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The effect of nonequilibrium electrons on the current-voltage characteristics of superconducting contacts is 
found. In the case of bulk superconductors. when the length of the contact a> ~Tl/4 superconductivity is 
stimulated in the contact and the current through the contact increases considerably under small voltages. 
In film contacts nonequilibrium effects lead to suppression of the superconductivity. The current-voltage 
characteristic in this case has a portion with negative resistance and this leads to experimentally observable 
voltage discontinuities. 

PACS numbers: 74.50.Tk 

Superconducting contacts (film bridges, point con­
tacts, bulk superconductors, etc.) possess, in a num­
ber of cases, volt-ampere characteristics that differ 
from the hyperbolic dependence found for sufficiently 
short contacts. [ll For example, portions correspond­
ing to voltage discontinuities at constant current can 
appear in the current-voltage characteristics of con­
tacts. [2,31 A possible explanation of these effects is 
that the energy distribution function of the electrons in 
the contact is a nonequilibrium function. 

At currents exceeding the critical value a normal 
component of current flows through the contact and 
gives rise to a change in the electron distribution func­
tion. As a result the superconducting order parameter 
and, correspondingly, the magnitude of the supercon­
ducting current through the contact change. The 
changes in the current-voltage characteristic of the 
contact which then arise depend substantially on the 
dimensions of the contact. 

When a current flows through the contact, the order 
parameter and the gap in the electron spectrum are 
smaller in the region of the contact than outside the 
contact. Electrons whose energy is less than Ao, the 
value of the gap outside the region of the contact, can­
not go beyond the boundaries of the contact. For these 
electrons the time T e for establishment of thermal 
equilibrium is determined by the collisions withphonons 
and is very long at low temperatures. Therefore, the 
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distribution function of these electrons is greatly 
changed even in a weak electric field. 

If the dimensions of the contact are small, the chang~ 
in the distribution function of these electrons does not 
lead to substantial changes in the current-voltage char­
acteristic of the contact. However, if the size a of the 
contact exceeds the characteristic length 1] = ~T 1/4 

(here ~ is the '''size'' of a super conducting pair and 
T=(T-Tc)/Tc; Tc is the critical temperature), then 
this change in the electron distribution function leads 
to stimulation of superconductivity in the contact. As 
a result, even in a weak electric field, a large in­
crease in the current through the contact arises. 

Electrons whose energy is higher than the value of 
the gap outside the contact diffuse out of the contact. 
Their relaxation time is determined by the diffusion 
rate. The effect of these electrons on the volt-ampere 
characteristic of the contact is substantially different 
for bulk-superconductor contacts (the th;ee-dimen­
sional case) and for film bridges. In the three-dimen­
sional case the change in the distribution function of 
such electrons is small and can be disregarded. In a 
film, however, diffusion of the electrons is made dif­
ficult because of the two-dimensional character of their 
motion, and the electron distribution function is pro­
portional to the logarithm of the long energy-relaxation 
time. 
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The sharp change in the distribution function of the 
electrons in a film contact decreases the order param­
eter in a broad region outside the contact and leads to 
a reduction of the super conducting current through the 
contact. Regions of negative resistance, which can 
lead to observable voltage discontinuities, appear in 
the current-voltage characteristic. 

1. STIMULATION OF SUPERCONDUCTIVITY IN A 
THREE-DIMENSIONAL CONTACT 

For a nonequilibrium electron distribution function, 
an additional term appears in the Ginzburg-Landau 
equation for the order parameter t.. This term can be 
found with the aid of the equation for the order param­
eter[41 

~ tl. 
tl.=A J--=---f(e) de, 

l'e'-tl.' . (1) 

in which A is the interaction constant and the distribu­
tion function is equal to t[l-f(e»). Equation (1) is 
written for the case when t. varies sufficiently slowly 
with the coordinates; in particular, it can be used for 
sufficiently long contacts, with a » TI = ~T 1/4. In this 
case the Ginzburg-Landau equation has the form 

linD [ a'tl. "] 7W) tl.' ~ [ e] de -- ---(\7<p)"tl. -.tl.----+tl. J f(e)-th- -=-=0 
8T ar' 8n' T'. 2T l'e'-tl.' ' 

(2) 
where t. is the modulus of the order parameter, cp is 
its phase and D =VF l/3 is the diffusion coefficient (it is 
assumed that the mean free path l of the electrons is 
small). For the distribution function we make use of 
the following equation[Sl: 

~ [f(e)-th~] <e(e'-tl.')-'I,> = ~ (D,f!.!....) , 
T, 2T {)f af 

where the energy-diffusion coefficient De is given by 
the formula 

D, = _ (_as (D_a. )-' _a8_) 
at ar'. at ' 8=l'e'-j,'- <l'e'-tl.'>. 

(3) 

(4) 

In these formulas the brackets ( ) denote averaging 
over that region of the contact in which t. < E, and the 
bar denotes time averaging. The boundary condition 
for the determination of the inverse operator in for­
mula (4) is that the derivative along the normal to the 
surface E = t.(r) be equal to zero. 

For contacts of length a « ~ the second and third 
terms in Eq. (2) are small, [11 while the nonequilibrium 
term can be substantial. We shall calculate it for not 
too small voltages across the contact. Then, because 
Te is large, the left-hand side of Eq. (3) is small and, 
therefore, 

. 
f(e)=C JD.-'de, 

where the constant C is found from the condition for 
matching of f (E) at E = t.o with its value tanh(t.o/2T) 
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(5) 

'" t.o/2T outside the contact. As will be seen below, 
f(e) for E close to t.o depends weakly on II and is close 
to the value t.o/2T. This permits us to calculate the 
nonequilibrium term in the Ginzburg-Landau equation, 
for t. close to t.o: 

" [ e] de 1'2 tl. ' ( tl. 't. III (tl.)=tl. J f(e)-th- --=-=-~ 1--) 
• 2T 1'e'-tl.' 3 T \ tl., 

(6) 

Here the integral over E is taken up to the value t.o, 
since for II> t.o the electron distribution function differs 
little from the equilibrium function. 

We shall assume that the thickness of the contact is 
small compared with its length, so that the order pa­
rameter depends only on the coordinate x along the con­
tact. Equation (2) then takes the form 

hnD" fiT J.' + III (tl.)-O 
-srtl. - 2np'e'S'D tl.' - , 

(7) 

where p is the density of states, S is the cross-sectional 
area of the contact, and J s is the magnitude of the 
super conducting current through the contact, which is 
related to the gradient of the phase by the formula 

tl.' 
J.=nepDS 2T V <po (8) 

In short contacts a « TI the nonequilibrium term <I>(t.) in 
Eq. (7) is small, and this equation coincides with the 
order-parameter equation used earlier. [11 In contacts 
of length a »TI, on the other hand, the first term is 
small. In this case the modulus of the order parameter 
t. is constant in almost the whole region of the contact 
and depends on the longitudinal coordinate x only near 
the edges of the contact. The magnitude of the order 
parameter in the contact (.i) is determined from the 
equation 

(9) 

The right-hand side of this equation vanishes for .1 =0 
and .1 = t.o, and has a maximum at a certain intermedi­
ate value. To estimate the maximum value J~ at which 
Eq. (9) still has a solution we shall use formula (6) for 
the function <I>(t.). As a result we obtain 

(10) 

This formula has been obtained to within a numerical 
coefficient. To find the latter it is necessary not only 
to know the function <I>(t.) for t. close to t.o but also to 
take into account nonequilibrium terms in the expres­
sion (8) for the current density. 

The expression (10) gives a value for the current 
that is a/TI times greater than the critical current of 
the contact. This sharp increase in the current 
through the contact occurs at comparatively low volt­
ages (voltages inversely proportional to the long en­
ergy-relaxation time To), at which the distribution 
function is already nonequilibrium and determined by 
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formula (5). On further increase of voltage the current 
depends comparatively weakly on the voltage, and on 
the volt-ampere characteristic there is a plateau at the 
current value J~ determined by formula (10). The slow 
increase in the current in this region is associated with 
the growth of the normal component of current through 
the contact. 

In the region of the plateau, for most of the time, a 
super conducting current close to J~ and a comparatively 
weak normal current flow through the contact. The 
magnitude of the super conducting current is determined 
by the difference X in the phases of the order param­
eter at the edges of the contact. Near the maximum 
value the superconducting current J s depends quadrati­
cally on the phase difference and we have for the total 
current J through the contact 

1 Ii. tj' 
J=--x.+J'-J'-(x.-x. )' R 2e ' • a2 mu, 

(11) 

where Xmax is the value of the phase difference corre­
sponding to the maximum current and R is the resis­
tance of the contact in the normal state. We note that 
the numerical coefficients in this formula have been 
found in order of magnitude, as in formula (10) for J~. 

The solution of Eq. (11) has the form 

a (J-J') '/. [2eR I] ] x-x",", = -;j If- tg T-;- (J,'(J-J,') )Iot (12) 

and corresponds to infrequent pulses of normal current, 
on the background of the superconducting current J~, 
following each other with frequency 

2ef 2e tj ---
'" = -li- = h~-R'iJ.'(J-J.'). (13) 

Thus, the current through the contact depends quadrati­
cally on the mean voltage. 

The picture obtained for the stimulation of supercon­
ductivity in a sufficiently long contact is based on the 
assumption that the nonequilibrium electron distribu­
tion functionj(e) in the contact is greater than its 
equilibrium value tanh(E/2T) for E <~. In this case, 
<I>(.:l) > 0 and Eq. (9) has a solution. In order to find 
j (e), we shall calculate the function DE with the aid of 
formula (4). Here it is necessary to know the depen­
dence of .:l on the coordinates. Comparing the first and 
last terms in Eq. (7), we convince ourselves that 
changes in the order parameter by an amount ~ - .& 
near the edge of the contact occur over a distance 

(14) 

Assuming that .:l2 depends linearly on x in this region, 
with the aid of formula (4) we obtain for the function DE 

D =-.1'- dA- ----
211 ,1 riA (a (8-.1)/')' 

• . 27 ' t, J . at 0-.1 (:lo-~A)'I, • 
(15) 

where the period to = 7T1i/ e V. For E close to ~, values 
of A. close to ~ are important in the integral (15). In 
this case the current flowing through the contact is 
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prinCipally the normal current, which is related to the 
difference in the phases at the edges of the contact by 
the Josephson relation Ii X= 2eRJ. On the other hand, 
using formula (8) we have 

X. 2TJ, 
-=VqJ=---. 
a 1tepDSA' 

(16) 

Using the relation (9) connecting ..i and J s, for the de­
rivative aE../at we find 

aA . aA aJ, e, tj ( A ) 'I. 
-;;-=x.--""-2.3-J,R-.1, 1--
at aJ, aX. n a .1, 

Substituting this expression into formula (15), for e 
close to .:lo, we find 

D,""O.l l e'J.'Rf.1, 1-- . ( e )-'1. 
lia .1, 

(17) 

(18) 

Correspondingly, using formula (5), we have for j(e): 

.1 ) '/'] f(e)= 2;[ 1-( 1- ~o • (19) 

It can be seen from this formula that for e close ~ the 
distribution function is close to the value .:l0/2T, and is 
greater than tanh(e/2T), as was assumed at the start. 

We shall now find the law by which the current ap­
proaches the value J~ from the low-voltage side. For­
mulas (5) and (19) give the limiting values of the dis­
tribution function at sufficiently high voltages. We now 
find the voltage-dependent correctionj' to the distri­
bution function. This correction can be found by per­
turbation theory, by substituting the limiting value of 
j(e) already found into the left-hand side of formula (3). 
As a result, to within a numerical coeffiCient, we ob­
tain 

(20) 

Correspondingly, we find the correction to the func­
tion <I>(.:l) in the Ginzburg-Landau equation and then the 
correction to the maximum value of the current: 

nail, 1 
J-J',.,,----
" l]e'R T,f . 

(21) 

From this it can be seen that with increase of the volt­
age the current approaches the value J~ by a hyperbOlic 
law. Formula (21) is valid for sufficiently high volt­
ages, when the correction to J~ is small: 

eV>liTIT.llo. 

In the opposite case there are several regions with dif­
ferent dependences of current on voltage. At low volt­
ages the distribution function differs little from tanh(e/ 
2T), and we can putj=tanh(e/2T) in the right-hand side 
of formula (3). To determine De from formula (4) it is 
necessary to know the dependence of the modulus of the 
order parameter on the coordinates; in this case, this 
is found in the zeroth approximation from the linear 
Ginzburg-Landau equation: 
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FIG. 1. 

(22) 

where the difference X in the phases at the edges of the 
contact is determined by the magnitude of the super­
conducting current J. =Jc sinx. As a result, for E close 
to .6.0, we obtain for f ( f ): 

8 _ e'IR _ a' ( & )-". 
f-th-=;J.8--T,V- 1-- . 

2T t~T 1]' Llo 
(23) 

For such a distribution function the nonequilibrium 
term q,(.6.) in the Ginzburg-Landau equation is given, 
for .6. close to .6.0, by the formula 

e'IR a' _ 
<D(Il)=12.6---T,Vt.o• 

hT 1]' 
(24) 

Substituting the expression found for q, into Eqo (7) for 
.6., we can find the maximum super conducting current 
for each value of the voltage. Considering q,(.6.) as a 
perturbation, we obtain 

(25) 

In this region the current increases rapidly with volt­
age by a linear law. Formula (25) ceases to be appli­
cable in the region of very low voltages, when the pe­
riod of the current oscillations becomes longer than the 
energy-relaxation time T,. In this case it is no longer 
possible to use formula (4) for De, which presupposes 
averaging over a large number of oscillations in the 
time Te. 

Thus, for sufficiently long contacts (a» 1]), because 
of the long energy-relaxation time the current-ampere 
characteristic of the contact (Figo 1) is found to differ 
from a hyperbola: the current increases rapidly at 
low voltages to the value J~, and then varies compara­
tively slowly with voltage. 

2. SUPERCONDUCTING FI LM CONTACTS (BRIDGES) 

In the two-dimensional case, because of the slow dif­
fusion of the electrons, the distribution function at en­
ergies e >.6.0 is also nonequilibrium. For sufficiently 
short contacts substantial changes in the order param­
eter and volt-ampere characteristic originate from 
electrons with energies e - T much greater than .6.0. 
Using the kinetic equation for a normal metal we can 
obtain the diffusion equation for such electrons: 

fjf fj'f . fj'f 1 ( e ) -=D-+e-E'D--- f-th- • 
Ot fjr' De' T, 2T 

(26) 
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where, in the right-hand side, the first term corre­
sponds to diffusion with respect to the coordinates, the 
second corresponds to diffusion with respect to the en­
ergies, and the third describes the energy relaxation. 

In the region of superconductor that lies outside the 
contact and in which there is no electric field, the time­
averaged solution of E-!. (26) in the two-dimensional 
case is given by Hankel functions of imaginary argu­
ment. In the region r« ~D Te in which substantial 
changes in the distribution function occur, this solution 
has the form 

f-th (e/2T) =c In (r12-YDT,). (27) 

We note that the energy-relaxation time Te appears 
only under the logarithm. This justifies the use of the 
simplified expression for the energy relaxation in Eq. 
(26). 

The constant C in formula (27) is found by integrat­
ing Eq. (26) over the region in which there is an elec­
tric field: 

C e' fj'th(e/2T) S-
=-- K. K= E'd'r 

2n Oe" . 
(28) 

Here, in determining C we have used the equilibrium 
function tanh(eI2T), which ceases to be valid only at 
very high voltages, when normal current flows through 
the contact . 

Thus, the deviation of the distribution function from 
the equilibrium function outside the contact falls off 
slowly with distance from the contact, in accordance 
with the law (27). Because of this, the value of the 
order parameter .6.0 far from the contact also changes. 
To find .6.0 we shall make use of Eq. (2), in which, for 
r greater than ~, we can disregard the first term. 
Calculating the nonequilibrium term in this equation 
with the aid of formulas (27) and (28) for f(e), we ob­
tain for the boundary value .6.0 =.6.1 T~( the expression 

Ll '=Ll '(1-03-e'-Kl 'IDT') ° 00 • ITIT' n 6 • (29) 

where .6.00 is the equilibrium value of the order param­
eter. 

For short contacts, in the region of the contact the 
nonequilibrium term is small and the equations of the 
earlier paper are valid. (1] In particular, to find the 
volt-ampere characteristic of the contact we can use 
the formula 

'V'=R'(r-lc') • (30) 

where, however, the critical current J c ': 1T~/4eTR 
itself already depends on the voltage. This dependence 
is determined with the aid of formula (29), in which it 
is necessary to calculate the expression for K. We 
shall assume that the contact is sufficiently narrow (the 
length a of the contact is considerably greater than its 
width b) and the voltage drop occurs prinCipally in the 
region of the contact: E = V I a. In the two-dimensional 
case, for this it is necessary that the condition alb 
>>In(~lb) be fulfilled. In the time-averaging we can 
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FIG. 2. 

use the dependence V(t) found earlier. [11 As a result 
we obtain K=RJVb!a, where R =a!(J b2 is the resistance 
of the contact in the normal state. 

For the volt-ampere characteristic of the contact we 
have 

v'=i'~ (1-avi) '; 
b 'IDT, 

a=15.2ITI-ln--. 
a S 

(31) 

Here we have introduced the dimensionless variables 
v = V!RJco and i =J! J cO, where J eO is the critical current 
of the contact. The parameter Q/ contains a large 
logarithm and, generally speaking, may be large. The 
current-voltage characteristic of the contact, de­
scribed by formula (31), has a portion with negative 
resistance (Fig. 2). Therefore, on increase of the 
current the voltage increases discontinuously, at the 
critical value J eO' to the value Vo =2Q/RJeo!(Q/ 2 + 1). 

Formula (31) is valid in the region Q/vi> 1. When 
this condition is not fulfilled, the expression (29) for 
~ becomes incorrect, since ~ cannot be negative. 
For small values of~, in the Ginzburg-Landau equa­
tion (2) it is necessary to take into account the term 
with the derivative, which leads to an exponential de­
pendence .6(r) at distances r ~~. In this case, the 
current flowing through the contact is principally nor­
mal current, and the superconducting current is ex­
ponentially small: 

{ ( eZRIVb )'i. } 
I. - exp - hDTa ro, (32) 

where the distance Yo is determined in order of mag­
nitude from the relation 

We note also that the resistance R to normal current is 
determined by the region in the contact, of size - Yo, in 
which the superconductivity is destroyed, and can de­
pend on the current and temperature. 

We now find the current-voltage characteristic of 
long contacts in the two-dimensional case. In bridges 
of length a» TJ the initial part of the characteristic is 
the same as in three-dimensional contacts: the current 
increases comparatively rapidly to the value J~ deter­
mined by formula (10). This effect occurs because of 
the change in the distribution function of the electrons 
with energy e < ~ inside the contact. Substantial 
changes in the current on further increase in voltage 
can arise on account of the electrons with energy E >~, 

which, in the two-dimensional case, change the bound­
ary value of the order parameter. It is necessary, 
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therefore, to find the nonequilibrium electron distribu­
tion function for e >~. 

In the case of a long contact the greatest changes in 
the distribution function of such electrons occur at en­
ergies e - ~ « T. In this case, in the diffusion equa­
tion (26) the term corresponding to diffusion with re­
spect to the energies is now determined, in accordance 
with formula (3), by the expression 

where De is given by formula (4). The distribution 
function is then found from formula (27), where the 
constant C has the form 

C=-_1_~(OfSD.d'r) 
'biD {)e oe 

= - 4~n':;' a;b S (~~)' :8 ( :& 'Ie'-ii')' dt. (33) 

Using formulas (6), (9) and (17) to calculate the or­
der parameter and its time derivative, we can deter­
mine the nonequilibrium distribution function from for­
mulas (27) and (33), and, with its help, calculate the 
nonequilibrium term in the Ginzburg-Landau equation. 
As a result we find that the boundary value of the order 
parameter is decreased: 

, , e'V1RT b (a ) '·1, 'IDT. 
~o-~oo ""----- - In--. 

~o a T] S 
(34) 

As in the case of a short contact, this leads to a de­
crease of the current with increase of the voltage and, 
correspondingly, to the appearance of a negative-re­
sistance part in the volt-ampere characteristic of the 
contact (Fig. 3). Thus, in the case of a long bridge, 
with increasing current the voltage first increases 
slowly and then, at a current of the order of J~, in­
creases discontinuously. 

3. DISCUSSION OF THE RESULTS 

Figures 1-3 show the possible types of volt-ampere 
characteristics of short (a < ~) super conducting contacts 
with a nonequilibrium electron distribution function. 

In the case of bulk-superconductor contacts the non­
equilibrium electrons have energy I:: <~. Then the 
characteristic time If! Ao determines the distance TJ 
= ~T 1/4 = (DIf! Ao)1/2 over which they can diffuse from the 
contact. If this distance is short compared with the 

J 

FIG. 3. 
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length of the contact (a> 1]), superconductivity is stim­
ulated in the contact, and the current-voltage charac­
teristic has the form shown in Fig. 1. In the opposite 
case (a < 1]), the nonequilibrium effects for three-dimen­
sional contacts are small. 

In film bridges the nonequilibrium electrons with en­
ergies e > 60 lead to suppression of the superconductivity 
in a wide region of the contact. The dimensions of the 
region are determined by the distance over which the 
electrons diffuse in the energy-relaxation time re. 
This length 

is usually considerably greater than the size ~ of a 
pair. The volt-ampere characteristic of the contact in 
this case has a falling part and is shown in Fig. 2. 

As in the three-dimensional case, nonequilibrium 
electrons with energies e < 60 lead to a change in the 
current-voltage characteristic of the bridge only when 
the contact is sufficiently long (a> 1]). As a result, 
such bridges can possess current-voltage characteris­
tics of the type in Fig. 3. 

In the experiments OfCZ,3l current-voltage charac­
teristics of bridges, with the voltage discontinuities to 
which characteristics of the types in Figs. 2 and 3 lead, 
have been observed. This was explained by the in­
crease in the temperature of the electrons in the con­
tact and by the appearance of a region with the normal 
phase. CZl 

The calculations lead to the same qualitative results 
as in the present paper. However, the thermal-con­
duction equation used in the calculations presupposes 
the existence of quasi-local equilibrium (slow varia­
tion of the distribution function in a region of size - r*). 
This becomes invalid for contacts of small size and for 
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not too large currents, when the size of the normal 
region is less than r*. In the present paper, we use a 
kinetic equation for the distribution function that cor­
rectly describes the diffusion of electrons even in a 
short contact. 

We note also that it has been assumed in the present 
work that the temperature of the phonon thermostat is 
constant. In short contacts of bulk superconductors 
this condition is always fulfilled. In bridges, it is 
necessary for this that the characteristic heat-trans­
fer time be shorter than r e. In the opposite case the 
volt-ampere characteristic is again given by formula 
(31), but the parameter a is then proportional to the 
logarithm of the long heat-transfer time. 

The phenomenon, found in this work, of the stimula­
tion of superconductivity in a contact would be interest­
ing to observe experimentally. For this, however, it 
is necessary that a fairly restrictive condition on the 
length of the contact be fulfilled: ~Tl/4<a<~. Then a 
considerable increase in the current through the con­
tact sets in at a small voltage V-li/eTe rl/Z. 

The authors are grateful to Yu. N. Ovchinnikov for 
valuable advice and a discussion of the results. 
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