
explain the anisotropy of the temperature dependences. 
Since the inequality WT» 1 is not satisfied in the inves­
tigated range of frequencies, some of the surface levels 
are not resolved in the impedance measurements and, 
therefore, the anisotropy data are only qualitative. At 
higher frequencies this range of temperatures cannot 
be investigated because the critical magnetic field is too 
low. [4] 

The investigated singularity of the impedance appears 
in zero magnetic field due to magnetic surface levels 
and the width of the integrated absorption curve may be 
governed by two effects. 1£ there are many unresolved 
levels and the width of a single level governed by the col­
lision frequency is greater than the magnetic field inter­
val in which the levels are located, the total width of the 
absorption peak is governed by the collision frequency 
and is independent of the observation frequency, as found 
by Sibbald et ai. [3] In the second case the magnetic field 
interval within which the levels are located is greater 
than the width of an individual level. Then, the width of 
an absorption peak is governed by the resonance field 
of the lowest-energy level and depends on the frequency 
at which impedance is observed. It is clear from Fig. 
6 that the second case applies to our investigation. 

The width of the absorption peak was measured in the 
range of temperatures corresponding to rapid variation 
of dR/dB. It follows from our discussion that in this 
range there are several magnetic surface levels. We 

can then apply the treatment of the surface levels in nor­
mal metals. An analysis of the results on the basis of 
the dependences wa:: B2/3 [2] is found to be in good agree­
ment with the experimental data and extrapolation to 
zero frequency gives the average collision frequency of 
- 200 MHz for the investigated cylindrical sample. A 
similar absorption maximum in zero magnetic field is 
also observed in superconducting indium. 

Thus, the singularity of the impedance of supercon­
ducting tin observed in the present study is due to nor­
mal excitations forming surface levels, whose number 
decreases with decreasing depth of penetration of the 
magnetic field. 

The authors are grateful to V. F. Gantmakher and 
V. S. Tsor for supplying the samples, for their interest 
in this investigation, and for discussing the results. 
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The possibility of the appearance and measurement of a thermoelectric field E in a superconductor S is 
discussed theoretically. An equation is derived which describes the coordinate dependence of the field E in 
a superconductor with a nonzero energy gap. It is shown that the characteristic scale of the spatial 
variation of E is the distance lb over which equilibrium is established between the branches of the energy 
spectrum and which, in pure superconductors, greatly exceeds the correlation length ~(T). It is shown that 
the field E arises in the presence of a temperature gradient near the boundary between S and a dielectric, a 
normal metal, or another superconductor, and falls ofT in S exponentially over the distance lb' 

PACS numbers: 74.20.Gh 

INTRODUCTION Another picture arises if the superconductor is in­
homogeneous in the direction of the temperature gradi­
ent, as when it borders on a dielectric D, a normal met­
al N, or another superconductor 5 in which ~ * f3. Then 
there arises near the boundary a quasiparticle-current 
divergence (divjn *0), since jn =0 in D and N, and jn* in 

The thermoelectric effect in homogeneous isotropic 
superconductors consists in the fact that in the presence 
in a superconductor of a temperature gradient T; there 
arises a thermocurrent i3T:, which in an open sample is 
balanced by the superconducting current e*n. v •. [ll 

Thus, the total current 

is equal to zero, and so is the electric field. 1) 
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in the S - oS system. It has previously been shown on 
the basis of phenomenological equation[6,7] and equations 
obtained from a microscopic theory and valid for gap­
less superconductors with paramagnetic impurities[81 
that in the presence of a nonzero divergence of jn (or, 
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which is the same, of j.) there arises in a superconduc­
tor the gauge invariant potential 

cD='/'X+ecp, (1) 

where X is the phase of the order parameter and cp is 
the electric potential. This means that an electric field 
arises in the steady-state case in the superconductor, 
since 

mv.=VcD+eE=O. (2) 

In the case of a gapless superconductor the equation 
for <P has the formes] 2) 

a' 12_a_ID=_~ 
es'(TI ijx 

Using the expression for the current 

j=aE--:-,3T.'+e'n,v" 

(3) 

(4) 

we see that the correlation length ~(T) serves as the 
characteristic variation length for <P and E. Below we 
derive an equation analogous to (3) and valid for an or­
dinary superconductor with a gap. We shall show that 
it has the same form as Eq. (3), but that the length 
HT) should be replaced by a much greater length lo 
characterizing the establishment of equilibrium between 
the branches of the quasiparticle spectrum (p > Po and 
p < Po, where Po is the Fermi momentum). We shall 
find the thermoelectric field E in different cases3 ) and 
analyze the possibility of its experimental detection. 
In doing this below we shall assume that the tempera­
ture is close to the critical, i. e., that ~« T. 

EQUATION FOR THE POTENTIAL 

Let us consider a superconductor with a gap ~, in 
which a temperature gradient T; exists. Let us derive 
for <P an equation of the type of Eq. (3). If we do not 
take into account the inelastic quasiparticle-phonon col­
lisions and the gap anisotropy, then we can verify that 
in the presence of aj. divergence the potential <P will 
increase without restriction. With that end in view, it 
is convenient to use the equations for the equal-time 
Green functions[U] and find the phase in the linear ap­
proximation, treating the longitudinal electric field 
E = - ~cp as a perturbation. As a result, we arrive at 
the Eq. (6) of the paper[10]. In order to obtain a finite 
value for <P, it is necessary to take into account the in­
elastic collisions with the phonons characterized by a 
small (in comparison with ~ and T) frequency lI.n ;::: T3/ 

e~. On account of the smallness of V.n , we should ex­
pect (and this is confirmed by the result) long character­
istic lengths. Therefore, we can use for the derivation 
of the required equation the quasiclassical equations, 
the microscopic derivation of which is given by Aronov 
and Gurevich in[l2]. Let us write the kinetic equation 
for the excitation distribution function in the form 

an a~ an a~ an - + --- --= limp(n) +lph(n), at ap ax ax ap (5) 

where 
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i'~ [(~+(J)'+A2P+J1V, ~=(p'-PQ')/2m, 

limp and lph are the quasiparticle-impurity and quasiparti­
cle-phonon collision integrals. This equation is valid if 

and lo» ~(T), where v = p/m, v is the excitation-impu­
rity collision rate, l is the mean free path with respect 
to scattering by impurities, and lo is the characteristic 
field-attenuation length, which will be found below. 

The determination of the solution to (5) becomes sim­
plified if we assume that the relaxation of the odd-in 
the momentum px-part of n is due to scattering by the 
impurities, i. e., if we assume that II» v.n • We shall 
seek the solution to Eq. (5) in the form 

n=no(E)+n" 

where no is the Fermi distribution function. Let us ex­
pand the small correction nl in terms of the Legendre 
polynomials: 

(6) 

where JJ. = Px/ p, while the coefficients ao, at. ... depend 
on ~ = v(p - Po). Under the adopted assumption that the 
scattering is only weakly inelastic, we can restrict our­
selves to the first terms, written out above, of the ex­
pansion of nl> since the remaining terms will be small 
to the extent of the smallness of v.nlv. Let us substi­
tute n into (5) and take into account the fact that T = T(x). 
Then we obtain 

~ [an, ano T:] I~I _ 
,"10- ---8- =-v- (n-n)+lph(n,). 

e ax a8 T e 
(7) 

We have used for limp the T-approximation. Averaging 
Eq. (7) over the angles, we obtain the equation 

(8) 

where 4h(aO) is the linearized and angle-averaged exci­
tation-phonon collision integral. Multiplying (7) by JJ. 
and integrating over JJ., we find al : 

(9) 

With the aid of (8) and (9) we can find the equation for <P 
and the expression for the current. Let us compute the 
change in the number of particles in the superconductor, 
after substituting the distribution function (6) into the 
expression for N[l2]: 

6N=6 J d'r[up'n+v p'(l-n) I 

pm {[ '\' an ( ~ )'] 6 } =_o_Jd~ il> -, (2no-l)+_o - +-ao. 
,,' 2e" ae 8 8 

Near the critical temperature we can neglect the first 
term in the square brackets. Substituting ON into the 
Poisson equation, we obtain 
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----~---------------------------

a'll> an < 2 !; 
-. =kTJ[<DSd!;----;"-(~) +Sd~-ao], 
ih:' a~ e e 

(10) 

where k;A = (6rre2N /e F t 1 / 2 is the Thomas-Fermi screen­
ing length. Since the left-hand side in (10) is of the or­
der of [";,2 <P, where lb satisfies the inequality 

the left-hand side of the expression (10) can be ne­
glected. Thus, the potential <I> can be found from the 
neutrality condition oN=O and is equal, near Te , to 

Il>= S ds+ao, (11) 

i. e., the potential is expressible in terms of the even­
in the momentum A-part of nh in the same way as in a 
normal metal. In a normal metal the integral in (11) is 
proportional to the difference between the number of 
electrons and the number of holes. In a superconductor 
this integral is proportional to the difference between 
the number of electron-like excitations (i. e., excita­
tions belonging to the ~ > 0 branch) and the number of 
hole-like excitations (~< 0). 

Let us now consider the expression for the current 
density j. Using (6), we obtain for j the expression 

}='e S dT fJ.vn+eNv.=j.+j .. (12) 

where 

(13) 
N -, e S J.=- dsa,. 

po _~ 

Let us substitute into (13) the expression (9) for a1 • 

With allowance for (11) and the fact that the characteris­
tic variation scale for ~ near Te is ~ - T, we obtain 

a alii aT 
j.=~--+~-, 

e Ox ax 
(14) 

where 

a=e'N,/m, ~/a=n'T/3e'eF' 

Let us derive the equation for <P. Let us multiply Eq. 
(8) by ~/e and integrate over~. Then we have in the 
principal approximation in A./T with allowance for (13) 
the equation 

(15) 

Let us compute the right-hand side. Let us substitute 
the expression for the collision integral. Then 

( I hJ..)= ni;ph Sd!;d!;' dwJ..w'{F_CO ") 
p e 2€h' e -, b 

550 Sov. Phys. JETP, Vol. 43, No.3, March 1976 

here 

F_(£, !;')=I){[n'(1-n) (HN.,)-n(1-n')N,,]6(B'-e-w) 

+[n'(1-n)N.-n(1~n') (HN.l ]6(e-e'-w)}, 

F+ (!;, !;') =1){[N.(1-n) (1-n') -nn' (HN.) ]6{e+e' -w)}, 

n' =n(~'), N w is the equilibrium phonon distribution 
function, the a in front of the curly brackets denotes 
that the expressions in the curly brackets should be lin­
earized with respect to n1 • The function F. (~, ~') is even 
(odd) with respect to the interchange ~ +=t ~'. We used this 
fact in the derivation of the last equality. The matrix 
element of the interaction with the phonons has been 
written in the form 

Substituting the linearized expression for F., we find 
after simple transformations that 

where 

v.(e)=ne'i;~h~S '( ~:' t;')'1 [e(e~e')(1-no'+N._.,)(e~e')3 
D B&ce- . 

+ (8+e')' (n' +N,+.,) ~e (e' ~e) (e' ~e) 3 (n' +N.,_.) ]. 

Near Te the dominant contribution to vb(e) is made by 
the first and second terms. Computing them, we find 

(17) 

Near Te the characteristic variation scale for E. in ao is 
E. - T; therefore, in the formula (16) Vb = Vb(T*), where 
vb(T*) is determined by the expression (17), while 
T*-T. 

The frequency Vb was introduced by Clarke and Tink­
ham1l31 and computed (by another method) by Tink-
ham. (141 As can be seen from the relation (16), it char­
acterizes the rate of relaxation of the odd-in ~-part of 
the distribution function, i. e., the rate of establish­
ment of equilibrium between the populations of the 
branches of the quasiparticle spectrum. 

Substituting into (15) the expressions (11) and (16), 
we obtain the sought equation 

~111=~ aj. 
elb' ax ' 

1 v' 
lb2=--. 

3 VVb 
(18) 

From (14) and (18) follows the equation for <P: 

d'll> 2 ~ rPT 
-~lb-Il>=-e-. (19) 
dx' a dx' 

Thus, for a superconductor with a gap the characteris­
tic variation scale for the longitudinal electric field 
E =- V<p/e is the length lb' which exceeds the mean 
free path. This length is also much greater than the 
correlation length ~(T). 
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THE THERMOELECTRIC FIELD AND THE 
POSSIBILITY OF ITS EXPERIMENTAL DETECTION 

Let us consider the boundary of a superconductor 
with a dielectric. Then for a uniform temperature 
gradient (constancy of the heat flux q: ;:;xT:; =0) the solu­
tion to (19) that satisfies the boundary conditionin(O) 
=0 is[lOl 

(20) 

i. e., there arises at the boundary of the superconductor 
a thermoelectric field which is equal in magnitude to the 
field in a normal metal and which falls off exponentially 
over the distance lb into the superconductor. If T- T e , 

then lb' as follows from its definition and from the ex­
pression (17), increases without restriction. Thus, a 
continuous transition is realized, as in the Meissner 
effect, to the normal metal; as T- Te the thermoelec­
tric field occupies an ever-increasing volume of the 
superconductor. 

With the aid of Eq. (19) we can investigate the bound­
ary between a superconductor and a normal metal. So 
as to be able to use the quasiclassical method, let us 
assume that ~ varies over a characteristic distance Xo 

greater than ~(T) (although, qualitatively, the result 
remains valid also for Xo - HT)), i. e., let us assume 
that 

L\(r)= . {
II 

\." 

x<:;;O. N-region 
s- region 

where ~ (T) «x 0 « lb (00). Such a situation is realized, for 
example, in a film of thickness w (vz.0 « w «,\, where 
,\ is the Meissner skin thickness) located in a longitudi­
nal magnetic field that varies along the coordinate. The 
coefficient li!' varies in proportion to ~(x). Integrating 
Eq. (19) over a layer ofthicknessxo«x«lb(oo), weob­
tain that the potential <P and the field E are continuous 
at the S-N boundary. Therefore, the solution to (19) 
in the 5 region is again the function (20), this result be­
ing valid irrespective of whether the field EN in the re­
gion N is produced by the temperature gradient or by 
the flowing current. The computation of EN in the latter 
case for gapless superconductors has been carried out 
on the basis of Eq. (3) in the papers[S.1514). 

The penetration of the thermoelectric field from the 
N region to a depth of lb in the 5 region will lead to the 
increase of the thermoelectromotive force, eN, of the 
S-N system by a value equal to e N(lb/ L N), where L N is 
the dimension of the N region. As we approach Te , the 
contribution of the 5 region will increase. Such an ef­
fect can, apparently, be experimentally observed by 
measuring the variation of the thermoelectromotive 
force, e T, of a superconductor in the intermediate 
state. Then E T should increase in the same manner as 
the resistance, discovered by Pippard and his collabora­
tors, [lSI of such a system increased. 

The thermoelectric field can arise not only in an in­
homogeneous superconductor, but also in a homogeneous 
supercol).ductor with a nonuniform temperature gradient. 
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FIG. 1. Contour composed of super­
N conductors Sand S and used for the 

5 S 
observation of the thermoelectric 
effect. T 1•2 are the temperatures of 
the contacts. 

Let, for example, the tempe:r,:ature in 5 vary according 
to the law 

Then from Eq. (19) we obtain the potential distribution 

and field distribution 

E = ~ tJ.T sgnx.exp{-~}. 
a L to 

Thus, the thermoelectric field changes Sign and the 
thermoelectromotive force is equal to zero (<p(- 00) 
= <P (+ 00)). A thermoelectric field of similar form arises 
at the boundary between two superconductors with differ­
ent i3 coeffiCients, and leads to an observable effect. In 
fact, let us consider a superconducting ring consisting 
of the superconductors 5 and S (see Fig. 1). Let us in­
tegrate the expression, (12), for the total current along 
the contour, assuming that the thickness of the ring is 
greater than the depth of penetration: 

(21) 
. ( ~ ~ . (2e)2 , 

-- - --) (T.,- TI ) -!----(nWo- H) = o. 
, ns n;. - em 

Here we have taken into account the fact that <PI = - <P2 ; 
Wo is the flux quantum and W is the magnetic flux in the 
contour. Let us determine the potential <PI from the 
condition for the continuity of the current in at the S-S 
interface: 

where L is the length of the superconductor S and also 
of S. Finding from this the potential <PI> and substitut­
ing it into (21), we obtain the expression for the flux W: 

, em [( ~ ~ ) W=nWo--r--- ---
(2e)2 n, n, 

The second term in the square brackets is due to the 
presence of a thermoelectric field near the contacts. 
It is, in order of magnitude, smaller than the first 
principal term by a factor of L/lb • 

Notice that the Peltier effect does not occur at the 
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a 

b 

:;; 

FIG. 2. N-S or S-S system 
(Fig. a) allowing the measure­
ments of the thermoelectric field 
E (Fig. b) in the superconductor 
S. The dashed curve in Fig. 2b 
represents the field E in the 
superconductor S. 

S-S contact. Indeed, the heat flux q for T- Te is de­
termined by the same expression that determines the 
flux in a normal metalU21 : 

q=IIj,,-xVT. (22) 

Let the temperature gradient be equal to zero; then jn 
=0. Therefore, no heat is released (absorbed) when a 
superconducting current passes through the contact. 

The Peltier effect occurs at an S-N contact. Further­
more, it is worth noting that in a superconductor, near 
an S-N contact, as well as an S-S contact when VT *- 0, 
heat will be absorbed or released, depending on the di­
rection of the current j no over the distance lb over which 
the superconducting current is converted into a quasi­
particle current. In this case heat is released on one, 
and absorbed on the other. side of the S-S contact when 
VT*-O. 

A more direct proof of the existence of the thermo­
electromotive force in a superconductor can be obtained, 
using for the measurement the system schematically 
represented in Fig. 2a. Such a system was used for the 
superconductor-resistance measurement in~191. The 
temperature gradient T: at the S-N or S-S contact will 
lead to the appearance of a field E that falls off with in­
creasing distance from the contact into the S region 
(Fig. 2b) and, consequently, to a potential difference 
between the points 1 and 2: 

~ , loT. (~cr-~u) , 
~12=-I.T% for S-N, ~,,= ( r T, for S-S. 

a ulo+cr .) u 

If we make the dimensions of the normal region, Nmo ... , 

in the measuring circuit sufficiently small, then we can, 
in principle, make the difference between the tempera­
tures .at the boundaries of Nmo ... and, hence, the thermo­
electromotive force in Nmo ... vanish. There will then 
arise in the contour a current [= g'12/R, which can be 
measured (here R is the resistance of the region Nmo ... ). 

Indeed, let us integrate the field E around a contour 
passing through the measuring circuit and the supercon­
ductor S: 

, 
pEdl= J Edl+ J EdIHV=O. 

N meas 1 

The first term is the potential drop across the normal 
metal N mo ... , the second term is the potential difference 
in S between the points 1 and 2, and the last term is the 
potential jump across the S-Nmo ... contact, due to the 
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nonequilibrium state obtaining in S. Near the critical 
temperature ov- (~/T)2<I>, ~201 and this term can be ne­
glected. In the superconductor forming the measuring 
circuit the field is zero, since <I> = 0 in it (we assume 
that the distance between the pOints 1 and 2 is much 
greater than lb), and the contribution to the integral 
from the integration along the semicircle is equal to 
zero. Thus, the potential difference '6 12, between the 
points 1 and 2 will give rise in the metal Nmo3IJ to a cur­
rent that will produce in N mo ... a potential drop balanc­
ing r12 . 

Let us note one important circumstance. \\€ have 
thus far spoken of the thermoelectric field eE = - <I>; as 
an electric field, and we have identified the potential <I> 

with the electrostatic potential rp. However, in the case 
when the superconductor S is inhomogeneous, or when 
the temperature dependence of the chemical potential 
iJ.o is important, under E should be understood the gra­
dient of the electrochemical potential of the quasiparti­
cles, iJ.oe = iJ.o +erp, just as is done in the theory of ther­
moelectric phenomena in normal metals. ~21l The gradi­
ent of iJ.oe gives rise to the quasiparticle current 

the expression for which is, near Te, the same as in 
the case of a normal metal. In a measuring circuit 
consisting of a normal metal (Nmo ... ) the current is pro­
duced precisely by the potential difference iJ.oe • We ne­
glected the gradient of iJ.o, since it is quite small: 

The appearance of an electric field in a superconductor 
as a result of the dependence of iJ.o on temperature is con­
sidered in~71. However, this field, eE = - V iJ.o(T), is 
not a thermoelectric field, since in this case the gradi­
ent of the electrochemical potential is equal to zero (the 
second term in (2) was neglected by the authors Of(71): 

V (i!o+e<p) =0. 

The field eE = - V iJ.o(T) does not lead to an electromo­
tive force, and does not make any contribution to the 
above-discussed experiments. For example, in the 
scheme shown in Fig. 2a the integral 

N meas 

vanishes, since the temperature in Nmo3IJ is assumed to 
be a constant. 

In our case it is precisely the gradient of the electro­
chemical potential of the quasiparticles that is different 
from zero, i. e. , 

eE=- V (~lo+erp) ""'0; 

therefore, a current arises in the measuring circuit 
shown in Fig. 2a. On the other hand, the difference be­
tween the "chemical potentials" of the pairs (or the or­
der-parameter phase difference) does not, naturally 
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lead to the appearance of current in the measuring cir­
cuit. The force acting on the condensate in the super­
conductor S is equal to zero: 

V (fl,+erp) +V!lJ=O, 

L e., in the case under consideration the fields exert 
different forces on the condensate and the quasiparti­
cles (it can be shown that the electrochemical potentials 
of the quasiparticles and the pairs do not coincide[6.13]). 

CONCLUSION 

Thus, in the presence of a temperature gradient near 
the boundary of a superconductor with a dielectric, a 
normal metal, or another superconductor there arises 
a thermoelectric field E. The field E also arises in the 
volume of the superconductor if the temperature gradi­
ent is not a constant with respect to the coordinate, Le., 
if T:: *0. The attenuation length of the field E in pure 
superconductors near Tc can attain macroscopic values 

when II •• :::: T3/St -109 sec-I, 11-1010 sec-I, v -lOB cml 
sec, and T I a -10. Therefore, the thermoelectric field 
E in superconductors and the thermoelectromotive force 
connected with this field can be measured in an experi­
ment. 

The authors are grateful to A. G. Aronov, Sh. M. 
Kogan, A. 1. Larkin, and Yu. N. Ovchinnikov for useful 
comments and a critical discussion. 

Note added in proof (February 16, 1976). In a re­
cently published paper (J. Low Temp. Phys. 20, 207 
(1975)), A. Schmid and G. Schon have, in particular, 
derived for the potential on the basis of the Eliashberg 
equations in the limit of dirty superconductors (II» a) 
an equation of the type of the Eq. (6) of our paper, and 
have computed the attenuation depth of the electric field 
in the superconductor near its boundary with a normal 
metal. However, the conclusion drawn in that paper 
that, as the temperature approaches the critical tem­
perature, the attenuation depth for the field varies from 
a value of the order of lb to a value of the order of the 
correlation length ~(T) seems to us to be incorrect. 
Let us also note that near Tc we can replace the func­
tion ao in the formula (16) by its value in the zeroth or­
der in alT and obtain for lib the exact result: lib 

=71T 2 i;(3) i;Pb aT2e1. 

DIf, on the other hand, the superconductor is anisotropic or 
inhomogeneous in the transverse-to the temperature gradi-
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ent-direction (for example, along the y axis), then the ve­
locity v. will depend on y. Consequently, curl v.~H"O, and 
there will arise in the superconductor a circulating cur­
rent[I-31 that can be measured experimentally. [4,51 

2)We assume the modulus of the order parameter is equal to 
the equilibrium value, since it varies in second order in T~, 
which is of no interest to us. Notice that to the potential <to 

in the theory of superfluid helium corresponds a correction 
to the chemical potential, h, for which an equation similar 
to (3) is valid. [91 

3)The thermoelectric field near the boundary of a supercon­
ductor with a dielectric was found earlier. (10] 

4) A longitudinal electric field arises also in the vicinity of the 
center of a vortex moving under the action of a transport cur­
rent. [16,171 
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