6(X')+"2S (V6)'dx. (26) 

• 
The determination of the quantities A(;c') is evident from 
(24), (25). Furthermore, as in Sec. 3, the surface 
energy (19) should be added. The calculation of A(;c') 
depends weakly on the coordinates (a variation of the 
order of several percent over the thickness). For esti-
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mates, then, it can be assumed that A(;c')", A. 

The free energy (26) in this case is analogous to the 
free energy of the liquid crystal in a magnetic field: 

fwF - + S x,Jl' cos' 6 dx. (27) 

Thus, the van der Waals forces in this case effective­
ly renormalize the magnetic field. For example, it 
then follows that the critical field at which the change 
of orientation takes place (the Fredericks field [6) is 

=_1_[n'K + hcA ]". 
H, "1..'1, 41' I' . (28) 

In the absence of a magnetic field, there exists a criti­
cal value of the thickness le3 (1. e., the value of the van 
der Waals forces), up to which the orientation remains 
uniform: 

The orientation is determined here by the Euler-La­
grange equation corresponding to (26). In the case con­
sidered, it reduces to a differential equation for the 
elliptic functions. This problem has been frequently 

'discussed in the theory of liquid crystals (see, for ex­
ample, Ref. 6), and we shall not consider it in any de­
tail. 

Much more significant changes take place in the case 
in which the van der Waals forces are not small in com­
parison with the Oseen-Frank forces. In this case, Eq. 
(23) preserves its form in the range of large distances; 
however, it is now no longer possible to assume all the 
elastic moduli to be equal. All the results that follow 
from (26) remain in force but it is necessary, depend­
ing on the geometry of the problem, to establish some 
combination of the elastic moduli. Thus, for the stan­
dard experimental setup for the criticial Fredericks 
field (initial orientation parallel to the boundary and 
field perpendicular), the modulus K22 is introduced into 
(28). 

So far as the region of small distances is concerned 
(under satisfaction of the condition 1» Ao), the contribu­
tion of the van der Waals forces in this region of sec­
ond order in the anisotropy is not local. The corre­
sponding expression can be obtained directly from Eq. 
(14). With account of the fact that the surface energy 
was discussed in Sec. 3, we can carry out integration 
in (14) by parts. Thus, after rather cumbersome cal­
culations, similar to those performed earlier, [3) we 
get 

2 1 - s.'1. l I 1:&-:&1_ 1 #dW=-S -, doo S dx S dx,ln -;='!- (COS'B)I(C08'6.)" 
512 0 e, 0 0 rol'e, 

(29) 

(the primes denote differentiation with respect to the 
coordinate) . 

We note here that in the previous work[31 the expres­
sion for the free energy in second order in the dielec­
tric anisotropy is written in inconvenient form, since 
the infinite contributions to the surface energy were not 
formally calculated. It can now be specified what we 
mean here by the terms large and small distances. We 
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introduce a characteristic length, over which the orien­
tation of the liquid crystal changes (5 is the thickness 
of the transition layer). Then Eq, (29) (see the deriva­
tion in Ref. 3) is valid for 5«;\ (but, naturally, 1» ;\0>' 

Thus the non-local van der Waals energy at M > K, 
where 

1 • • JI f 8. -512 8.'doJ, 
• 

exists under the condition 

(30) 

But, in the case 

(31) 

we always have the local (differential equation) expres­
sion (26) for the free energy. 

The results in (31) were already discussed above (see 
(23)-(28». Under condition (30), the free energy of 
the system has the following form: 

F- - he JI dx'A(x')cos' 6 
t' • 

, I 

+Ml' J dx' J dx,' Inlx' -x,' I (cos' e)"(eos' e,)". 

(32) 

If we set cos28 = v, then the Euler- Lagrange equation 
for (32) will be 

Ii d' ' 
- l~ A(x')+4Ml'd7z'J dx.'lnlx'-x.'lv(x.')=O. (33) . 

We thus have an integral equation of the form 

j dX/lnlx'-x.'lv(x/)= ;~, q>(z'), (34) . 
where cp(x') is a given function obtained by integration 
of A(x')' The solution of this equation can be obtained 
explicitly in the case of symmetric boundary conditions. 
It is physically required in this case that the dielectric 
properties of the medium on both sides of the liquid 
crystal be the same. In this case, we carry out a 
Fourier transformation in (34). The Fourier compo­
nent of the solution is then found immediately: 

IIc q>(k) 
v(k)=Mi'P(k) (35) 

The function :t (k) is obtained from integration of the 
kernel of Eq. (34) and can be written down in the form 
of the series 

.2'(k) =lnl kl +k/1!+k'/2·2!+ ... (36) 

From (35) and (36), we can find that the transition 
from surface orientation to volume orientation takes 
place in a transition layer of thickness 

15-1 (MI/llcA)"'. (37) 

As x - 0, the establishment of this orientation takes 
place according to the law (with the boundary condition 
8=0), 
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e-~ 
In(l/x) 

(38) 

The succession of thicknesses at which the relations ob­
tained above are valid (in the case of van der Waals 
forces M that are not small) is obtained from (30), (31) 
and (37), At 1> 1,,3, the orientation is uniform. At 
;\0 < 1 <l,,2' the orientation is determined by the nonlocal 
forces (29). (Here 1"2 is the thickness at which 5 from 
(37) is of the order of ~). And, finally, at 1>1,,2, 
everything is determined by the differential equation 
(26). 

5. CONCLUSION 

Unfortunately, numerical estimates of the formulas 
that have been obtained are very sensitive to the specif­
ic dependences of the components of the permittivity 
tensor on the frequency. We can therefore use only 
very general specifications on the behavior of the per­
mittivity (e, -1 at large frequencies, and Ea falls off 
with increase in frequency more rapidly than l/w2). 

If we use the experimental data on the absorption 
spectrum of para-azoxyanisole (P AA) for an estimate 
of the parameter ;\0 (see Ref. 7, for example), then we 
must assume ;\0- (5-6)X 10-4 cm. 

The coefficient of surface tension in T - 30 dyn/ cm. 
Therefore, the critical thickness is determined by the 
value of the van der Waals frequency woo If we assume 
1fwo-10 eV, as is usually the case in systems with suf­
ficiently heavy molecules, then 

Thus, the effect studied in Sec. 3 lies in a region of 
thicknesses that is experimentally attainable. In this 
case, all the macroscopic requirements on the basis of 
which the expressions for the van der Waals contribu­
tions to the free energy were obtained are still valid. 
In the case of thick films, similar estimates give the 
following for the thickness of the transition layer 
(1-10-3 cm): 

If the transition layer is determined by the Oseen­
Frank forces (K - 10-6 dyn/ cm), then the orientation is 
distorted along the entire length of the liquid crystal. 

Thus, for sufficient magnitude of the van der Waals 
forces, the thickness 1 > ;\0 of the liquid crystal film 
remains nonuniform, in spite of the absence of external 
actions (except for the boundary conditions associated 
with the short-range forces). This is another physical 
effect which follows from the results of the research. 
We note here that the coefficient in the magnetic coher­
ence length changes under the action of the van der 
Waals forces in the liquid crystal film in the region of 
high fields (see Ref. 3). From (27) and (32), we have 

1 (M)'" s-- -
Ha l(. ' 

(39) 

where a is a distance of the order of the molecular 
length, up to which the macroscopic consideration of 
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the van der Waals forces is valid. This dependence 
differs from the case of an infinite layer of liquid crys­
tal where ~ - H-213• 

In conclusion, we point out that all the calculations 
carried out above can be generalized to the case in 
which the dielectric anisotropy is not small. Here, it 
is ture, we have considered only small departures from 
the equilibrium orientation. For such a calculation, 
the zero D functions correspond to Green's functions in 
a homogeneous medium. The entire change reduces to 
the fact that the coefficients M, Wo and A are replaced 
by similar expressions in which the following substitu­
tion is made everywhere in the denominators: 

(40) 

The corresponding formulas are very involved and do 
not lead to any new effects. Corrections can be impor­
tant only in light scattering. However, since the liquid 
crystals with an anisotropy of 8. that is not small are 
unknown, we shall not concern ourselves with this 
problem here. 
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The effect of the nonequilibrium state of an electron gas on sound absorption in a superconductor is 
considered. The nonequilibrium electron distribution function is assumed to be stationary and isotropic, and 
the phonons to be in equilibrium. In addition to the explicit dependence of the damping coefficient on the 
distribution function, a dependence on the correction to the order parameter exists that is associated with 
the nonequilibrium state. The sound intensities which create the nonequilibrium state and at which 
nonlinearity should be observed are estimated. 

PACS numbers: 74.20.Gh 

A nonlinear dependence of the sound absorption co­
efficient on its intensity at temperatures below the 
super conducting transition has been observed in a num­
ber of experimental researches. [11 A certain decrease 
in the absorption above Te has been observed in this 
case, which can be interpreted as an increase in the 
critical temperature; In addition, a deformation of the 
absorption curve was observed below Te. A super con­
ducting film in the field of a sound wave was studied in 
Ref. 2, and it was found that the temperature depen­
dence of the super conducting parameters of the film 
in the presence of sound is supported by the theory that 
was developed earlier. [31 It is characteristic that the 
effect described in Ref. 2 was observed only for cer­
tain optimal film thicknesses, which were evidently 
most favorable in the sense of heat removal and the 
value of the sound intensity in the film. 

In this connection, it should be noted that, in experi-
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ments on microwave irradiation of films, the vector of 
the electric field intensity is small in the film because 
of the smallness of the impedance at these frequencies. 
For this reason, microwave experiments are relatively 
less effective in the observation of the heating of elec­
trons than, say, the acoustic experiments mentioned 
above, and experiments with laser radiation of super­
conducting samples. [41 

Phenomena are considered in the present work that 
are associated with the heating of the electron gas by 
the field of the sound wave. We shall call heating the 
isotropiC change in the distribution function of the elec­
trons which is generally not described by an effective 
temperature. We shall assume the phonons to be in 
equilibrium for the reason that near Te a large part of 
the electrons remains in equilibrium and plays the role 
of a thermostat, together with the phonons. 

The nonequilibrium situation in the case of sound 
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