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Formulas are obtained, describing the photoelectron energy-distribution singularities connected with the 
structure of the crystal energy bands. It is shown that allowance for scattering leads to a strong 
deformation of the singularities of the internal photo-yield to such an extent that new singularity lines 
appear on the (E -(V) plane. The analytic relations near the symmetrical points of the Brillouin zone are 
considered in detail. 

PACS numbers: 79.60.-i 

INTRODUCTION 

The study of the energy distribution of photoemission 
electrons is a convenient means of obtaining informa­
tion on the electron spectra of solids. [1-7] Compared 
with the frequency dependence of the dielectric con­
stant £( w), the electron energy distribution N (E, w) con­
tains an additional parameter, the energy E of the 
emitted electrons, which can be measured with high ac­
curacy. To describe the electron distribution it is cus­
tomary to use a three-step model, [2-6] in which the 
electron emission probability is determined by the prod­
uct of the probabilities of single-electron photoexcita­
tion, of reaching the surface, and of passing above the 
potential barrier. The first of these probabilities, for 
the case of direct transition, is proportional in the 
principal approximation to the energy distribution of the 
interband density of states 

[,(E, w) ~ L 6(llw--f, (p)+e,(p)6 (E-£, (p)). (1) 

This quantity is determined directly by the spectra 
£2(P) and £l(P) of the lower and upper bands. The sum­
mation over the quasimomenta P in (1) is within the lim­
its of the Brillouin zone, and it is necessary to take 
into account only the occupied states in the lower band 
and the free states in the upper bands. As shown by 
Kane, [3-5] p(E, w) has singularity lines on the (E - w) 
plane. These Singularities stem from the vicinities of 
those p-space points in which the "w plane," c1(P) 
- £2(P) = fiw is tangent to the "E plane," £1 (p) = E. The 
tangency of the surfaces can be either of the extremal 
or of the saddle-point type, and accordingly the singu­
larities are either rectangular discontinuities or have a 
logarithmic character. 

A comparison of the results of the numerical calcu­
lations of the spectra and of the experimental data on 
the photoemission for a number of substances[7-9] shows 
that the behavior of N(E, w) corresponds in general to 
the structure of p(E, w). However, as will be shown be­
low, strong damping of the Single-electron states, 
which lie far from the Fermi surface, and also scatter­
ing occurring in the course of motion towards the sam­
ple surface, lead to deformation of the Singularities to 
the extent that new singularities appear on the (E - w) 
plane. The purpose of this study is to ascertain the 
character of the N(E, w) singularities in the presence 
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of smearing. Recognizing that the more consistent the­
ories of photoemission[10-13] are at the same time also 
the more cumbersome ones, we shall follow the three­
step model. We assume that this can not influence sig­
nificantly the pOSition and character of the Singularities. 
The situation is analogous here to the situation ariSing 
in the study of the surface impedance of metals in a 
strong magnetic field, [14] when the position and the 
character of the Singularities are insensitive to the cal­
culation procedure, whereas of the impedance itself is 
determined only qualitatively in the relaxation-time ap­
proximation. 

ENERGY DISTRIBUTION OF THE PHOTOELECTRONS 

To obtain the distribution of the emitted electrons, 
we first find the average number of electrons that land 
in a unit time, under the influence of the electromag­
netic-wave field, in the upper band in the vicinity of the 
point p of quasimomentum space.1) This quantity is de­
termined by the time-averaged derivative app;at, 
where Ppp is the diagonal element of the density matrix 

(2) 

here a;(t) and ap(t) are the Heisenberg operators for the 
creation and annihilation of a Bloch electron in a state 
with quasimomentum p; so long as we are not interested 
in substances with magnetic order, each such state will 
be regarded as doubly degenerate in spin, and the spin 
index will be omitted. The angle brackets denote equi­
librium statistical averaging over the grand canonical 
ensemble. 

The total Hamiltonian of the system is written in the 
form 

I/~ L ~pap+ap-f-AL v p.p.,ap,+ap,+J1" A~A"ecoswt. (3) 
[l p, p 

where ~p= £(p) - f-Lo; e(p) is the dispersion law, f-Lo is 
the chemical potential, A is the vector potential of the 
electromagnetic-field wave with frequency wand with 
polarization e, and the velocity matrix elements V P1P2 
differ from zero if P1 - P2 = g. The Hamiltonian H1 de­
scribes the interaction of the electrons with one another 
and with the phonons. Therefore photo excitation is es­
sentially a resonant process, i. e., at a fixed frequency 
a contribution is made to all the quantities of interest 
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to us only by a small region of p-space, and we take 
this interaction into account, just as in[161, by intro­
ducing into the spectrum an effective damping YP and by 
assuming that ~p already incorporates the corresponding 
renormalization. The damping Yp was the subject to 
the studies[15,16J. 

The equation of motion for the density matrix (2) can 
then be written out in the form 

- ~~.A [ .E YpP,P"PI - .E ,"I"P'PPIP] : (4) 
p,*,p' P1*P 

here ~pp' = ~p - ~p" YPP' = Yp+ YP'; np = p(O) = (a;a p) are the 
equilibrium Fermi occupation numbers, i. e., we have 
separated in explicit form the terms linear in A from 
the non equilibrium part of the equations that is due to 
the interaction with the electromagnetic field. Recog­
nizing that the first-order terms drop out after time 
averaging (designated by a superior bar), we obtain in 
second order in A 

1',.--;> 

(5) 

and since we assume that the frequency is close to reso­
nance for the band under considerations, we can neglect 
the term Q;l in the parenthesis. 

In accordance with the three-step model, [2,6] the 
probability that an electron excited to the state p will 
emerge from the crystal without scattering, taking into 
account summation over the volume of the sample, is 
proportional to the electron mean free path lp = tp I V p~p I, 
where tp - y;l is the lifetime of the excited state multi­
plied by the cosine of the angle between the electron ve­
locity vp = V p~p and the normal n to the plane of the sur­
face of the crystal, and also by a certain sufficiently 
smooth function C(p), which reflects the properties of 
the potential barrier on the sample surface. Since we 
are interested in the energy distribution of the elec­
trons, we must also take into account the density of 
states with quasimomentum p and energy E; this quan­
tity is proportional to the imaginary part of the Green's 
function Gp(E), i. e., it takes the form[17] 

(6) 

The distribution of the emitted electrons is given by the 
sum over the quasimomenta of the excited states, but 
the summation must be carried out only over that part 
of the p space in which n· vp > 0, corresponding to an 
electron moving to the outside. 

The singularities of interest to us are connected with 
small region of p space near the point Po where the sur­
faces ~pp+g = IZw and ~p = E are tangent, or else near the 
points where the lines of intersection of these surfaces 
with the surface n' vp =0. Changing over to integration, 
taking outside the integral sign the functions that will 
vary little in this region, and assuming that the upper 
band is not filled, we write down the formula for the 
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energy distribution of the photoelectrons in the form 

. , S 1 dy S 1'dx 
.\ (E, (,,) =1 (E-Y)'+1' (x-t/w)'+ ({) , f(:e, y), (7) 

/(0'. !I) = S d'p In \' ,6,1 n'H<5 (6,-Y) <5 (~'PH-X); 

r = ~ ( ~~O) 'c (pe) t,.,ICYp"" .. I', 1~1p" l' ~1",,+o' 
;Tfi _( 

(8) 

By virtue of the inversion symmetry of ~p, we can 
integrate in (8) over all of space, without limits, after 
taking the modulus In· V p ~p I and dividing by two. 

Formula (7) differs from (1), which was used by 
Kane, in two respects. First, account is taken of the 
damping of the energy states by the factors preceding 
f (x, y) and by integration with respect to x and y; sec­
ond, the expression for f (x, y) contains a factor (n. vp). 
which is also connected with electron scattering. 

SINGULARITIES IN THE ELECTRON DISTRIBUTION 

Near an analytic critical point Po (i. e., one which is 
not a band-degeneracy point), the expansions of ~p and 
~pp+g> accurate to second-order terms, are given by 

, 
s,=s,,+vk + 1: fl"k,k" (9 ) 

ij=1 

, 
" "+"k+~'kk ';pp .• w;=';ug \ ~ ~t,) , ;, (10) 

'J=' 

where k = P - Po, and if Po is a pOint of tangency of the E 
and w surfaces, then the velocities v and Vi are col­
linear. 

The singularities of N (E, w) are connected with the 
Singularities of f (x, y) and are of the following types: 

I. Lines of diffuse discontinuities. If the velocities 
v and v' are not equal to zero near the point Po where 
the E and w surfaces are tangent, and if the line of in­
tersection of the surfaces is an ellipse, then, directing 
the k3 axis along v, we can reduce (8), after integration 
with respect to k3 and rotation in the (k1k 2 ) plane, to the 
form 

/(x, y) = I :: I Sdk, dk, Il ( ~Y - ~~ - B,k,'-B,k,') , 
(11) 

v'=\,v';", B",,8,B,>0, 

here ay = y - ~o, ax = x - ~og> the constants Bl and B2 are 
the principal values of the second-rank tensor J..L~/V' 
- iJ.i/V; i, j = 1, 2. 

As a result we obtain the behavior of N (E, w) near the 
line of singularities: 

In31T B,/1 
:V(E, w)= Iv'lB" arcctg IB,lr ' 

/1w /1E 
/1=---, 

v' v 

l' 1 r=--+-, /1E=E-,£o, 
Iv'l v 

(12) 

II. Lines of smeared logarithmic singularities. The 
difference from the preceding case lies in the fact that 
the intersection of the E and w surfaces near the point 
of their tangency is now a hyperbola. In this case, 
formula (11) holds, with B<O. Then 
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a) Possible plots of the singularity lines on the (E - w) plane. 
The Roman numbers correspond to the singularity lines and 
points numbered in the text. b) Schematic representation of 
the energy distribution of the photoelectrons at the frequencies 
marked on Fig. a. N(E, w) has a square-root behavior near 
the points IV A and IV B. 

(13) 

where No(E, w) is the regular part due to contribution 
of distances far from Po. 

III. If a pOint Po at which the velOcity is directed par­
allel to the surface of the sample, i. e., vn = n· vpo = 0 
but vpo ;< 0, first appears on the line of intersection of 
the E and w surfaces, then the anomaly off(x,y) is ob­
tained by transforming (8) into an integral along the in­
tersection line 1 of the E and w surfaces and by separat­
ing the contribution of the vicinity of the point of tan­
gency of this line with the surface n· vp =0: 

I. (b~) • 

f(x,y)=/o(x,y)- >ao S d/(l'-oo)8(oo) 
. Ilvp , Xv~,]1 " 

( ) 8 ao ()" =/0 .r,y +-3 II '] 350 "0(00), vp , xv.. I (14) 

{ 1, z>O (boGx+cot>y) 
8(z)= 60 = ; 

O. z<O ao 

here 

fo(x, y) is the regular part. 

Thus, f (x, y) has diverging second derivatives. The 
increment to the distribution of the photoelectrons near 
the line of these singularities becomes smeared out: 

.... :vIE w)- {(Golao)'!, if IGol>fo 
\ , (1'01 ao)'!' if I Go I ~ro ' 

Go=bo~w+coGE, fo=lboly'+lc"ly. 
(15) 

IV. The singularity line corresponding to the preced­
ing case may be tangent to a discontinuity line or to a 
logarithmic-singularity line. Near such a tangency 
point, choosing the directions of the axes as in the deri­
vation of (11)-(13), we represent (8) in the form 
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Sdk, dk, I .... x I (GY .... x ) l(:r,y)= --.,- '1-, +A,k,+A,k, 6 ---, -B,k/-B,k,' , 
Fit· I l' V v 

(16) 

here Al and A2 are linear in nl and n2, and are, just as 
Bl and B2, functions of the components of the tensors 
Ilij and Il~j and of the angle of rotation of the (klk2) 
plane. 

As the point of tangency is approached, the character 
of each of the singularities is altered (see the figure). 
The distance along the E axis on the (E - w) plane be­
tween the Singularity lines will be described by the pa­
rameter a(.o.w)2, where 

the plus sign is for tangency with the discontinuity line 
and the minus sign for tangency with logarithmic-singu­
larity line. At I AI «r, where A = a(.o.w)2/v, the func­
tion .6.N (E, w) has the following behavior in both cases: 

.' :2 -ill:1' 
..... \(E,w)=± " ,FI,a, .... ,]'), 

(v'\',vaB! (17) 
F(a . . \, l')~('\,(_\cF),\ \<'-~/Ial. 

At I.o.w/v' I » I A I » r each of the singularities ex­
hibits an individual behavior. Near the discontinuity 
line (point IV A in the figure) we obtain 

(18) 

Near the logarithmic-singularity line (point IV B in the 
figure) we have 

V. The Singularity lines of types I-III terminate in 
symmetrical critical points. (3] The point of the tangen­
cy of the E and w surfaces lands in this case on a high­
symmetry point of the Brillouin zone, and then v = v' = 0 
in the expansions (9) and (10), while lJ.ij and lJ.:j have 
similarly-directed prinCipal axes. The character of the 
anomalies in the distribution of the electrons will de­
pend of the type of the crystal symmetry and on the 
orientation of the surface of the sample relative to the 
principal axes of the crystal: 

(20) 

It is easy to verify that at arbitrary IJ.;, IJ.:, and n; 
the singularity lines of all three types should converge 
at different angles to a symmetrical point on the (.6.E­

.o.w) plane. If the E and w surfaces are both ellipsoids, 
then their tangency takes place in succession on the 
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principal axes, and the singularity lines meet in a sym­
metrical critical point inside one of the quadrants. At 
I ~wl «y', the N (E, w) distribution has a smeared 
maximum of width - Y with respect to E, and at I ~wl 
» y' smeared discontinuities appear near the values 
~E/ /J.i - ~w/ /J.: =0 for the largest and the smallest of 
the /J.;! /J.:, as well as a logarithmic peak for the axis 
with the intermediate value of this ratio. If at least 
one of the E and w surfaces is a hyperboloid, then the 
singularity lines lie in two adjacent quadrants and, in 
particular, if the hyperboloid is the w surface, then 
N(E,w)-F(/J., ~E, y+y') at I~wl«y'. At l~wl»Y' 
the behavior of N (E, w) is different on the right and on 
the left of the intersection point. Both the smeared­
discontinuity line and the smeared-logarithms line ap­
proach from one side, but only the line of smeared dis­
continuities from the other. They are separated by a 
singularity line of type III. 

In all these cases, if the plane 
, 
~~,niki=O 
i=1 

passes through the principal axis along which the E and 
the w surfaces are tangent, then the line of singularity 
of type I or II corresponding to this tangency may 
merge with the line of singularities of type III, and the 
the Singularity acquires a square-root character. If 
this plane passes through two points of tangency of the 
E and w surfaces, then two of the singularity lines of 
type I and II merge with the singularity lines of type 
III, and as a result they also become of the square-root 
type. 

If the effective masses in both directions are equal to 
each other, i. e., /J.a = /J.g '" /J. *- /J.l, and simultaneously 
/J.~ = /J.~ '" /J.' *- /J.{ (this situation can be encountered, for 
example, in crystals of hexagonal and tetragonal sym­
metry), then it is necessary to retain the terms of next 
order in k in the expansions (9) and (10) near the plane 
kl =0. For symmetry considerations, this increment 
can be expressed in the form 

In the plane kl = 0 there appear then four identical ex­
trema, symmetrically arranged, with a saddle point 
midway between each two extrema. 

We introduce cylindrical coordinates with the z axis 
directed along kl and integrate with respect to l =k~ 
+k~; then 

( ~x ~y M "' "" ) (~y-,'!k,') Xc -, ----, kt-,-(.'l.x)-(~ +a co;;4cr) 8 , 
~ ~ ~~ ~ 

'].' ~ (/I'i fl ' -bl,l) I (~') '. ii' ~ ((a' +b') Ill' - (a+b) I~)I (fl') '. 

where M", /J. /J.{ - /J.{ /J.', and the axes ka and kg pass 
through the tangency point of the E and w surfaces. 

(22) 

For the sake of argument we shall assume that the sin­
gularity lines approach the symmetrical point at ~w > O. 

567 SOy. Phys. JETP, Vol. 43, No.3, March 1976 

We consider now the region ~w» y'. First, the sym­
metrical critical pOint is approached by the smeared­
discontinuity line stemming from the tangency of the E 
and w surfaces on the kl axis. At nl *-0 we have near it 

(23) 

At nl = 0 this line merges with a singularity line of 
type III, and then at I ~al » I~ll, where ~a = ~w/ /J.' 
- ~/ /J., we have 

(24) 

Second, singularity lines of types I and II, coming 
from points of tangency of the E and w surfaces lying 
in the plane kl =0, reach this line at a finite angle. At 
la'I(~w)a«ra. wherera=Y/I/J.1 +y'/I/J.'I, these two 
lines merge. Then we obtain at n~ + n~ *- 0 near such a 
threshold, i. e .• when I ~ll » I ~al , 

N E J(T(2(n,'+n3'»·:'I~!fl!'I'!'I6.!I';'f, 
( ,Ul)= 1,lfl'I'I'!MI(:V+l,,')"'F(M,:\,.I',) . (25) 

Thus, N (E, w) has near the threshold ~ =0 a sharp 
maximum at ~2 = 3-l/ar a, and decreases at I ~al » r a on 
one side of this maximum like ral~al-g/a, and on the 
other side like I ~al-l/a. At n~ +n~ =0 and nl = 1, these 
lines are merged also with a singularity line of type III, 
and then N (E, w) is described in this region by formula 
(23), except that ~l is replaced by ~a. 

At I a' I (~w)z» r z we can distinguish between diverg­
ing lines of the smeared discontinuity and of the loga­
rithmic singularity. One of them is located at Llt.~ =0 
and the other at Llt.~' =0, where ~~ = ~ +({3' - a') (~w)a, 
~~' = ~ + ({3' + a') (~w)z, and the singularities on these 
lines take the form 

(26) 

Here no is the projection of the vector n in the direction 
of the tangency pOint responsible for the singularity, 
the functionj(z) is equal to tan-1(z/rz) or to 1Tln(za 
+ r V, while z = ~~ or ~~'. Between these lines lie sin­
gularity lines of type III, which can be tangent to these 
lines at a particular direction of the vector n, and by 
the same token alter significantly the form of the singu­
larities (26). Thus, at n =nl they are tangent to each 
of the lines and the singularities assume the following 
character: 

l,tI T 
:\N(E, Ul)=± F(a',z,f,). 

la'i"'llIfAu'! (27) 

Inasmuch as there are four identical singular pOints 
on the kl =0 plane in p space, it follows that if n *-nl and 
two of the vectors no = ± ng are equal to zero while the 
other two are not equal to zero (no=±na*-O), then for 
one and the same value of ~~ (or ~n the Singularities 
of the type (26) become superimposed on singularities 
whose form differs from (27) by the presence of the fac­
tor 
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In the region l.:lw I « y' there is a smeared peak of 
width y with respect to E. At.:lw <0 and l.:lw I» y', 
the width of the peak increases like l.:lw I, and the 
height decreases like l.:lw I -2. 

(28) 

The effective masses can be equal in all three direc­
tions: /J.l = /J.2 = /J.3'= /J. and /J.l = /J.~ = /J.~ '= /J.'; this case is 
encountered with largest probability in cubic crystals, 
and we shall therefore assume .that the fourth-order in­
crement in (9) is of the form 

c (k,'+k,'+k,') '+d( k,'k/+k,'k/+k,'k,'), (29) 

and in (10) it differs in that the constants are inter­
changed c - c' and d - d'. After integration with respect 
to k 2 we obtain in spherical coordinates 

I~xl S t(x, y)= -(-, - drp dcos 61n, cos 6+sin 6(n, cos rp+n, sin rp) I 
ft )' 

( ~x ~y (" a" ) ) x6 7--;;-+(~x)' ~ --8 g(6,rp) , 
I'" I'" (30) 

g (8, '1') ~8in' 8 [8 cos' 8+8in' 8 (1-cos 4'1') ], 

The functiong (ii, cp) has six minima (g=O), eight 
maxima (g=t), and twelve saddle points (g=i). In 
each of the directions (ii, cp) determined by these ex­
trema and saddle pOints there is a point of tangency of 
the E and w surfaces of the corresponding type. It is 
easy to verify that at I a" I (.:lW)2» r 2 three singularity 
lines diverge, on which 

N _ In,IT/(a"t.,(i)/la"l) 
t. (E,w)- (ft')'la"t.wl ' 

where .:l~i) is equal to one of the quantities 

t.,'~.1,-(a"+~") (.1co)', .'..,"=.'1,'+ ('/.,) a" (.'.'0) '. 
.'1,''' =.'1./ + ('/4) an (.'1w)'. 

(31) 

Between them lie singularity lines of type III, and for 
three directions of the vector n, such that the plane 

, 
1: ftin,k,=O 
i=l 

passes through the point of tangency of the E and w sur­
faces, the lines of type III can merge with the lines of 
type I and II. The corresponding singularity then ac­
quires a square-root character 

(32) 

and by virtue of the symmetry there is always an equiv­
alent tangency pOint of the E and w surfaces through 
which this plane does not pass, and in such cases the 
singularities of the type (31) and (32) are additive. 

When I a" I (.:lw)2« r 2, the singularity lines merge in­
to one. The behavior of the distribution near this line 
is a smeared 0 function, and at l.:lw I » y I we have 

568 

N(E,w) 
4n'TI~wlr2 

(ft')'(~,'+r,') . 
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(33) 

A t l.:lw I « y' the function N (E, w) has a maximum at 
.:lE;S y. In the region .:lw < 0, l.:lw I » y I, this maximum 
located at the line .:l2 = 0, its height decreases like 
l.:lwl-2, and its width increases like (.:lw)2. 

CONCLUSION 

The character of the singularities in the energy dis­
tribution N (E, w) of the photoelectrons is thus deter­
mined essentially by the topology of the equal-energy 
surfaces in p space. Formulas (12)-(33), obtained with 
the smearing taken into account, provide an analytic 
description of these singularities and may be useful for 
the interpretation of crystal spectra from photoemis­
sion data. Of course, all the results, as well as the 
employed three-step model are valid only when the 
smearing of the energy levels y is sufficiently small in 
comparison with the band width .:l~. The smearing y 
is determined by the interaction of the Bloch electrons 
with one another, with the phonons, with the lattice de­
fects, with the spins, etc. Inasmuch as usually .:l~ - 1 
eV and .:ly -10-1 _10-2 eV, the experimentally required 
resolution should in practice be not worse than 10-3 eV, 
which lies within the limits of modern experimental 
capabilities. 

For the temperature and the frequency dependences 
of the contribution to y from the electron-electron and 
electron-phonon interaction, the results of Kopelio­
vich[l5] are valid. If a phase transition takes place in 
the spin system, then the electron scattering by the 
spin fluctuations leads to a temperature anomaly of y, 
which can be observed by studying the smearing of the 
singularities in the photoelectron distribution. The 
character of the temperature anomaly, just as for the 
high-frequency conductivity, is determined by the struc­
ture of the spectrum near the characteristic point Po. 
In particular, if an expansion (9) with vpo*O takes place 
in the vicinity of such a point, then, as shown in our 
earlier paper, [16] 

_\.:~! T-TI-""- "', 

where Te is the magnetic-ordering temperature, III is 
the critical exponent of the spin correlator, and /J. is 
the exponent of the correlation radius. The numerical 
value of III is close to unity, resulting in a singularity 
of small degree in the function .:lll (T - Tel. It appears 
that this kind of anomaly was observed experimentally 
by Rowe and Tracey, [18] who investigate the energy dis­
tribution of the photoelectrons from nickel near Te. 

The authors thank academician I. M. Lifshitz for in­
terest in the work, Yu. P. Irkhin for useful discus­
Sions, and V. V. Eremenko for a discussion of the pos­
sibility of experimentally verifying the results. 

1)Just as in C15,16], we use the "expanded band" scheme, i. e. , 
we assume that the quasimomentum vector changes in all of 
reciprocal space, and the interband tranSition is a transition 
in p space with change of quasimomentum by a certain re­
ciprocal-lattice vector g. 
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Spectrum and polarization of the luminescence emitted 
from GaAs in the energy range Eg + fl. 

B. P. Zakharchenya. V. I. Zemskil. and D. N. Mirlin 

A. F. loffe Physicotechnical Institute. USSR Academy of Sciences, Leningrad 
(Submitted October 7, 1975) 
Zh. Eksp. Teor. Fiz. 70. 1092-1099 (March 1976) 

An investigation was made of the spectrum and polarization of the 1.48-1.94 eV photoluminescence 
emitted from n-type GaAs crystals excited with linearly and circularly polarized He-Ne laser radiation 
(1.48-1.94 eV). A detailed study was made of the luminescence band located near 1.86 eV. which was due 
to transitions between the conduction band and the split-ofT (by the spin-orbit interaction) valence band 
r 7• The short lifetime of holes in the band r 7• due to the relatively high probability of transitions between 
the valence subbands. resulted in a considerable deviation of the hole distribution function from the 
Boltzmann form (the holes did not become thermalized during their lifetime). For this reason the degree of 
circular polarization of the luminescence excited by circularly polarized laser radiation was close to unity. 
This result was evidence of almost complete optical orientation of nonequilibrium holes in the split-ofT 
band (the holes maintained the initial spin direction during their lifetime). The principal quantitative 
relationships obtained in the present investigation were explained satisfactorily by assuming the dominant 
role of electron-hole collisions in the energy relaxation of holes. 

PACS numbers: 78.60.0g, 71.30.Mw 

lar, the optical orientation of free carriers in semi­
conductors. The phenomenon of optical orientation, 
i. e., the establishment of a preferential orientation 

In contrast to the optical absorption spectra, studies 
of the photoluminescence spectra of semiconductors 
have been limited mainly to the range of frequencies 
near the fundamental absorption edge. The "edge" 
luminescence in the range nwSE, may be related to the 
radiative recombination of free or bound excitons, in­
terband electron transitions, impurity-band transitions, 
etc. (see, for example, [1]). 

of carrier spins on absorption of circularly polarized 
light, has been used successfully in studies of the ki­
netics of recombination and spin relaxation of electrons 
in semiconductors (see, for example, [5]). 

An analysis of the luminescence line profile in the 
range nw > E, made it possible to obtain information on 
the distribution function f(E) of the energy of nonequi­
librium carriers. In this way it has been possible to 
determine the effective temperature of nonequilibrium 
electrons, which-under certain conditions-may exceed 
the lattice temperature, [2] and also to detect the devi­
ation of the functionf(E) from the Boltzmann distribu­
tion in the high-energy range. [3,4] 

An investigation of the polarization of recombination 
radiation makes it possible to investigate, in particu-
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The cited investigations were concerned with the 
luminescence due to electron transitions between two 
nearest bands (in the case of GaAs between the conduc­
tion band r6 and the quadruply degenerate, at k=O, 
valence band r 8)' An investigation of the Raman scat­
tering in n-type GaAs crystals, carried out by Bur­
stein et al. ,[6] revealed a weak luminescence band in 
the energy range 1. 86 eV, which complicated an analy­
sis of the scattered-light spectra. It was shown in[6] 
and also in[7], where the preliminary results of the 
present study were reported, that this band was due to 
transitions between the conduction band r 6 and the va-
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