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It is shown that the impedance of a ferromagnetic metal near the antiresonance (FMAR) frequency is the 
sum of two terms. One term is determined by an electromagnetic wave that penetrates deeply into the 
metal, and it possesses a singularity characteristic of FMAR and is caused by frequency dispersion of the 
magnetic susceptibility. The nature of this singularity is elucidated under conditions of normal and of 
anomalous skin effect. The second term is due to a comparatively short spin wave; it contains an exchange 
constant and a quantity that describes the behavior of the magnetic moment near the surface. The second 
term does not involve the parameters that determine the conductivity of the metal. The separating out of a 
term that contains the singularity and is independent of spatial dispersion facilitates the use of FMAR for 
investigation of magnetic relaxation processes in metals. 

PACS numbers: 72.l5.Eb, 76.50.+g, 73.25.+i 

1. INTRODUCTION 

One of the consequences of the resonance dependence 
of the components of the magnetic permeability on fre­
quency is the vanishing of Rej.L(w), the real part of the 
effective magnetic permeability, outside the region of 
significant absorption (Fig. 1). The aggregate of phe­
nomena due to the vanishing of Rej.L( w) is called ferro­
magnetic antiresonance (FMAR). Near the frequency at 
which Rej.L(w) vanishes (we shall designate it by WAR)' 

there is a Significant increase of the skin depth of pene­
tration of an electromagnetic wave into a ferromagnetic 
metal, and this leads to selective transmissivity of fer­
romagnetic plates. [1-9] The role of conduction elec­
trons in ferromagnetic resonance (FMR) has been 
thoroughly studied (see, for example, [lOll. Ferromag­
netic antiresonance (FMAR) has been studied compara­
tively little, although selective transmissivity is un­
questionably detected. [5,8] The complexity of an inves­
tigation of FMAR is due to the fact that near W = WAR the 
impedance of a bulk specimen decreases, and for a 

- mefal it IS small even without this. But near the FMR 
frequency the impedance increases. One must bear in 
mind, however, that cyclotron resonance-one of the 
prinCipal methods of investigation of the electronic en­
ergy spectrum-also involves a drop of the impedance 
of the metal. 

If we neglect magnetic relaxation (take Imj.L(w) iden­
tically equal to zero), then for W= WAR the wave vector 
of the 'electromagnetic wave vanishes (k = 0 for W = WAR)' 

and this leads to a singularity in the frequency depen­
dence of the impedance. This means that near FMAR 
the magnetic dissipative processes play an especially 
important role, and that FMAR can serve as a method 
of investigation of magnetic relaxation. 

The derivation of formulas connecting the high-fre­
quency characteristics of a ferromagnet (for example, 
the impedance) with quantities that describe its energy 
spectrum (conduction electrons and magnons) is com­
plicated by the necessity for taking into account spatial 
dispersion both of the electrical conductivity and of the 
magnetic permeability. The theory of the high-frequen­
cy properties of nonferromagnetic metals has been de-
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veloped in great detail (see, for example, [11]). Its gen­
eralization to the case of a ferromagnetic metal pre­
sents no difficulty if one neglects spatial dispersion of 
the magnetic permeabiliti l • Under conditions of FMR, 
the anomalousness of the penetration of the electromag­
netic field into the metal is aggravated by the decrease 
of the skin depth on approach to W = WR' The impedance 
is a complicated function of the parameters that de­
scribe the electrons and magnons. [l0] In particular, the 
impedance depends on the condition imposed on the 
magnetic moment at the surface of the specimen. [11] 

As will be evident below, under conditions of FMAR 
it is possible to separate out the role of spatial disper­
sion of the magnetic permeability by describing the im­
pedance as the sum of two terms: one term equal to 
the impedance of a ferromagnetic metal with a magnetic 
permeability, without allowance for spatial dispersion, 
and the other to the impedance of a fictitious medium in 
which there is propagated only a supplementary wave 
due to the spatial dispersion of the magnetic permeabil­
ity (a spin wave). 

Before presenting the derivation of an expression for 
the impedanee of a ferromagnetic metal under FMAR 
conditions, we make one remark: FMAR may be re­
garded as a unique opportunity for "stretching" of an 
electromagnetic wave in a solid. If far from W = WAR 

the wavelength in the solid was AO' then at W = WAR it will 
be approximately Xo(w/ .<lW)1/2, where.<lw is of the order 
of the FMR linewidth. On taking into account the quality 
of modern magnetic materials, we see that the 

w 

FIG. 1. Frequency dependence of the magnetic permeability 
It (w): I, Relt (wl; 2, Imlt (w). 
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"stretching" coefficient may reach several hundreds. It 
seems to us that this fact can render FMAR a unique 
method of investigation of the relaxation properties of 
solids (the atoms of the solid find themselves under the 
influence of a high-frequency but practically uniform 
electromagnetic field). 

2. FORMULATION OF THE PROBLEM 

We consider a ferromagnetic metal filling the half­
space z "'0. A constant internal magnetic field HJilez 
is directed perpendicular to the surface of the metal 
(the unit vector ez is parallel to the internal normal to 
the surface). For this geometry, B = H~ i) + 41TMo' where 
Moe z is the equilibrium magnetization and where B is 
the magnetic field outside the metal (the induction in­
side). An electromagnetic wave is normally incident on 
the metal. If the metal has cubic symmetry in a plane 
z = const, then. an alternating field with time dependence 
e- iwt (electromagnetic fielde(z), magnetic field h(z), 
and deviation m(z) of the magnetization from equilibri­
um) has circular polarization a.(z) = aJzh iay(z). The 
components of the tensors of magnetic susceptibility, 
conducti vity, and surface impedance have the proper­
ties Axx=Ayy, Axy= -Ayx and are encountered also in the 
form Axx±iAxy=A •• 

We shall describe the motion of the magnetic moment 
by the linearized Landau-Lifshitz equation[12l 

d'm. 1 
-Ct-.-, +---m.(z)=h±(z), 

dz' x=o(o,) 
( 1) 

where a is an exchange constant (a;:; (8e/lllvlo)a2, where 
8 e is the Curie temperature, J1 is the Bohr magneton, 
and a is the lattice constant; we shall use this expres­
sion for estimates). The magnetic susceptibility with­
out allowance for spatial dispersion is denoted by 
X.,o(w): 

(2) 

Here WR is the FMR frequency, g is the gyromagnetic 
ratio (for estimates: g=e/2rnc, J1=ng), and T. is the 
relaxation time of the magnetic moment. Magnetic 
anisotropy may be considered to be included in the in­
ternal magnetic field HJi>ez • By use of (2), we get for 
the magnetic permeability J1.,o(w) = 1 + 41TX.,O(W) without 
allowance for spatial dispersion 

(3) 

Since FMAR (like FMR) occurs for the plus wave, 
hereafter only this wave is conSidered, and the index 
"+" is omitted,3) Equation (1) requires, in addition, 
boundary conditions. We shall use the quite general 
ones[lll 

dm I etMo' m(z-+oo)-+O, D- +m(O)=O, D=--;;--K . 
dz z=o .... ~ 

(4) 

Here Ks is the surface-anisotropy constant (it may be 
many times as large as the volume constant). 

We do not give a precise description of the behavior 
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of the electrons but assume the existence of a general 
linear relation between the current denSity Hz) and the 
electric field e(z), 

j=(J~. (5) 

where 0- is an integral operator; its form depends on the 
dispersion law of the conduction electrons e = e(p), on 
the value of the magnetic field B, on the nature of the 
reflection of the electrons by the surface, and on the ef­
fective length R = l/[1- i(w+ 0)7], where T is the mean 
passage time of the electrons, 1= VFT, VF is the Fermi 
velocity, 0 = eB/m*c is the cyclotron frequency, and 
m* is the effective (cyclotron) mass. 

For estimates, the following limiting expressions, 
with respect to the value of the wave vector k, are im­
portant[13l: 

4n(Jw/c'''''2R/{)'I, kR<l, 

4naw/c'~?'Jt/2l{)'k. kR» 1; 

(6) 

(7) 

52 = c2/21TWUO' where 5 is the skin depth of penetration of 
a quasistatic electromagnetic field (for Il = 1). Our 
problem is to calculate the impedance, for wz WAR' of a 
ferromagnetic metal whose electric and magnetic prop­
erties are described by Eqs. (1)-(7). 

3. ELECTROMAGNETIC AND SPIN WAVES WITH 
FREQUENCY NEAR THE FMAR FREQUENCY 

To characterize the electromagnetic properties of a 
ferromagnetic metal near FMAR, we shall study the 
propagation of waves in an infinite metal, By perform­
ing a Fourier transformation of the Landau-Lifshitz 
equation (1), we obtain an expression for the magnetic 
permeability with allowance for spatial dispersion: 

(8) 

From Maxwell's equations (in which, of course, the dis­
placement current has been omitted) 

1h 4ni oe w 
-=--j(z), -=-[h(z)+4nm(z)]. 
OZ c fh c 

(9) 

we derive the disperSion equation[l2l 

(10) 

Uk(W) is the Fourier transform of the conductivity oper­
ator (its order of magnitude is given by the expressions 
(6) and (7) in limiting cases). 

The analysis of the dispersion equation (10) is based 
on the fact that the exchange length a1/2z(8e/J1MO)1/2a 
is the smallest parameter of dimensions length in this 
equation. Therefore in considering electromagnetic 
waves it is possible simply to neglect the spatial dis­
persion of the magnetic permeability: 

(11) 

The validity of this equation is tested thus: it is neces­
sary that k~a be considerably smaller than unity (ke is 
the solution of equation (11)). Apparently this is al­
ways the case. 
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We point out that the solution of (11) describes a com­
paratively long wave, since I Mo{w)1 «1 for W'" WAR. 
This is conducive to satisfaction of the conditions for a 
normal skin effect for the electromagnetic wave. 

We shall first consider the case { W + n)T« 1, that is, 
R'" l. For a normal skin effect (kl R I '" kl« 1), accord­
ing to (6), 

2 (J) -(J) 
k'''''--'--(ix+r) .. =~ 

0' ' 4ngM, ' 
r= (J)AR1. 

4ngM, ' 
(12) 

and the condition kl acquires the form (2r)l/z« 6/1, 
which is considerably weaker than the usual inequality 
1« 6/l. 

For an anomalous skin effect (according to (7» 

k'''''-3n U .. +r) /2(j'[, (13) 

and the condition for anomalousness is satisfied only if 
l» {2/31T)I/Z r-l /z6, which is considerably more demand­
ing than the usual l» 6 and can in general not be satis­
fied, because with decrease of temperature there is an 
increase not only of I but also of Ts ' and consequently 
a decrease of r. 

For {WAR + n)r» 1, and on the supposition that 
W'" WAR - n (the last means that the cyclotron mass m* 
is not too different from the ordinary), we have 41TUW/ 
WTCz", wVcz, where wo={41T11ez/m*)1/Z is the plasma 
frequency. From (11) in the case of a normal skin ef­
fect we have k'" r l /z/60, and the condition for applicabil­
ity of this formula is r llz1/60 «1. On comparing with 
the inequality WART» 1, we see that these conditions are 
not mutually contradictory if the additional quite demand­
ing condition VF/WAR«Z«60r-1/Z is satisfied; this oc­
curs only when r«{WAR/WO)Z{C/VF)z. In the case of an 
anomalous skin effect, formula (13) is valid as before 
(see (7», but the condition for its applicability has a 
different form: r»{WAR/WO)Z(C/VF)z, Evidently the 
more realistic case when WART» 1 is the anomalous 
skin effect, although, more than likely, in general an 
intermediate case occurs (we note that the conditions 
imposed on r do not "abut"; that is, there is certainly 
a large range of values of r for which I kRI '" 1). This 
fact does not prevent the separating out of the electro­
magnetic wave, that is, the neglect of the spatial dis­
persion in the magnetic permeability. 

Besides the electromagnetic wave,4) with wave vec­
tor k = k., the dispersion equation (11) describes propa­
gation 'of a spin wave, the square of whose wave vector 
ks at w= WAR is 

k.'=(4n/a) (Hir). (14) 

We recall that the dispersion law of a spin wave is 
w= WR + gMoOlkZ, whereas WAR = WR + 41TgMo• The cor­
rections of (14)-consequences of equation {l1)-de­
scribe the coupling of the electromagnetic and spin 
waves[lZ]; they are small in proportion to the small­
ness of the ratio (k./ks)z. Smallness of this ratio means 
that the electromagnetic field is almost uniform over 
the length of the spin wave. This last fact will be used 
to calculate the surface impedance of a ferromagnet 
when W'" WAR. 
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4. THE IMPEDANCE NEAR FMAR 

For the plus wave, the impedance is defined as fol­
lows: 

~=ie(O)/h(O). (15) 

In order to determine it, one must solve equations (9) 
and (1) with the appropriate boundary conditions. We 
shall seek an expression for the impedance by retaining 
terms - OIl /Z• The approximation of zero order in OIl / Z 
is determined by the following equations: 

Dh, 4ni . De, (J) . 
-=--/,(z), -=-I-lo(w)h,(z), /o={Je" 
(Iz c iJz c 

(16) 

whose solution we shall consider known: 

~o=ieo(O)/ho(O). (17) 

The impedance to of course depends on the magnetic 
permeability Mo(w) (in which spatial dispersion is ne­
glected) and on the structure of the conductivity opera­
tor a, to a normal or anomalous skin effect correspond 
attenuated electromagnetic waves with k = ke {see (12) 
and (13». The value of to can be found in standard 
fashion (see, for example, [1S,IO,14,15]). The character of 
the singularity of to for W- WAR will be discussed below. 

From the exact solution of equations (I) and (9) we 
separate out the zero-order approximation: 

e(:)=eo(z)+e,(:) etc. (18) 

On the basis of the results of the preceding section, it 
is clear that the field el(z) etc. is due chiefly to the spin 
wave (14). To find el(z), we consider the Landau­
Lifshitz equation (1): 

d!-m, d!-m. 1 (1 ) -a--a-. +-- (m,(z)+m,(z)}=ho(z)+h.(z). 9 
dz' dz' XO (w) 

The first term on the left side of (19) is proportional to 
OIk~« 1, whereas the second contains no small factor. 
Therefore the first term may be discarded. On noting 
that Xol(w)mo(z) = ho(z) and assuming that I XOI(wAR)mll 
» I hl(z)1 (this assumption will be tested below), we get 

d'm. 1 
-a--+--m.(z)=O 

dz' Xo(w) , 

or 

m,(z) =m, (O)e;"', k,=(4:rr/a)"'(HiI'/2). (20) 

In order to find the electric field el(z), we may as be­
fore neglect hi in comparison with ml in Maxwell's 
equation. Then 

4n(J) , 
e,(z) ""-,-m.(z). 

,k,c 
(21) 

We shall now show that I hi I « I mil. According to the 
first of equations (9), by use of the estimate (6) or (7) 
of the conductivity operator, we verify that I hi I '" (01./ 
( 2)lmll or Ihll "'[0I/(62l)z/S] Imll; this demonstrates 
the validity of our approximation. 

In order to find the impedance in the necessary ap­
proximation (through terms of order OIl /Z), we may use 
the following expression: 

~""~o+ie, (O)/ho(O) , (22) 

M. I. Kaganov and G. Paasch 582 



here e1(0) is expressed in terms of m1(0) according to 
(21), and m1(0) is determined from the boundary condi­
tion (4) 

( dm. ) D - +m.(O)+mo(O)~O. 
dz l=O 

(23) 

We have neglected a term containing dmo/dz for the 
same reason for which we neglected the first term in 
equation (19). On noting that XO(WAR)::O: - 1/41T, we have 
from (23) 

m, (0) ""ho(O) /4n (HiDk,) , e, (0) "" (OI/ik.c) ho (0) / (HiDk.). 

Hence, and from (22), 

~""~o+OIAR/k,c(1+iDk.), k,"" (4n/a) 'I, (1+ir/2) . (24) 

Thus near FMAR the impedance is the sum of two 
terms. The first contains Jlo(w), the magnetic perme­
ability without allowance for spatial dispersion, the 
second contains the exchange constant Q! and the quantity 
D, which is related to the surface-anisotropy constant 
(see (4», 

If we neglect magnetic relaxation, i. e" set r = 0, 
then ~o vanishes at w= WAR' The nature of the approach 
to zero depends Significantly on the properties of the 
operator a (see beloW), For r '" 0 and Dks - 1, the sec­
ond term and the first (for W = WAR) in the expression 
(24) may be of the same order5); but as a rule(lSl the 
value of the surface-anisotropy constant is such that 
Dks2 20 to 50, This means that the second term in (24) 
is negligibly small not at anomalously small values of 
the parameter r, 

The separating out of the role of exchange interaction 
(spatial dispersion) in our opinion serves as an addi­
tional argument in clarifying the feasibility of using 
FMAR for the investigation of magnetic relaxation in 
metals. We emphasize once again that under FMAR 
conditions the electromagnetic wave penetrates to a 
considerably greater depth than in FMR. 

5. SHAPE OF THE FMAR LINE 

As we have already said, the impedance ~o without 
allowance for spatial dispersion of the magnetic perme-

FIG. 2. Impedance ~o in the case of a normal skin effect 
(r = 10-2). Dotted curve: ,,1/2. 
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FIG. 3. Impedance ~o in the case of an extremely anomalous 
skin effect (r = 10-2). 

ability can be calculated by using the standard theory of 
the anomalous skin effect (Reuter and SondheimerCl3 ) 

and inserting Jlo(w) in Maxwell's equations, We shall 
give expressions for ~o in the two limiting cases. In 
the case of the normal skin effect (l« li/rl/2) 

016 -
~o "" 2c 1'2 (ix+r)"', Ixl<1, r<1, 

(25) 
~2(;x+r) "= (~x'+f"+l') '1,_; sgn x(~x'+1"-r) 'I,. 

We observe that in a nonmagnetic metal, the impedance 
in this case is (wli/2c) (1- i). Figure 2 shows the func­
tion ~o(><.) for the value r = 10-2• For 1><.1 » r, both the 
quantities Re~o and 1 Im~ol are proportional to 
IrJJ-wAR I1 / 2 • 

In the case of an extremely anomalous skin effect, 

01 (2{)'1 ) 'f, - {2 ( r )} ~o=a-;- -,- (x'+1"l"'(1+sgnx·n'3)exp i-arctg - ; 
2c 3n 3 x 

I:;;'~~' 1:;;'1':;;'( ~,AoR)2(VCF)'; Ixl<1, 
(26) 

r':l ' WAR' \1J 

where the constant a = 4/3..r'J in the case of specular 
reflection of the electrons by the surface of the metal, 
and a = (8/9)4/3..r'J in the case of diffuse scattering, 
For 1><.1 »r, both the quantities Re~o and 1 Im~ol are 
proportional to ><.2/3, in contrast to the square-root de­
pendence in the case of the normal skin effect. Figure 
3 shows the function t o(><') in the case of an anomalous 
skin effect (the value of r is taken, as before, as 10-2). 

In clOSing, one of the authors (G. p,) considers it 
his pleasant duty to thank the Moscow State University 
for the invitation to be a visiting member of its physics 
faculty. 

1)Dresden Technical University [E. Germany]. 
2)Certain difficulties, which are not ones of principle, may 

arise if the matrices of the conductivity and of the magnetic 
permeability do not reduce simultaneously to principal axes. 
Apparently this situation has not been completely analyzed. 

3)Figure 1 shows the frequency dependence of Ilo(w). 
4)There can be several waves due to conductivity; their dis-
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persion laws can be easily derived by noting that approximate­
ly (for W"" wAR) all of them except those treated here coincide 
with zeros of the denominator of O"k(w), In the present inves­
tigation we are assuming that either there are no such waves, 
or their length is much greater than the length of a spin wave 
(see below)-although this assumption cannot be justified by 
approach of W to WAR' 

slThis does not limit the use of the method of successive ap­
proximations applied here; the next term of the expansion in 
powers of O! 1/2 will be small in comparison with the second 
term. For specular and for diffuse reflection of the elec­
trons, with an .... isotropic dispersion law, an exact calculation 
of the impedan«e was carried out, for an arbitrary value of 
the frequency w. The expression obtained was expanded in 
powers of 0!1/2/0. The result obtained of course coincided 
with formula (24). 
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It is shown that interaction of spin waves with conduction electrons in a quantizing film (at temperature 
T = 0) may lead to destruction of the ferromagnetic order and to a transition to an antiferromagnetic state, 
with a period of the order of the film thickness. 

PACS numbers: 75.70.+j, 75.30.Nc, 75.30.Fv 

1. INTRODUCTION 

Interaction of spin waves with a degenerate gas of con­
duction electrons leads, as is well known, [1J to occur­
rence of a singularity of the Migdal-Kohn[21 type in the 
magnon spectrum. Because of the separation of the 
Fermi surfaces resulting from the presence of mag­
netization, Singularities should be observed not only at 
k=P~+Pi< (k is the quasimomentum of a magnon, p~ are 
the Fermi momenta of electrons with spin projections 
± ~ respectively), but also at k = p~ - Pi< "'~, p;. > pp.. The 
singularities at k = p~ + P"F are located in the range k 
-!'i/ a (a is the lattice constant), while the singularity at 
k = ~ is located in the long-wave part of the spin-wave 
spectrum. Hereafter, only this latter singularity will 
be of interest to us. 

The separation is of the order of magnitude[31 
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where P F and E F are the Fermi momentum and energy in 
the paramagnetic phase, and where J is a quantity with 
the dimensions of energy, describing the coupling be­
tween the conduction electrons and the magnetization 
and equal to the energy "separation" of the Fermi steps. 
Inf-metals (such as Gd and Dy), the Curie temperature 
6 c"'J 2/e F ; in d-metals, ec is somewhat larger than 
J2/eF• since there is direct exchange interaction be­
tween d-electrons (rather than via s-electrons). 

In nonferromagnetic metals, quantization of the mo­
tion of the electrons in a magnetic field H leads to en­
hancement of the Migdal-Kohn singularity in the phonon 
spectrum. [41 Blank and Kondratenko[Sl showed that simi­
lar enhancement of the singularity in the magnon spec­
trum is not observed because of the large value of the 
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