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It is shown that interaction of spin waves with conduction electrons in a quantizing film (at temperature 
T = 0) may lead to destruction of the ferromagnetic order and to a transition to an antiferromagnetic state, 
with a period of the order of the film thickness. 

PACS numbers: 75.70.+j, 75.30.Nc, 75.30.Fv 

1. INTRODUCTION 

Interaction of spin waves with a degenerate gas of con
duction electrons leads, as is well known, [1J to occur
rence of a singularity of the Migdal-Kohn[21 type in the 
magnon spectrum. Because of the separation of the 
Fermi surfaces resulting from the presence of mag
netization, Singularities should be observed not only at 
k=P~+Pi< (k is the quasimomentum of a magnon, p~ are 
the Fermi momenta of electrons with spin projections 
± ~ respectively), but also at k = p~ - Pi< "'~, p;. > pp.. The 
singularities at k = p~ + P"F are located in the range k 
-!'i/ a (a is the lattice constant), while the singularity at 
k = ~ is located in the long-wave part of the spin-wave 
spectrum. Hereafter, only this latter singularity will 
be of interest to us. 

The separation is of the order of magnitude[31 
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where P F and E F are the Fermi momentum and energy in 
the paramagnetic phase, and where J is a quantity with 
the dimensions of energy, describing the coupling be
tween the conduction electrons and the magnetization 
and equal to the energy "separation" of the Fermi steps. 
Inf-metals (such as Gd and Dy), the Curie temperature 
6 c"'J 2/e F ; in d-metals, ec is somewhat larger than 
J2/eF• since there is direct exchange interaction be
tween d-electrons (rather than via s-electrons). 

In nonferromagnetic metals, quantization of the mo
tion of the electrons in a magnetic field H leads to en
hancement of the Migdal-Kohn singularity in the phonon 
spectrum. [41 Blank and Kondratenko[Sl showed that simi
lar enhancement of the singularity in the magnon spec
trum is not observed because of the large value of the 
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separation (J»nwe, where we=eH/m*c; m* is the ef
fective mass of an electron). 

Quantization of the motion of the electrons in a plate 
leads to enhancement of the singularity in the long-wave 
magnon spectrum[6J and, as will be shown in the present 
paper, may lead to a complete reconstruction of the 
spin-wave spectrum and even to loss of stability of the 
ferromagnetic state. Furthermore, it will be shown 
that because of the interaction of spin waves with con
duction electrons, there may occur a stable periodic 
"antiferromagnetic" structure, with a period of the or
der of the plate thickness d, in a metal that in the bulk 
state is uniformly magnetized. The nature of the initia
tion of the periodic magnetic structure is the same as 
in metals with a complicated Fermi surface (see the 
paper of Dzyaloshinskil. [SJ). 

We shall assume that the thickness d of the plate is 
much smaller than the free path 1 = VFT (vF is the Fermi 
velocity, T is the free passage time of the electrons); 
ansiotropy of the dispersion law of the electrons is dis
regarded. We treat the case of specular reflection of 
the electrons by the speCimen boundary; for the spin 
waves, we use Rado's[7J condition, that the normal de-: 
rivative of the magnetic moment vanishes at the plate 
boundaries, Z = 0 and d (Rado's condition corresponds to 
an ideally clean plate surface, with a normal that coin
cides with one of the principal crystallographic direc
tions[SJ). 

The energy parameters encountered in the work satis
fy a chain of strong inequalities: 

(2) 

Here Ed= (rrn/d'f/2m* is the first surface energy level 
of an electron with Pol = 0 (Pol is the two-dimensional mo
mentum of the electron; p~ = p; + p;; the z axis coincides 
with the normal to the plate); w is the energy of a mag
non with momentum k. Without allowance for interac
tion of the magnons with the electrons, 

oo=Ul (k) =8k'/p,'+("o. pp=fl/a. (3) 

where e- ee, and where Wo is the energy gap in the 
spin-wave spectrum, a consequence of the anisotropy; 
by hypotheSiS, A = 2rrn/k» a. The renormalized (by in
teractions with the electrons) dispersion law of the spin 
waves is denoted by w(k). 

2. INSTABILITY OF THE STATE OF UNIFORM 
MAGNETIZATION OF A METALLIC PLATE 

Allowance for the interaction of spin waves with con
duction electrons and for quantization of the momentum 
of the plate boundaries leads to the following equation 
for the magnon energy w: 

00=00,+ II, (Ol), 

II ( )- l'lt '\'1' S d' {n1+,t-n'l n1t-n,,} 
,00 -- Mod(2ntl),.i.... pJ.. w+f,,-e,+,,+i6 -~ • 

oo,,=ooo+(e/p/) [(,,/in/d)'+k;'l, n=O, ±1, ±2, ... 

e,,=[ (,,/iv/d)'+pJ..'1/2m'-al, a=±'/" v=±1, ±2, .... 
(6) 

The stroke on the summation sign means that the terms 
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with v = 0 and v + n = 0 are omitted; A =' {v, Pol}' 7J =' {n, kol}; 
nX<1 are the Fermi steps at T= 0; Mo'" !l/as is the mag
netization of a bulk body at T= 0; k~ = k; + k~. The ex
pression (4) can be derived by starting from a Fermi
liquid treatment, [4,6J The boundary conditions at z = 0 
and Z = d (for electrons, vanishing of the wave function; 
for magnons, vanishing of the normal derivative of the 
magnetic moment) permit the derivation of "selection 
rules," which have been taken into account in writing 
II~(w). The expreSSion (4) can be used not only when 
the change of the magnon spectrum is small, but also 
in those most interesting cases in which the renormal
ization of the magnon energy is significant. But in or
der that it may be possible to neglect damping of the 
spin waves, it is necessary that the denominators in 
II~(w) be not too small (not less than ed » w). This fact 
will be taken into account below. 

We shall be interested in the spectrum of standing 
spin waves (magnons with ~ = 0) for n* 0; and we shall 
show that at certain thicknesses d of the plate, the po
larization operator II~(w) < 0, while I rr,,(w)1 »w. Hence 
according to (4), w < 0, and consequently the ferromag
netic state is unstable. 

The denominator in the first of the integrals in the 
formula, for kol = 0, has the form 

We shall discuss the case n = 1. We shall be interested 
in the situation in which the denominator (7) is small. 
It is clear that here we must consider the largest v's, 
since to them correspond the smallest e/s, and the 
phenomenon can be observed at comparatively large 
thicknesses. But the Fermi steps bound the sum over 
v. We introduce 

(8) 

(E[x] is the interger part of x). In order of magnitude, 
2N determines the number of subbands below the Fermi 
energy. 

For v"'N the denominator is small, if 8 d "'J/2N. By 
use of (8) we see that the thicknesses of interest to us 
satisfy the condition 

(9) 

We shall define more accurately the occupation of sub
bands by electrons at thicknesses d satisfying the condi
tion (9). Various situations are possible (see Fig. 1). 

I. The last sub-band under the Fermi level belongs 
to electrons with a = + t (Fig. la): 

(10) 

II. The last occupied sub-band has a= - t (Fig. Ib): 

E.N'<eF-' e.(N+1)'>eF+. (11) 

This case is possible only when ed > J2 /4eF • 

III. The last two sub-bands belong to electrons with 
a=t (Fig. lc): 

(12) 
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FIG. 1. 

The last case is possible only if Cd < J2 /4 €F' 

With increase of plate thickness, there is a possibili
ty of cases in which the last (third, fourth, etco) sub
bands belong to O"=~. We shall not consider these cases. 

Since k.L = 0, the integrand in formula (4) is independent 
of P.L' and the integration presents no difficulty: 

n ()_ ,~I { [sp+-sd(v+1)']-[sF--e,v'] 
',' 00 --g ~ <0+1- (2\'+1) Ed 

_ [eF+-sdv']-[SF--SdV'] } 

00+1 
g'=l'llm'l2nh"JIl.d"", (e,ieF) '/'I'/e,·, 

(13) 

As we have already said, for f-metals J2/CF ", eo We 
shall use this relation hereafter; that is, we shall sup
pose that g2"" a( ~a/ €F)1I2 0 The stroke on the summation 
sign means that the summation is so carried out that 
the expression in square brackets is positive; terms 
with v = 0 and v + 1= 0, as before, are absent; the index 
on II means: 

n=l, k.L =0, 

We I:!hall treat the three cases in successiono 

According to (10) and (8) we have, taking into account 
the inequality w«J (we omit the stroke on the summa
tion sign), 

N-l 

n") ( ) _ '{ ; ~ I ,en' 2en ++2NSd} 
1.0 U) - g (tl .l....J +.2 -_ .. --- - . 

,~_(.,_" w+J- (~\'+I) Ed J 1+2Nsd 

(14) 

We have separated out the terms with v = ± N, - (N + 1," 

Similarly we have 
N-1 

r!'~:"(")=g'{'dL i + e"N- +l __ eFN+}, 
,.,_.v w+l- (2v+l)e.d <0+1- (2N+1) e" 1+2Ns" 

(15) 
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(16) 

In formula (15) the terms with v= N and v = - (N + 1) have 
been separated out, and in formula (16) those with 
v=-(N+l), v=±N, andv=±(N-1)o Wedenote 
c~ - N 2 ea by f,~N0 

We shall investigate formula (14) for Ea $ J2 /4E F (we 
shall be interested in the onset of instability at large 
thicknesses; see the expression for ca after Eqo (2». 
On going over from summation to integration and noting 
that the denominator nowhere vanishes, we get, with 
logarithmic accuracy, 

Since 2Ncd""J, the last expression takes the form 

,I) () '{ <0 1 1 + 1 +} n.,. 00 ""g' -In--- -e", . 
2e, 8" 2 1 

(14a) 

It is possible to choose the value of the plate thickness 
in such a way that the third term is much smaller than 
unity, and because of the term - t the whole polarization 
operator is less than zero. On comparing II:~ ~(w) with 
the value of Wi,O = wo+ cae/ EF (see (5)), we see that with 
approach to the thickness for which (C;"/Ea)1I2 is an in
teger, w changes sign, and consequently the system of 
spin waves proves to be unstable. 

In analogous fashion, for the third case (see (11) 
and (8)) . 

n,IIl) () '{ <0 1 1 1 e;N-.} 
10 w =g - n---- . 
, 28d Ed 2 J -2Nfrl+ P" 

(16a) 

It is evident that by choice of the thickness one can 
make the third term arbitrarily small (according to (12) 
it is positive) and, in complete agreement with the pre
ceding case, observe instability. 

We recall once again that both the cases considered 
(formulas (14a) and (16a)) correspond to comparatively 
thick plates (Ea:$ J2 /4eF ). When c a;::: J2 /4eF, in case I 
formula (14a) is valid, while in case II, in the same ap
proximation, 

1 + + 
n (.II) () '{ 00 1 SFN eF,N+'} liJ III ~g - n------ , 

2ed fd 1+2Nf" (2N+ I )£,,-1+00 
(15a) 

Within the bounds of the inequalities (11), t:$ e;'N/(J 
+ 2Nca) $1 for J- 2Ne a, but e F,N-i < O. For observation 
of instability, it is advantageous to make it vanish. Ob
viously, according to the considerations presented 
above, on approach to a certain thickness «e~/ea)112 an 
integer) instability should be observedo We remark 
that for ca>J 2/4eF' cases are possible in which one of 
the denominators in formula (15) may be of order Wo 

Then, of course, perturbation theory is inapplicable 
(see the beginning of Sec. 2); but the vanishing occurs 
only for isolated values of the plate thickness. This fact 
justifies us in ignoring such caseso 
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Thus when ed '" J2 /4 IlF' in certain narrow thickness in
tervals (t:.d -n/PF) the system of spin waves is unstable, 
since 

(17) 

By considering the following modes of standing spin 
waves (n = 2,3, ••• ,k.L = 0), it can be demonstrated that 
observed instability sets in at large plate thicknesses: 

Ed",,1'/4n'Ep. d=:rrfin(2e F llm')''', (18) 

while wn• O has the form 

(19) 

We emphasize that the value of the polarization operator 
lln,o(w) in the region of maximum instability is indepen
dent of the mode number. 

Formally, there will be no instability for n;::; (EF/ e d)1/2 

at thicknesses that satisfy the condition 

(20) 

Considerably earlier, however (at smaller thicknesses), 
dissipative mechanisms (finiteness of the free path of 
the electrons and nonspecularity of their reflection by 
the boundary) destroy the quantization of the electron 
spectrum. Therefore the chief role is apparently played 
by the first modes (n = 1,2,3), whose instability should 
have real physical meaning. 

3. PERIODIC "ANTI FERROMAGNETIC" STRUCTURE 
OF THE GROUND STATE 

The instability of the uniformly magnetized state dis
covered in the preceding section shows that at certain 
thicknesses the spin structure of a film should differ 
Significantly from the spin structure of the bulk metal. 

We shall show that with a periodic dependence of the 
mean magnetic moment, the energy of the system can 
be lowered by choice of the minimizing period 2rr/q. 
We shall. Consider two magnetic structures that vary 
periodically with the coordinate x: 

M,(x) =M" cos qr. My(r)=M"sinqr. M,=O. 

M,(x) =M" cos qx, M,=M,=O. 

(21a) 

(21b) 

Since we have chosen the Simplest M(p) dependence 
and have disregarded the role of demagnetizing factors, 
we shall not pretend to predict the true most stable mag
netic structure and its exact parameters. Our aim is 
to show the possibility of liquidation of the instability by 
a transition from the uniform ferromagnetic structure 
to a periodic antiferromagnetic structure, and also to 
find the order of magnitude of the pitch of the spiral and 
of the depth of the minimum of the stable state. 

The Hamiltonian of the interaction of the conduction 
electrons with the magnetic moment of the ground state 
is 

Here l/!a(r) is the wave function and (j the spin operator 
of an electron. The idea of the subsequent calculation 
goes back to the work of Dzyaloshinskif, [3] according to 
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whom the appearance of a periodiC magnetic structure 
leads to a change of the electronic spectrum that de
creases the total energy of the magnet, despite the ap
pearance of a positive exchange energy Eex due to the 
inhomogeneity: 

Eex=(Ba'/IlMo) J dV(VM)'. (22) 

In our case, the change of the electronic spectrum leads 
to the result that the last (unsafe) sub-bands (II '" N) are 
located above the Fermi level. Since it is to them that 
the instability was due, a new state is energetically ad
vantageous. Expulsion of the sub-bands from below the 
Fermi level may be called, in the language used in the 
theory of phase transitions of the 2t-th kind U. M. Lif
shitz[9]), a change of topology of the Fermi surface, 
which in the present case is due to the disappearance of 
one Fermi circle (Fig. 1 a-c). 

The change of topology of the Fermi surface leads to 
an abrupt change of the energy of the Fermi electrons 
with II '" N (we shall call it the "singular" energy and 
shall denote it by ES1ng(q)). At the same time the ener
gy of the other electrons changes smoothly. This (in 
accordance with[3]) enables us to conSider E.1ng(q) alone. 

In order to calculate E.1ng(q), it is necessary to inves
tigate the energy spectrum of the electrons with allow
ance for their interaction with the nonuniform magnetic 
moment (21). 

Determination of the energy spectrum of the electrons 
reduces to solution of Pauli's equation. In the case (21a) 
it has the form 

(23a) 

I is the unit matrix, and l/! is a column of two functions. 
In the case (21b) equation (23a) gives 

(23b) 

We shall first consider case (21a)-a helical structure, 
which permits exact solution of equation (23a) (seeUO ]). 

The energy of an electron can have the following values: 

(24) 

The two signs before the square root correspond to the 
two spin states. 1) 

In the calculation of E.1ng(q), the integration over PoL 
extends over a small region, and therefore the expres
sion (24) can be simplified by expanding the square root 
as a series in (p,Jiq/m*'f/J2 (the final result confirms 
the possibility of the expansion). 

For 1I=±Nwe have from (24) 

.. .p/ Px' ( tt'q') 1 1 tt'q' €=EdN-+--+- 1±-- ±-+---. 
'2m' 2m' 2m'l 242m' 

(25) 

Depending on the relation between EdN2 and fF (see (14)
(16)), the contribution to E.1n/q) is made either by those 
electrons in whose energy expression there is a plus be
fore the square root (see (24)), or by those for which 
there is a minus before the square root: 
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FIG. 2. 

We have taken into account the contribution of the two 
sub-bands, with v=Nand with v=-N. Per electron, 
the singular part of the energy is (91 is the number of 
electrons) 

Per particle, the nonuniform exchange energy (22) 
has the order of magnitude e(aq'f",eWq'f/2m*€p<o (We 
note that n/ a'" PF = (2m* t F)1/2.) Consequently 

E±(q) = S(/iq)' + (~) 'I. (e FN± _ ~ (/iq)' ) e (e
FN

± _ ~ (/iq)2 ) . 
9! eF 2m' eF 4 2m' 4 2m' 

(27) 

Analysis of this expression shows that E'(q) takes its 
smallest value at nq=nq, = 2(2m*e~'N)1/2, when Es1ng(q) 
vanishes •. We recall that this means expulsion of the 
last electronic sub-bands from below the Fermi level, 
while the remaining sub-bands (v < N) are located far 
from the Fermi level. Thus the instability caused by 
the sub-bands with v=±N is liquidated (see (14)-(16». 

On comparing the value of E'(q)/'1I with the value of 
the energy in the ferromagnetic phase, we see that the 
gain in energy is approximately (Ed/eF )1/2e'i>N' 

In the case described by formula (14), there are two 
unsafe sub-bands (the corresponding Fermi energies 
are E;'N,E:F.N_l<J) that must be taken into account in the 
calculation of E.1ng(q). In this case also, q may be so 
chosen that both sub-bands are above the Fermi level, 
and the gain in energy - (Ed/EF)1/2(e;'NHp,N_tl. 

The case of the sinusoidal structure (23b) reduces to 
the solution of Mathieu's equation. Unfortunately there 
are no' simple formulas for the spectrum. We shall 
therefore restrict ourselves to a few remarks. It is 
easy to analyze the case depicted in Fig. 2, in which 
EFN« J. In the unsafe sub-band the electrons are in 
deep potential wells, almost unconnected with each oth'" 
er, and therefore the p,.-width of the band is exponen
tially small. Calculation of E.1ng(q) gives the following 
result: 

Esing(q) =~(/i2q2)'I'(.!:!.)'I'[e +_/iq (_J )]'h (28) 
9! n 2m' eF PH 22m' , 

and analysis of E(q) shows that in this case also, q"'q" 
and the energy gain due to expulsion of the unsafe sub
band is of the same order as for the helical structure. 
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We must point out the more abrupt singularity of E.1ng(q) 
in this case (in comparison with the helical); this may 
lead to the actual occurrence of a sinusoidal structure. 
Apparently the final choice of the most stable antiferro
magnetic structure can be made by taking into account 
demagnetizing factors, temperature, etc. 

From the point of view of experimental detection of 
the effect treated above, special interest attaches to the 
compound ZrZn2, which is ferromagnetic at a tempera
ture below 20 K. Wayne and Edwards[1l) Showed experi
mentally that the temperature of degeneracy of the elec
trons in ZrZn2- 300 K. At present there are no data on 
the effective mass of the charge carriers in this com
pound, but from the Mott-Arkhipov criterion[9) (see, 
for example, Sec. 11) it follows that m* is of the same 
order in it as in bismuth. At the same time, it is well 
known[12) that the quantum dimensional effect in metals 
of the Bi type is already observable at thicknesses of or
der 10-4 cm. 

From the data presented it is evident that because of 
the small degeneracy temperature and, apparently, the 
small effective mass of the electrons in ZrZn2, it is 
comparatively simple to satisfy the quantum condition 
at thicknesses - 10-4 cm, and consequently to observe 
an antiferromagnetic state in films of this metal. Simi
lar deductions are apparently correct for other metals 
in which there are small groups of electrons with small 
effective masses. 2) For example, in iron and nickel 
there are groups of electrons-"pockets" -with EF - 0.1 
e V and m* - O. 1 mo' There is also a possibility of ob
serving this effect in ferromagnetic rare-earth metals 
(REM), whose Fermi surface is very complicated: in 
the presence of dimensional quantization in REM films, 
there may appear unsafe sub-bands that make the exis
tence of ferromagnetism in them disadvantageous. But 
at present the obtaining of pure REM presents great dif
ficulties. 

We take this opportunity to thank I. M. Lifshitz for 
stimulating discussions. 

Om the present case the spin motion is entangled with the or
bital: the spin of an electron is reoriented during motion 
along the helicon, 

2) As was remarked in 1l2l, the quantum dimensional effect is ob
served not only in semimetals, but also on electrons of small 
groups in ordinary metals. 
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Phase diagram of an excitonic ferromagnet at finite 
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The phase diagram of an excitonic ferromagnet is investigated at finite temperatures. It is shown that near 
the ferromagnetic-transition temperature, the Curie law holds for the static magnetic susceptibility. The 
conditions under which a nondegenerate electron system can go over into the ferromagnetic state are 
determined. The possible existence of two Curie temperatures, outside of which the substance is 
paramagnetic, is observed. The character of the phase transition is investigated using the two-parameter 
Landau expansion. Certain experimental data are discussed qualitatively on the basis of the results. 

PACS numbers: 7S.30.Jy, 7S.30.La 

1. INTRODUCTION 

This is a continuation of our investigation of excitonic 
ferromagnets. OJ We investigate here the behavior of 
excitonic ferromagnets at finite temperatures. 

We obtain first an expression for the longitudinal static 
magnetic susceptibility X of the excitonic-insulator phase 
at T * O. This expression is used to determine the limits 
of the region of the instability of the dielectric phase with 
respect to its transition to the ferromagnetic state at dif
ferent values of the singlet (g-,) and triplet (gt) coupling 
constants. \\e show that near the instability region the 
susceptibility X obeys the Curie law X-1 - T - Te. We 
then obtain analytic expressions for the phase-transition 
line in the low-temperature region. It turns out that at 
low concentrations 2n of the excess electrons, the di
electric phase, in which the chemical potential J1. of the 
electrons lies inside the dielectric gap 2As(As > J1.), ex
hibits ferromagnetic instability. Inasmuch as at close 
values of the singlet and triplet coupling constants the 
temperatures Ts and Te of the dielectric and ferromag
netic transitions are close to each other in a consider
able region on the (n, T) plane, it becomes possible to 
construct in this region a two-parameter Landau expan
sion for the free energy F in powers of the singlet (As) 
and triplet (.:l.t) order parameters. An investigation of 
this expansion shows that the ferromagnetic transforma
tion proceeds always (except for the case gs =-gt) by a 
second-order phase transition. At strictly equal con
stants, there exists a section where the entropy S and 
the order parameters change jumpwise. 

In conclusion, we present results of numerical com-
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puter calculations, in the self-consistent field approxima
tion, of the complete phase diagram of an excitonic fer
romagnet and its susceptibility in the paramagnetic re
gion. 

2. FUNDAMENTAL EQUATIONS 

A model for an excitonic ferromagnet was proposed 
in[2J and was considered in detail for T=-O in[1] in the 
high-density approximation (e 2/livF« 1, where e is the 
electron charge and VF is its Fermi velocity). In this 
paper we investigate an excitonic ferromagnet at finite 
temperatures in the same approximation, using the 
Hamiltonian and the notation of(1J, i. e., we consider a 
semimetal having one electron and one hole Fermi sur
face the centers of which are either at one point of the 
Briliouin zone, or are shifted relative to each other by 
one-half the reciprocal lattice vector, the electron den
sity being larger than the hole density by an amount 2n 
(for example, owing to doping). We retain in the inter
action Hamiltonian only the terms that determine the in
stability of the semimetal with respect to formation of 
charge density and spin-density waves (CDW and SDW, 
respectively). These instabilities correspond to singlet 
(gs) and triplet (gt) coupling constants, expressions for 
which in terms of the initial interaction constants are 
given inw (see (1-21)1)). The development of these in
stabilities is accompanied by appearance of a singlet 
.:l.s (CDW) and triplet .:l.t (SDW) order parameters. 

To obtain a self-consistent system of equations in the 
high-density approximation we use the method of tem
perature Green's functions[31 defined by the formulas 
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