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probability of resonance multiphoton ionization. 

In conclusion the author thanks N. B. Delone and A. 
M. Dykhne for a discussion of the work and for valuable 
advice. 

APPENDIX 

Let us discuss the question of the validity of the meth­
od presented in this article. Let us consider the com­
plex time plane (see the figure). Let us denote the 
point 

, 
s,=Im S E,dt, 

where t = t12 by A, the corresponding point where t = t23 
by B, and the point where t=t13 by C. The notation 1-2 
on the figure means that in the region where the numeral 
2 is placed we have S2 > s1> but in the region where the 
numeral 1 is placed, we have Sl > S2' These regions are 
separated by the Stokes line AO on which Sl =S2' The 
notation 2 - 3 and 3 -1 is defined in analogous fashion. 

Multiplication of two matrices was utilized for the de­
termination of the resonance transition matrices (7). 
In this connection, in the time plane one should move 
from the point A along the curve AO. [31 At the pOint 0, 
where Sl =S2 =S3, the direction of motion should change 
to OB, where S2 =S3' It is necessary for the validity of 

the method that one should have S3 < Sl =S2 on the Stokes 
line AO, and Sl < S2 =S3 on the Stokes line OB. This will 
be true in the case when the numerals 1, 2, and 3 are 
arranged in cyclic fashion. Precisely such a case is 
shown in the figure. In the case of an anticyclic ar­
rangement of the indices, the method becomes incorrect. 
The question of what numerical values of the problem's 
parameters will cause the arrangement of indices to be 
cyclic or anticyclic is solved separately in each specific 
case by numerical methods, and this question is not in­
vestigated in the present article. 
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A method is discussed which allows the determination for arbitrary molecules of the angular dependence 
of the intermolecular potential from the experimentally-determined averaged (over the angles) potential. 
The method is based on the effective pair interaction approximation. As an illustration, the potential curves . 
for different relative orientations of the molecules H2-H2 are computed. The curves are found to be in good 
agreement with the results obtained by other methods. 

P ACS numbers: 34.20.Be 

1. INTRODUCTION know the total and the differential cross sections for 
elastic and inelastic interactions of molecules. [1J How­
ever, partial transition cross sections and angular dis­
tributions have been measured directly in experiments 
only for a very limited number of molecular pairs: 

To solve a number of concrete problems (thermal dif­
fusion, the cooling of interstellar gas, relaxation in a 
shock wave, line broadening, etc.), it is necessary to 
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H2-H2, [2] H2-CO. [3] Therefore, usually, these quan­
tities have to be computed theoretically. There exist 
at present standard methods of computing cross sec­
tions from a given interaction potential. [4] However, 
the interaction potentials of the overwhelming majority 
of molecular pairs are virtually unknown, and they also 
ha ve to be found theoretically. [5,6] 

Usually, the intermolecular potential is represented 
in the form of a sum of several terms U,7,8]: 

V=Vmu1+ Vind+Vdis+Vval, (1 ) 

where Vmul characterizes the multipole interaction of 
the static moments of the molecules, ViDd reflects the 
interaction between the static and induced molecular mo­
ments, Vdls describes the dispersion interaction of the 
induced molecular moments, and, finally, V val repre­
sents the valence interaction. The first three interaction 
modes are relatively long-range interactions. Their 
angular and radial dependences are known, U,7,8] and the 
corresponding constants-the static multipole moments 
and the polarizabilities-have either been experimental­
ly determined, or can be computed by standard methods. 
As to the valence interaction, its functional dependence 
is, strictly speaking, unknown. Meanwhile, it is pre­
cisely this interaction that makes the dominant contri­
pution at small distances, determining the repulsive 
part of the potential. . 

In this paper we discuss an approximate method of 
computing the angular dependence of the valence part of 
potential acting between two arbitrary molecules. We 
consider the collisions of molecules moving with ther­
mal velocities, in which only the rotational degrees of 
freedom are excited 

In the general case, this potential depends on the rela­
tive disposition of the molecules, as characterized by 
the vector r(r, n) joining their centers.of gravity, and 
on the orientation of the molecules, which can be char­
acterized by two sets of Euler angles, na and nr,. It is 
convenient to write the potential VYal in the form of an 
expansion in terms of products of the spherical func­
tion 

(3) 

where A~0;~~!2 is an invariant-under rotation of the lab­
oratory system-function of the angular variables no, 
n1, and~, defined by the relation: 

I, I, ) f. ) f, f. Dm ... (Qo Dm,., (Q,) Dm"" (Q,). 
m1 m2 

Here 

626 SOy. Phys. JETP, Vol. 43, No.4, April 1976 

is the Wigner 3j symbol. The properties of AI0l1l2 (no 
"0"1"2 ' n1, n2) are well known, whereas the expansion coeffi-

cients R~~~!b (r) are unknown scalar functions of the dis­
tance r. Thus, the problem of the determination of the 
angular dependence of V val reduces to that of finding 
these coefficients. 

The sum (3) can, in prinCiple, be extended to all in­
tegral values of 1, la, and lb from zero to 00 and all in­
tegral JJ.a and JJ.b lying in the interval from -li to lie The 
coefficients R~~a:Rb with large values of l, la' and 
lb at great distances r (beyond the minimum of 
the potential well) decrease very rapidly, since 
R~~a:~b (r)a: Rggg(r)/r1a+ 1b• At small distances, however, 
the contribution made to the potential by the higher-or­
der expansion terms corresponding to large values of 
1, la, and lb can be quite substantial, especially in the 
case of nonlinear molecules (see, for example, the in­
teraction potential of H2CO-He[5]). 

It is important that many terms of the expansion (3) 
drop out as a result of some general requirements im­
posed on the potential. 

First, the interaction energy should be a scalar with 
respect to rotations of the laboratory system of coor­
dinates. The fulfillment of this requirement is guaran­
teed by the fact that the potential (3) expands in terms of 
the functions (4), which are scalar products of three D 
functions. This leads to the requirement that the sum­
mation indices 1, la> and lb should satisfy the triangle 
condition: 

Second, the interaction potential should be invariant 
under inversion of the coordinate system. In conse­
quence, the indices l, la' and lb should, in addition, 
satisfy the condition 

1+1. +1, is even . (6) 

Third, the interaction energy operator should be Her­
mitian, i. e., the potential V should be real in the di­
agonal representation, whence 

This condition also takes account of the invariance of V 
under time reversal. 

Further, the interaction potential of the molecules 
should be invariant under the transformations of the 
point-group symmetry of these molecules[9] if this sym­
metry does not change (see the condition (2». This im­
poses even more severe limitations on the summation 
indices la,lb and JJ.a, JJ.b' and connects some of the coef­
ficients R~~a:~b (r). Thus, for molecules possessing an 
n-fold symmetry axis en, the component JJ. a (or JJ.b) of 
the moment la (or lb) along this axis of symmetry as­
sumes only values that are multiples of n. For exam-
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pIe, for the molecules HzO (the group C2v ) lJ.a = 0, ± 2, 
± 4, ••• .:; la, for the molecules NH3 (group Cav ) IJ. a = 0, 
± 3, ± 6, ••• .:; la, for the molecules CO (group C ... v) lJ.a = 0. 
The coefficients R~~~Bb that do not satisfy these condi­
tions drop out. Similarly, for molecules possessing a 
center of inversion i (e. g. , Hz, COz, CaHs), the mo­
ments la (or lb) assume only even values 0,2,4, •••. 
In the general case for molecules belonging to the groups 
Cnh and Dnh , the quantity la + J.La assumes an even value. 
The limitations and relations fur molecules of different 
symmetries have been investigated in [lO], and are sum­
marized there in the form of Tables. 

Notice also that in the case of collisions between iden­
tical molecules the expansion coefficients should satisfy 
the supplementary relation: 

(8) 

Finally, in computing the matrix elements of the po­
tential between states (of the molecules a and b) char­
acterized by definite angular momenta j and parities, 
7T = ± 1, of the wave function and by a definite angular 
momentum, L, of the relative motion of the molecules, 
ja7Tajb7TbL-j~7T~j;7T;L', all the R~~a;~b terms of the series 
(3) that do not satisfy the usual laws of conservation of 
angular momentum and parity: 

Ijo'-j,I,:;;Z.':;;j/+j., Ih'-hl':;;h':;;jo'+j.. IL'-LI,:;;z.:;;£,+L, 
rr/rr.=(-1)", rr,':rt,,=(-1)", (_1)L'+L+I=1 

drop out. Therefore, allowance for the higher-order 
terms of the expansion (3) is especially important in the 
computation of the probabilities of transitions involving 
large changes in the momenta, Ij~ - ja 1 or Ii; - jb I. 

The most rigorous and consistent way of finding the 
R~~a;eb consists in an exact quantum-chemical computa­
tion that takes into account the direct and exchange in­
teractions of all the particles entering into the mole­
cules. However, as is well known, [8] such a calculation 
meets with considerable computational difficulties, even 
for the simplest molecules Hz- Hz. [8,11] As to complex, 
multiatomic molecules, the direct computation of their 
interaction is virtually impossible. 

The intermolecular potential can, in principle, be 
found from an analysis of the data on the differential 
cross sections for elastic scattering of the molecules 
and on the partial cross sections for collis ion- induced 
transitions. Such a procedure was, for example, re­
cently used to determine the potential of Hz-Hz. [2] How­
ever, such detailed information does not exist for the 
overwhelming majority of molecular pairs. As a rule, 
only the thermodynamic quantities of the type of the sec­
ond virial coefficient or of viscosity as functions of tem­
perature are known. From them we can establish only 
the mean potential VYal (r), i. e., the potential averaged 
over the orientations of the colliding molecules [7. 8]: 

(9) 

It is, in the general case, impossible to establish the angu­
lar dependence of VYa! from these data. It can, neverthe-
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less, be done in the framework of an additional assump­
tion about the nature of the valence forces if, in addi­
tion, we take the real geometry of the colliding mole­
cules-the angles and the interatomic distances- into ac­
count. 

2. THE EFFECTIVE PAIR INTERACTION 
APPROXIMATION 

Let us assume that the short-range part of the poten­
tial VYal (r, ila, S2z,) can be approximated by an effective 
pair potential of the type 

Btl Nb 

V val (r, Q., Qb) = I: I: V" (riA). 
i_1 A_I 

where r ik is the modulus of the distance between the 
i-th atom of the molecule a and the k-th atom of the 
molecule bj Na and Nb are the numbers of atoms in 
these molecules. 

(10) 

The additive nature of the potential (10) is, to some 
extent, due to the fact that, because of the large slope 
of the effective pair potential at small distances (near 
the classical reversal point), the contribution to VYaI of 
one or another pair of atoms ik belonging to different 
molecules can become predominant if for this pair the 
distance rl k turns out to be less than the distances for 
all the other pairs of atoms entering into the various 
molecules. The representation of the intermolecular 
potential in the form of a sum of pair biatomic inter­
actions is, of course, an approximation. However, 
this two-atom potential Vik describes the interaction of 
not free atoms, but of atoms entering into the given 
molecules a and b, which are in a quite definite quantum 
state, which does not change in the collision process, 
since E k1n « ECOI «Eel' It is the latter circumstance 
that allows us to introduce the effective potential, which 
effectively takes into account, when the constants have 
been properly chosen, the contribution of the many-par­
ticle forces. As to the long-range potential, it is non­
additive. The contribution of the many-particle forces 
to it is taken into account by the fact that the values of 
the multipole moments and of the polarizabilities per­
tain to the entire molecules. 

Notice that in the general case the effective interatomic 
interaction function Vlk may correspond not only to cen­
tral, but also to tensor forces that depend on the relative 
orientation of the spins. However, in the case when the 
electronic spin of each of the molecules is equal to zero 
we can restrict ourselves to the forces that depend only 
on the modulus rjk' 

The distance between the atoms i and k is determined 
by three vectors 

(11) 

where It; (bk ) is the radius vector of the i- th (k- th) atom, 
drawn from the center of gravity of the molecule a(b). 
Strictly speaking, the radius vectors It; and bk charac­
terize the coordinates of not the atomic nuclei, but the 
corresponding force centers, which, as a result of the 
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redistribution of the electrons in the molecule, can be 
somewhat shifted from the position of the corresponding 
atomic nucleus (tl.aj/a; '" 0.1). [12] 

The quantity r lk depends on the three angles between 
the vectors r, It;, and bk • Therefore, the angular de­
pendence of the pair potential Vjk(rjk) can be represented 
in the form of an expansion in terms of products of 
three Legendre polynomials: 

1I,.(r .. )= E cL.L,L"(r,a" b.)PL• (nn,)PLb(nn')PL•b (n,n.), (12) 
L4L~LGD 

where n, nl and n" are the unit vectors of the vectors 
r, It; , and bk defined in the laboratory coordinate sys­
tem. 

In order to explicitly separate out the dependence of 
Vjk(rjk) on the direction of each of the three vectors, let 
us use the addition theorem for three rotations(13): 

( L. I. L.b ) ( L.b Ib Lb ) ( L, I L. ) {l I. lb} II." . \ 
X 0 0 0 0 0 0 0 0 0 L", Lb L. A 000 (n, n" n" . 

(13) 
In order to explicitly separate out the dependence of Vlk 

on the structure of the molecules and their orientation, 
let us shift the vectors nj and n,. from the laboratory co­
ordinate system into the systems connected with the cen­
ters of gravity of the molecules a and b and oriented in 
such a way that the z' axes coincide with the highest-or­
der symmetry axes of the molecules. The function 
A~lb (n, Ilt, nk ) can then be represented in the form 

A"·"(n n· n.)= ~ A"·" (n Q Q )C'·'(n ')C"'(n ') (14) 
000 ,~, ~ O~II~b ' a, b J..L" i J.4D It • ..... 

As a result, the valence potential can be written as fol­
lows: 

~ (L. I. LO.b) (LO.b tb Vval = ~ (21+1)(2/.+1)(210+1) 0 0 0 

where 

Ne,No 

BL.L,L., (r) 5< ~ CL.L,L., (r, a" b.) CI., (nt') CI" (n,'). 
~~rb~D ~ ~ ~ 

i,lt_t 

(15) 

(16) 

It can be seen from the formula (15) that the entire de­
pendence of V.at on the structure of the molecules a and 
b is contained in the factor Bfaa{::I~":b' Further, it follows 
from (16) that, contrary to the assertion made in[10), the 
quantity Bfaa;:I;":b cannot be represented in the form of a 
product of a Ma- and Mb- independent radial function and 
two numerical factors that depend on laM a and lb Mb and 
that respectively characterize the internal structures of 
the molecules a and b. Therefore, in the general case 
the use of the potential proposed in (10) seems to us to be 
incorrect. 

Comparison of the formulas (3) and (15) allows us to 

628 SOy. Phys. JETP, Vol. 43, No.4, April 1976 

express the sought functions R~~a:!b in terms of the coef­
ficients cLaLbLab, which are determined by the effective 
pair interaction vlk(rjk): 

( L.b lb Lb) (Lb I L.) N •. Nb 
X ~ cL.L,L·'(r a b )CI·'(n ')CI"(n ') o 0 0 0 0 0 ~ ., i,. ... i ", •. 

l,k_t 

(17) 
Usually, as the function Vlk (rl k ), potentials of the Len­

nard-Jones, Buckingham, or Morse type, or exponential 
fucntions with shifted interaction centers are taken.[7.8.12) 
However, for all these functions the coeffic ients cL aLb L ab 
and, consequently, the R~~a:!b cannot be computed analyt­
ically. Furthermore, the number of variable parame­
ters in them sometimes turns out to be insufficient for 
the description of the experimental data in a wide range 
of energies (temperatures) to be possible. Therefore, 
it seems to us to be more convenient to use for the de­
scription of the effective pair interaction in the general 
case the following approximating polynomial: 

N IE 

v,,(r,,)= Ee-a.(iU, ... E ~m.(ik)r",'m, (18) 
n_O m_O 

where the parameters a,,(ik) and 13m. Uk) characterize the 
interaction between the pair of atoms i and k, and are 
determined with the aid of the procedure described be­
low. Practical calculations have shown that, for a good 
approximation of the function Vlk' it is sufficient in many 
cases to restrict ourselves to one or two terms in the 
formula (18). 

The fact that the approximating polynomial depends 
only on even positive powers of rlk allows us to express 
cLaLbLab in terms of derivatives of modified Bessel func­
tions, and to write the expressions for cLaLbLab and 
R~~a:8b in analytic forms. In this case the functions 
R~~a:!b and, in particular, Rggg will depend on all the pa­
rameters of the effective pair interaction. This allows 
us to determine a,,(ik) and {3m.(ik) from the condition 

Ro~~'(r) =vval (r), (19) 

where 

(20) 

Here Vemp(r) is the averaged empirical potential deter­
mined from thermodynamic or kinetic quantities. The 
expression in the brackets in (20) represent the contri­
butions of the multipole, the induction, and the disper­
sion potentials averaged over the orientation of the mol­
ecules. 

As a specific method for calculating the parameters 
(l.(ik), 13m. (ik), it is convenient to use, for example, the 
minimization of the following functional: 

s 

!J){a.(ik).~mn(ik)}= ~ {R:~~(r.)-Vval(r.)}', 
._0 
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FIG. 1. Comparison of the averaged-over the orientations­
interaction energy, V, obtained in the present paper for two 
hydrogen molecules with the empirical potential Y_ and with 
the mean potentials, YEN and YMH , obtained in[8.111 from quan­
tum -chemical calculations. 

where the rs are the points where the functions are 
joined and S is the total number of connection points, 
i. e., of the rs' 

The pair- interaction parameters thus found allow us 
to compute the coefficients R~~a;~ with l, la, lb "- 0 and 
thereby re-establish the complete angular dependence of 
the potential from the averaged potential Vemp(r). 

3. THE INTERACTION ENERGY OF H 2 -H 2 

As an illustration of the considered method, let us 
compute the angular dependence of the intermolecular 
potential of H2-H2• The choice of the molecules H2-H2 

is due to the fact that it is only for this pair that the ob­
tained orientational dependences can be compared with 
both the results of quantum-chemical calculations and 
experimental data on the differential cross sections for 
scattering. The valence part of the interaction potential 
VVa! in this case assumes the form 

Vval (r, Q., Qb) = .E R':~:: (r)A'::~' (n, Q" Qb), (22) 
/lalb 

where l, la' and lb run through only even values. 

For the computations of the pair-interaction parame­
ters from the formula (21), as Vemp in (20), we chose the 
Lennard-Jones potential[71: 

(23) 

with £ = 5.11 X 10-14 erg and a = 2. 93 X 10-8 cm. This em­
pirical potential describes the temperature dependence 
of the second virial coefficient for the H2 molecules with 
a relative error not exceeding -10%. 

As to V mul and Vlnd , they are, in the case under con­
Sideration, equal to zero, while V dis = - klr 6 , where 
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k=1.05xlO-59 erg-cm6• 

As the approximating pair- interaction function, we 
used the polynomial (18) with five independent parame­
ters. These parameters were varied until the functional 
<I> being minimized became, for S= 8, less than 0.04 e2• 

It turned out in this case that the pair interaction is, to 
within an error of 5%, well described by the function 

VaH (raa) =~e -a"aa, 

a=0.72: 10" em-', ~=1.34·10-" erg. 

The corresponding R~~8'b coefficients for this case have 
the form 

R~::'(r)=[H(-1)"][ H(-1)")(21+1)(21.+1)(21.+1) .E (~. ~ L;) 

( Lob I. 
X 0 0 

where 

CL.L,L"(r, a)=(-1)L.+L'+La>(2L.+1) (2L,.+1) 
X(2L. b+1) ~ra("+2")iL. (2aar) iLo(2aar) iL., (2aa'). 

In particular, 

l.L bLab 

(26) 

Ro:oo (r)=4~e-a(,'+"') .E (2L+1) iL(2aa')[iL (2aar) ]'. (27) 
L=O 

For the molecules H2 the distance a = 3. 72 X 10-9 cm. 

A numerical analysis of the individual terms in the 
sum (22) showed that, for Ekln < 10-13 erg, at virtually 
all the distances under consideration the maximum con­
tribution to this sum is made by the terms with the in­
dices l, la' lb = 0, 2, so that 

Vval (r) ""R::: (r) {H<p (r) [P,(nn.) +P,(nnb) ]}. (28) 

The contribution of the polynomial P2(nanb ) is consid­
erably smaller «alr)2 times smaller); the coefficient 
attached to it almost does not depend on r and is approx­
imately equal to 4(aa2)2/3. The contribution of the next 
polynomials, P 4 (nna), P4(~)' and P2(nna)P2(~) is also 
very small. For aar< 1, the function cp (r)=R~gIRggg 
is approximately equal to t(aar)2 in the region of the 
minimum of the potential. At large distances, however, 
it decreases like (alr)2. The contribution of the R~~a::b 
terms with l, la' lb > 2 is negligibly small, since in the 
molecules H2 the transitions involving angular-momen­
tum changes greater than two units are connected with 
large energy changes aE> Ekln • 

The averaged-over all the orientations of the mole­
cules-potential V (r) with the parameters a and (3 given 
above and the empirical potential Vemp(r) are shown in 
Fig. 1. 

The orientational dependences of the interaction en­
ergy, including, besides the above- computed V val> the 
quadrupole and dispersion interactions, are shown in 
Fig. 2. Also shown there for comparison are the Evett­
Margenau (EM) curves, [81 which were computed by quan­
tum-chemical methods, and which are at present appar-
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FIG. 2. The energy of interaction between two hydrogen mole­
cules for four molecular orientations. The solid curves are 
the curves obtained in the present paper; the dashed curves 
are the results of Evett and Margenau's quantum-chemical 
calculations. [81 

ently the most exact. The more recent results obtained 
by Mason and Hirschfelder (MH)[lll are, in the opinion 
of the authors themselves, less exact. As can be seen 
from the figures, the angular dependence of the obtained 
curves is more critical than that of the EM curves. A 
similar trend was revealed inUll • This is partly due to 
the fact that Evett and Margenau did not take the angular 
dependence of the dispersion interaction into account. 
~nother !:..eason for this may be the difference between 
VEM and Vemp , to which difference the present calcula­
tion (Fig. 1) is tied. Considering all the foregOing, the 
agreement between the curves shown can be considered 
to be quite satisfactory. This indicates that the pair­
interaction approximation for the valence potential is a 
good one in the low- energy region. The errors of the 
calculation are due mainly to the errors in Vemp(r), and 
can be reduced by determining the latter more accurate­
ly. 

630 SOy. Phys. JETP, Vol. 43, No.4, April 1976 

On the whole, it should be said that the method under 
consideration allows us to fairly simply compute the in-
teraction energy of the molecules, and, what is especial-
ly important, this method enables us to determine the in-
teraction of complex molecules, for which the exact 
quantum-chemical calculation is not possible and there 
are no data on the differential cross sections for elastic 
and inelastic scattering. 

The authors are sincerely grateful to the participants 
of the theoretical seminar of the A. F. Ioffe Physico-
technical Institute of the USSR Academy of Sciences for 
a detailed discussion of the present work. 
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