
Diagram technique and gas approximation in the Hubbard 
model 

R. O. Zaitsev 

1. V. Kurchatov Atomic Energy Institute 
Zh. Eksp. Teor. Fiz. 70, 1100--1111 (March 1976) 

The three-dimensional Hubbard model (Proc. Roy. Soc. A285, 542 (1965» with a narrow band and strong 
intra-atomic interaction is studied. The critical concentration corresponding to the appearance of 
ferromagnetic order at T = 0 is determined for the bcc and fcc lattices. For a concentration close to unity, 
when the number of particles is slightly less than the number of sites, the spin-wave spectrum is found. In 
this range of concentration the stability conditions for the ferromagnetic phase for simple, body-centered 
and face-centered cubic lattices are refined. It is assumed that the system is in thermodynamic equilibrium, 
and this is the reason why the results differ from the well-known results of Nagaoka (phys. Rev. 147, 392 
(1966». 

PACS numbers: 75.IO.Lp 

INTRODUCTION 

We shall consider the three-dimensional Hubbard 
model with the following Hamiltonian: 

,.., ~ + ~[l (+' (-, li( (+, (-') 1 C7ftl=-t ~ an ar'o+ ~ nr nr -Ilnr- n, -Ti r : 
r,"o 

(1) 

here n;a>=a;,,ara, nr=~+>±~->, Ilis the chemical poten­
tial and H is the external field, multiplied by the Bohr 
magneton. If the intra-atomic exchange energy I is 
much greater than the tunneling energy t, then, when 
the concentration c is increased, the system goes over 
from a paramagnetic phase to a ferromagnetic phase 
and then, finally, to an antiferromagnetic phase. In 
these conditions it is natural to go over to the atomic 
representation ofUl and take the tunneling part of the 
Hamiltonian (the first term in (1)) as a perturbation. 

In this paper it is shown how to construct a diagram 
technique based on the possibility of expanding in the 
parameter til. 

An attempt is made to find the concentration at which 
the transition from the paramagnetic to the ferromag­
netic phase occurs. The results obtained have a quali­
tative character, since in effect the expansion is per­
formed in powers of the parameter ~'Cl/3 (v is the num­
ber of nearest neighbors) while the critical concentra­
tion corresponds to a value of the parameter of the or­
der of 0.6. 

In studying concentrations close to unity we have used 
the first theorem of Nagaoka, C2l which says that for I 
= 00 the state of the system is ferromagnetic. Despite 
the fact that this theorem was proved for the simple 
cubic and bcc lattices, no contradiction arises if we use 
it for the fcc lattice too. An investigation of the stabil­
ity of the magnon spectrum makes it possible to deter­
mine the region of existence of the ferromagnetic state 
(Sec. 2). The results of this section are in quantitative 
disagreement with the third theorem and directly con­
tradict the second theorem of Nagaoka. Whereas the 
first theorem has a rather general character, the sec­
ond and third theorems were proved for a nonuniform 
state "with one reversed spin." Generally speaking, 
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the stability conditions for such a system are not bound 
to coincide with the stability conditions for a uniform 
system which is in complete thermodynamic equilibrium, 
and the latter is the subject of the present investigation. 
The methodological part of the paper contains a de­
scription of the diagram technique for the Hubbard 
operators. 

1. THE EXCITATION SPECTRUM (LOW 
TEMPERATURES) 

As the zeroth apprOXimation we select t.he single-cell 
part of the Hamiltonian (1) (the second sum). The 
"zeroth" eigenvalues and eigenfunctions have the .form 

£,=0 (1/1.=10», £,,=-fl+li (lj:a=a,+IO», 
E,={-2fl (tt,=a_-a--IO». 

Calculating all possible matrix elements between the 
states <Pk, we find the operators aa and a~ in the atomic 
representation[ll: 

Here (J = ± 1 and the operator X Po has its only nonzero 
matrix element, which is equal to unity, on the inter­
section of the p-th row and the q-th column. 

Thus, the tunneling Hamiltonian is expressed in 
terms of i-type operators only, which anticommute in 
different cells: 

'V -_ ~ '{ (X -.0 -,1"+ ) (,1':- -,1+' 'J +(y+" -'-r,'- ) (.Y::+ -+-X;" )} 
JI:",- t ~ '" r '" r '" r • r' ~ r '''' r 

(2) 

The root vectors Q and ~, which are defined in Ap­
pendix B (cf. Fig. 3 there), have the form 

a(O, ±)= ('l' y~, yl'2' 1) a(±,2)=( ± :'2' 1';,-1), 

a(0,2)=(0, 1'2,0). 
(3) 

a(+,-)=CJl2~0, 0), a(p, q)=-a(q, p), 

In Appendix A it is shown that the diagram technique 
for the Hubbard operators differs from the technique 
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for b-type operators[3] only by a sign rule. [4,51 The 
excitation spectrum is determined by the poles of the 
retarded Green function, which we obtain by analytic 
continuation of the thermodynamic function 

\IT 

D.,(k,wn )= L S exp(iwnT-ikr)<T(X.,(,)X_,,(O»>d,. (4) 

If the ground state of the system is known, then, at 
low temperatures, the fluctuations of the diagonal oper­
ators are exponentially small. In this limit our prob­
lem reduces to the problem of scattering of weakly­
damped excitations. As the bare Green function it is 
convenient to choose the one determined from the 
zeroth self-consistent field approximation. [6] In this 
case we sum all diagrams not containing any loops. 
The conditions under which the loops make a small con­
tribution will be established below. 

In the absence 'of tUnneling the Green function for the 
transition p - q is calculated directly: 

11.=<'-" T / L e-" '. a=a(I/.p.I. 

• 
The quantity f qp is the scalar product 

f;,.~~i.a (q. pi, 

where the three-dimensional vector ~ is equal to 

{ -I - I} i.= IlI2,--=-fll~,--. 
l~ ~ 

The upper sign in (5) refers to I-transitions (wn 
= rrT(2n + 1» and the lower sign to b-transitions (wn 

=2rrnT). 

(5) 

(6) 

(7) 

In the zeroth self-consistent field approximation we 
obtain equations of the Dyson type: 

V.,(k) = Le-ik'V.,(r). 
, 

In our case V ... ,(k)/t(k) is the direct product of four 
matrices. Two matrices have the form 

Bill. -'-) B(-, 2) B(O, -) B(+,3) 

n(+,O)' 1 1) a(-,o)( 1 -1). 
,,(2. -) (1 1 @(l(2, +) -1 l' 

(8) 

(9) 

and the other two are obtained from (9) by transposing 
and changing the Sign. The function 

t (k) =-t L 'e ik '. (10) 

The summation runs over nearest neighbors. 

After the replacement iWn - W + i6 we find the poles of 
the Green function. In our case we have two types of 
Bose excitations: magnons, corresponding to transi­
tions +;: -, and excitons, corresponding to transitions 
to the two~particle level (0;: 2). Namely, 

wm=l.a(+, -) =2H, w,=l.a(O,2) =1-21-1. 

The excitations of the I-type are divided into two 
groups[1]: 
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(11) 

U,~'=t/2[l.a(O, +)+l.a(-, 2)+t(k) ]±l'D, (12) 

where 

D=t/,,[Aa(O. +)-).a(-. 2)+t(k) [F(O, +)-F(2, -) ll' 

+F(O, +)F(2, --)t'(k). F(p, q)=nl'+nq. 

The second pair of branches differs from (12) by the 
interchange +;: - and corresponds to excitations with 
the oppOSite spin. In the limit of a large positive con­
stant I (I» max( I tJ.1, I t(k) I) we have the following 
branches: 

u)",=2II, w~=-I-1+H+F(O, ±) t(k). (13) 

The energy of the other branches is of the order of I, 
so that their influence disappears. 

In the apprOXimation used the correction to the poten­
tial n can be calculated as the thermodynamic contri­
bution containing one loop: 

l1o=-NTln (Le-"T), 
(14) 

k 

Q,=--T L {In[ l+e-,·",k) T]-ln[ I +r" Tj}: .. (15) 

here EA = limwA(k) and t(k) - 0; the summation over ~ 
runs over all positive I-type frequencies. 

2. HOLE FERROMAGNETISM (T=O) 

We shall consider the situation when the number of 
particles is slightly less than the number of cells. Ac­
cording to Nagaoka's theorem, [2] in this case the sys­
tem is ferromagnetic for 1= 00. We shall assume that 
the single-particle level with spin up has the lowest en­
ergy while the level with spin down lies slightly higher 
(H> 0). The two other levels ("empty" and two-particle) 
lie considerably higher. More precisely, 0< tJ.< tm«I, 
O<H« tm (tm=maxt(k». The spin-up state is the ground 
state and, therefore, for T«H we must assume that 
F(+, O)=F(+, 2)=1, while F(-, O)=F(-, 2)=0 (F(P, q) 
=np+nq=F(q,P». 

In the limit of large I, in place of (13) we have only 
one collective I-branch: 

(13') 

Concentrations close to unity correspond to almost 
complete occupation of the band with spin up, i. e., tJ. 
+H$ t(k). This is easily discovered if, using (14) and 
(15), we calculate the concentration and then take the 
limits T- 0, H - 0: 

1 iiQ 1 L c=---.-=I-- O(s(k»; 
N ufl N k 

(16) 

8(x) = 1 for x> 0 and 8(x) = 0 for x< 0; ~(k) is defined in 
(13'). The ground-state energy is calculated from the 
usual formula 

E,=lim(Q+l-1cN)=- Lt(k)8(s(k», T-O, H-O. 

• 
In deriving (16) and (17) we have used the condition 
~kt(k) = O. 
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FIG. 1.' Single-loop self-energy parts. 

Near its maximum the expression t(k) can be ex­
panded as follows: t(k) = tm - p2 12m. In place of the 
chemical potential we introduce the Fermi momentum: 
/l= -H + tm - pV2m (Po« 1). Expanding (16) and (17) 
in powers of Po, we obtain 

E, 3 (i-c)" 
-= -(i-c)lm +-c- (6",),/, __ ' -, 
N ill m 

(18) 

We shall write out t(k) for the three cubic lattices: 1) 
simple cubic, m = 1/2t: 

1(1,)=-21 L. cask" t",=-t(O) =61, A=l.~.:1. 
, 

2) bcc, m = 1/21: 

t(k)=-8III cos(k,!2), 1 ... =-1(0)=81. 

" 
3) fcc: 

t (k) =-41(c,c,+c,c,+c,c,), 
1m =_lj,t (0) =41, c, =cos (k,/2) , 

In the fcc lattice the hole Fermi surface (near tm) has 
a cylindrical shape, with effective mass m = 1/21. For 
this reason, in place of (18) we have 

E,IN=-41([-c)[1-b(1-c)] (b-J), (19) 

In the one-dimensional case, when t(k) = - 2tcosk, 
formula (17) gives the well-known result of Lieb in the 
limit 1=00 (cf., e.g./71 ): 

E,IN=- (2tl,,)sin ltC, (20) 

In the three-dimensional case the result (18) coincides 
with the ground-state energy obtained in[21. 

We now calculate the spin-wave spectrum. In the 
zeroth approximation the spin-wave energy is equal to 
2H. It is not difficult to see that the expansion of the 
inverse spin-wave Green function proceeds in powers 
of two'parameters: l-c and til. In the lowest approxi­
mations each loop gives an extra degree of smallness, 
so that, in the linear approximation, we have the four 
types of diagram depicted in Fig. 1. The diagrams of 
order 1 - c are not difficult to find if we put 1=00 every­
where, i. e., if we disregard diagrams containing a 
transition to the two-particle level. In the limit T= 0 
the only nonzero diagrams are those which contain the 
"collectivized" function G~+~ O)(k) = [- iWn - ~(k)l-l. The 
diagrams (c) and (d) should also contain the localized 
function G~~ -) = [- iWn + eJ-1 in that "shoulder" in which 
there ,is no terminal factor F(O, -), since otherwise the 
diagram will give zero because of the condition €+ < c_ 
< 0 (F(O, -) = 0). After summing over the frequencies 
we obtain the following result (T = 0): 
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sn~" (q) = L.8 (S (p» [I (q_p) -I(p)]-~ S(Up» t(p) [t(p) -t(q-p)] 
• p iw,,-2H+t(p) 

(21) 

The diagrams of order til can be found if, in the cal­
culation, we assume that c = 1, i. e., 

s(p)=~(p) =t(p)-t",<O. 

In this case, only those diagrams of the types (c) and 
(d) which, besides the function G(+'O), also contain G(+,2) 

will give a nonzero contribution. This happens because 
the signs of ~(p) and r.. - E:l COincide, while the corre­
sponding poles lie on opposite sides of the real axis. 
After expanding in powers of til, we obtain 

Nn~:) ('I) 

= + L. 8(-~(p» [I(p)-t(q-p) 1'. (22) 

With the accepted accuracy the sum over p can be taken 
over all p, since the region in which ~(p) > 0 is of order 
I-c. 

Diagrams containing two closed loops are of order 
(1 - C)2 in the limit 1= 00 • In the limit c = 1 they are of 
order (tl1)2. Thus, to within terms of order 1 - c and 
til we have the following spectrum: 

",,,.('1) =2II--IL.'" (<() -IT" (Iii, (23) 

Inasmuch as max( w, 2H)« tm, in the limit H - 0 we ob­
tain 

,\'u,,(ql=2 L.0(UP» [I(p)-t(,,-p) ]-+ \', [I(p,-II'I pi], 

Expanding this expression to within terms of order 
1- c, we obtain 

(.) (q)=--2[t(0)-I(,,) 1 [a(1--r)-I/I]. (24) 

The values of the constant a are given in the table. 

In the fcc lattice a = t and not 1, since the maximum 
value tm is attained not at - t(O) but at - t(0)/3 = 4t. For 
small q we have the usual ferromagnetic dispersion law 
W = srf. The spectrum becomes unstable at the same 
time for all q. The region of existence of the ferromag­
netic phase in an fcc lattice is smaller than in the other 
two lattices (tII< (1 - c)/3, in place of tlI< 1 - c). Simi­
lar results were obtained by Penn[Sl for the Simple cu­
bic lattice (for the corresponding graph see(91 ). 

At first sight it may appear that all the results ob­
tained are valid only in an extremely narrow range of 

v 

" ~ 
Co 

POc 

se j bee 
I 
I 

tee 

Note: Here v is the number of 
nearest neighbors, !3 are the Wat­
son integrals and Poe is the Fer­
mi momentum for the critical 
concentration Co. 
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X =~+ ~+X::X+X:::X ,<-, ~- ro,-) (0,+) , 
v 
a 

FIG. 2. The Bethe-Salpeter equation. 

temperatures T« H. But this is not so. The introduc­
tion of the magnetic field is necessary in order that the 
state of each cell be already nondegenerate in the zeroth 
approximation. If we can then calculate the corrections to 
the Fermi-excitation spectrum for finite H (diagrams 
of the type depicted in Fig. 1), it turns out that these 
corrections depend weakly on the field and the level B. 

lies above the middle of the "conduction band" ~(p) by 
an amount of the order of tm(1 - c). Thus, even in the 
absence of the field, the spin-down states are localized 
and remain unfilled, while the spin-up states form an 
almost completely filled band. As we should expect, 
the difference between the mean energy of the spin-up 
states and that of the spin-down states is equal to the 
ground-state energy per cell (18). It is clear that, in 
order of magnitude, this energy is the phase-transition 
temperature Te. Thus, the results of this section have 
a range of applicability that is independent of the field: 

3. GAS APPROXIMATION 

We shall consider the case of low concentrations, 
when IHH< O. In this case all levels lie above the 
zeroth level and the ground state is nondegenerate. 
Putting H = 0 throughout, in place of (13) we obtain two 
branches with the same energy: 

(25) 

The potential n from (15) goes over into the potential 
of an ideal Fermi gas. The situation is such that for 
large til the results obtained in the atomic representa­
tion should coincide with the usual "gas" perturbation 
theory. [10.11] In the Born approximation, of course, we 
have different results. In the usual theory rO=I, while, 
in the limit 1= 00, 

r'=- [t(p,) +t(p.)], 

(cf. Fig. 2a). 

(26) 

As usual, it is necessary to solve an equation of the 
ladder type: 

r (p" p,; p" p,) =f" (p" p,) 

-~. I, r'(p',s-p')G •• _.' (s-p')G.,(p')r(p',s-p'; p"p,); 
w'p' 

(27) 

In writing Eq. (27) we have taken into account that rO 
either does not depend on the momenta at all or depends 
only on the third and fourth arguments. We write the 
auxiliary equation conjugate to (27), in which we put 
so=O, J..L=t(O) and T=O: 
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o 1 ~ ( .' ') r o (p" p,) 
r(p" p,; p" p.)=r (p" p.) -]V .l...l r P" p" P ,s-p s,o, (p') +s,o, (s--p') , 

p' 

(28) 

Noting that r and r depend only on the third and fourth 
arguments, we obtain an equation that does not contain 
rO: 

1 ~ , '{ 1-n(s(p'»-n(s(s-p'» 
r(p"p.)=f(p"p')-"N .l...l r (p ,s-p ) s(p')+s(s-p') . 

p' 

- S'O'(p,)+1SI0 ' (s-p') }r(p"p.); 

n(x) is the Fermi distribution. 

(29) 

The kernel of the new equation goes to zero far from 
the Fermi surface; near the Fermi surface it has a 
rather sharp maximum. For this reason, we shall ex­
pand all the quantities appearing in (29) about the Fermi 
surface. In the gas Situation, when P~Po« 1, we can 
write 

• p' Po' 
s(p)""---, 

2m 2m 

We denote r(O, 0; 0, 0)=1"\ then 

r=f/[HgWT (sI2po) ], 

(30) 

(31) 

where g=mPor/2rr-, s= iPa+P4i and the function WT(x) 
is well-known in the theory of superfiuid Fermi sys­
tems. In the following we shall need the asymptotic 
expansion of W T(X) for T = 0 and x« 1, calculated in 
the pole approximation, [12] when g-l_ - W T( x) < 0: 

Wo(x) --In x-'!,+'!, In 2. (32) 

For finite I we have 

f=l 1+- ---/[ II, I ] 
N 26'0' (p) . (33) 

p 

Using (28) we immediately obtain the limiting value of 
the expression (33) when 1=00: 

r =2/~ ~ 1 
~ N .l...lt(p)-t(O) . 

(34) 
p 

The sum in the denominator reduces in the three sim­
plest cases to the well-known Watson integrals, and, 
therefore, 

I 2vt 
f= HIIf~' r~=-~-. (35) 

Here v is the number of nearest neighbors and the co­
efficients {3 are listed in the table. 

We can try to substitute the results (31) and (35) in 
the well-known condition for the appearance of ferro­
magnetism: 

(mpo!2n')l'=1 (36) 

(the bar denotes averaging over the directions of the 
momenta Pa and P4 on the Fermi surface). Using (31), 
it is not difficult to obtain 

(37) 
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Substituting the asymptotic expansion (32) into this, we 
find gc=O. 57. It now becomes simple to obtain the 
Fermi momentum and critical concentration, since for 
all three cubic lattices m = 1/2t and the vertex part f 
is known. 

Since C =p~/3w2, in the limit of small til and for T 
=0 we obtain the following expansion: 

c=c,,+21.Sc.,' 'ttl. (38) 

The constants Co are written out in the table. For a 
simple cubic lattice the critical concentration is so 
large that it is necessary in all cases to allow for the 
anisotropy of the Fermi surface. This result does not 
contradict the extrapolation of Kanamori, which gives 
a critical concentration Co in the range from 20 to 35%. [13] 
In the other two cases the critical concentration corre­
sponds to momenta in the region of weak anisotropy 
(Po< 1T). The difference in the critical concentrations 
is connected in an obvious way with the difference in 
the number of nearest neighbors. 

Unlike the results of the preceding section, the co­
efficients in the expansion (38) are tentative in char­
acter, since in the averaging over the Fermi surface in 
(37) the integral is taken not only in the region of small 
values of x= sl2Po but also in the region of values x-I, 
where the formula (31), for g=gc=O.57, is no longer 
valid. 

CONCLUSION 

We note that as the temperature is raised from zero 
to the Fermi level the vertex part r increases (cf. (31)), 
since the function W T(X) decreases with increasing tem­
perature. For this reason, on heating, the critical 
concentration first falls and then begins to increase. 
This form of the dependence evidently indicates the 
presence of a first-order phase transition. 

The question of the phase transition at concentrations 
of order unity must be regarded as not completely 
solved. The point is that we do not yet know which 
phase the ferromagnetic phase is contiguous with. It 
may turn out that a phase transition occurs before the 
spin-wave instability arises at til = a(l - c). 

It is necessary to note that the diagram technique 
used makes it possible to obtain the high-temperature 
expansion in the paramagnetic phase. For an fcc lat­
tice and for 1="" the results of Plischke[14] are ob­
tained. However, his extrapolation of the results into 
the region T« t is in no way justified. 

The author thanks B. T. Getlikman, N. E. Zein and 
D. I. Khomskil for useful discussions. 

APPENDIX A 

The Hubbard operators X t' can be divided into two 
classes: operators of the Fermi type (f-operators) and 
operators of the Bose type (b-operators). All the 1-
operators are nondiagonal while the b-operators are 
divided into diagonal and nondiagonal operators. 

The basis of the derivation of the diagram technique 
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is the rule for bringing nondiagonal operators outside 
the T-product (cf. [3-6]): 

. 
<T(X, {-t.,) ... Xm (-rm)X. (T)Xm+, (Tm+,) ... X. (Tn) »0= L, (-i) p'G. (T-To) 

0-, 
X <T(X, (T,) .. . .xo-, (To-.) [X.Xol±l, .Xo+, (TH')'" X. (T.» > •. 

(A. 1) 

If X" is an operator of the b-type, then 

{ HN(Aa) , T>O 
G,(T)=exp{-(Aahl () 

.IV Aa , T<O 

The notation is taken from[3]. Inside the average is a 
commutator; Pk = O. But if X", is an operator of the 1-
type, then 

{ i-nO.a), T>O 
G,(T)=exl'[-(Aa)Tl -n(l.a). T<O 

n(x) is the Fermi distribution and X· a(p, q) = Eq - ep• 

Inside the average we have the anticommutator if X k is 
an I-type operator, or the commutator if X k is a b-type 
operator. The signature Pk is the number of inter­
changes of I-operators required to get from the original 
sequence to the sequence in which the operator Xa 
stands immediately to the left of the operator X k: 

t,.Y, ~ .. X' ~,.Y,.Y, . .Y" , ... .Y ... 

In[3] it was shown that for Bose operators a conserva­
tion law for the resultant root vector is fulfilled at each 
vertex; this law follows from the well-known commuta­
tion relation[15] 

(A.2) 

We can obtain an analogous relation for the anticommuta­
tor if we use the second Jacobi identity 

[II (S, . . Y}I=[\·,[II.,.\,J}-{.Y,[1I S.j). (A.3) 

We have 

(A.2') 

Hence it follows that the diagram technique containing 
I-operators does not differ in its external form from 
the technique for b-operators. [3] A difference arises 
because of the coefficients N~~),/..-l)Pk, and also from 
the coefficientlk(a), which originates from the anti­
commutator of two conjugate I-operators: 

(A.4) 

In practice, in calculating any given diagram, in place 
of the general relations of the type (A. 2) and (A.4) it 
is convenient to use Hubbard's form of the commutation 
relations: 

(A.5) 

since in this case the root vectors, the coefficients 
N~~)/I' I(a) andlk(a) are determined automatically. 

APPENDIX B 

All the diagonal operators in the four-level model (1) 
can be expanded in the following set of three operators: 
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_+-_+-_~,--+-_+--(_o.~.: FIG. 3. Root system of the 
group SU(4). 

'0 

). 
1 

J h.~ :, ( h2=J2( 
0 

-1 e 
0 

(B.1) 

1 (' 1 -1 
h3 =2, -1 

The components of the root vectors are determined 
from the well-known relation (cf., e.g., (15 1) 

[h".X.1 ~,""x., (B.2) 

from which we obtain all twelve root vectors of the 
group SU(4) (cf. (3) and Fig. 3). To within a constant, 
the single-particle Hamiltonian (1) can be written in 
the form of a linear combination of the operators (B. 1): 

ll,=- r.1..h.,. (B.3) 
',k 

The components of the vector X. are given in (6). In the 
interaction Hamiltonian (2) only nondiagonal operators 
appear. For this reason, in the determination of the 
Green functions of such operators diagonal operators 
appear only as a result of interchanging two mutually 
conjugate operators. In the diagrams, a stopping-point 
of a solid line corresponds to this situation (see Figs. 
4a and 4b). 

A crossed wavy line corresponds to a terminal dia­
gram and in place of the stopping point there arises 

1: lY.,h, - for b-operators 

j(lY.) + Lf,(a)h.-for [-operators 

• 

(B.4) 

The result of independent averaging of these sums is 
depicted by a small circle (see FigS. 4c and 4d), to 
which correspond the factor 

for b-operators, and the factor 

F(a)=!(a)+ L!.(a) (h,>o=np+nq 

for I-operators. The averaging of several diagonal 
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~ 

IX 

a c e fi 
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b d f j3 

FIG. 4. Averaging of vertices containing diagonal operators 
(T =0). 

operators reduces, after subtraction of all possible 
disconnected diagrams, to the calculation of semi-in­
variants, which are proportional to derivatives of the 
partition function. [6,31 In the limit of low temperatures, 
these quantities are exponentially small, because the 
averaging is performed over the ground state of the 
system and the semi-invariants are proportional to the 
fluctuations of the diagonal operators. There is also 
a third possibility, when, in the process of taking any 
nondiagonal operator outside the average, one com­
mutes it with the sum (B.4). It is clear that in this 
case we have vertices of the type in Figs. 4e and 4f, 
after which a nondiagonal operator remains in place of 
the diagonal one. 

Thus, at T = 0, as a result of averaging the diagonal 
operators vertices of the type in Figs. 4c-f remain. 
At finite temperatures, we must add to these the result 
of averaging the differ(lnt diagrams containing several 
stopping pOints pertaining to the same cell. 
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