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We solve the three-dimensional problem of the production of accelerated electrons in a plasma during 
Langmuir collapse. We show that the problem has a scaling solution in which practically the whole energy 
of the external source of the Langmuir oscillations is put into a small. decreasing with time, group of 
resonance particles. 

PACS numbers: 52.50.Gj. 52.35.Ck 

INTRODUCTION 

We consider in the present paper the problem of the 
heating of a plasma in which strong Langmuir turbulence 
is excited constantly by an external source. This kind 
of problem is of great interest for the problem of plas­
ma heating by a powerful electron beam or by laser 
light. The most important property of strong Langmuir 
turbulence is the location of Langmuir noise in regions 
with a lower density-cavitons. The characteristic size 
6 of the cavitons and the density perturbation 6n are 
connected with the local noise energy density W through 
the relation 

(1) 

where rD. is the Debye radius. 

ZakharovU ] has shown that such formations are not 
stationary in the three-dimensional problem: when the 
energy density is sufficiently high, the cavitons col­
lapse-their size 6 vanishes after a finite time, and the 
quantity W becomes infinite. We shall call such for­
mations in what follows collapsing solitons, without in 
general having in view any analogy whatever with a 
stationary Langmuir solitons (see, e. g., [2]). 

It is clear that if we take into account kinetic effects, 
the size 6 cannot vanish while condition (1) is retained, 
since under the condition Ii - rD e the characteristic phase 
velOCity of the harmonics is w/k- vTe' so that strong 
Landau damping sets in. This is not the only possible 
channel for dissipation during the collapse, but Ruda-
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kov[3] has shown that under the conditions when the 
noise is pumped in a stationary way, this mechanism is 
the most probable one and in that case the whole energy 
of the collapsing soliton is transferred to a small group 
of resonance particles with velocities which are appre­
ciably above the thermal one, V» VTe' strong Langmuir 
turbulence leads, therefore, as in the one-dimensional 
model, [2,4] to the formation of non-Maxwellian tails of 
hot electrons. This result of Rudakov's[3] has been 
confirmed by the solution of a model problem about the 
heating of a plasma by spherical, quasi-planar col­
lapsing solitons. [5,6] Similar statements have been 
made by Galeev et ale [7] who solved the problem of the 
heating of a plasma during" supersonic" collapseCl ] and 
for that case the spectra of the noise and of the fast 
electrons were obtained. 

We pr~ent in the present paper the results of3,6,7] in 
correspobdence to one another. We also show that the 
methods for solving the problem in[6,7J are essentially 
equivalent. We give here the calculations for what is 
(according to present-day results) the most realistic 
mode of collapse-the formation of a kind of plane disk. 

We dwell in more detail on this model which was first 
suggested by Rudakov. [3] The dynamics of the collapse 
in the hydrodynamic approximation is described by the 
set of equationsU1 

( 8E 3 ) lOpe 
div -i-+-;-WperDe'l72E =·~-div6nE. aT 2 ~no 

8' ) 1 
( --c.'I72 6n=--'I72'IEI'. 

ih' 16nM . 
(2) 
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Here c~ = Te/M, and l' = To - t, to is the moment of col­
lapse. 

It was shown already in[1] that any three-dimensional 
collapsing soliton, described by Eq. (2), ultimately 
goes into the supersonic regime where a2/ar2 » ~V2 
when the amplitude increases. It is assumed that in 
that regime the collapsing caviton resembles in form 
an ellipsoid with a small eccentricity, i. e., with a sin­
gle characteristic dimension 1>. The time-dependence 
of the basic quantities is then determined from the set 
(2) as follows: 

(3) 

This model was also used inC7]. However, if we in­
troduce in Eqs. (2) an arbitrarily small damping, it 
turns out that a collapsing soliton, losing altogether 
only 5 to 10% of its total energy, leaves the supersonic 
regime and its further evolution proceeds so that I>n- E2. 
This important result was obtained numerically for an 
axially symmetric caviton inca]. On the other hand for a 
subsonic collapse when a2/ar2< ~V2 the velocity nec­
cessarily increases with time which in the absence of 
damping leads to a transition to the supersonic regime. 
The natural approximation for the description of a col­
lapse with damping will, therefore, be a model of sonic 
collapse, i. e., 1>'" CsT (I> is the thickness of the disk). 
The large dimension R is determined by the conditions 

(4) 

where it is the energy of the soliton. So far one can 
approximately assume it to be constant It= if' whence 
follows 

while if the damping is important, R (1') tends to zero 
faster so that 

T (M )"'R'('t) I 8=3- -nnT --.- -0. 
e m (OPel' T_O 

(5) 

(6) 

We note that Rudakovt3 ] was the first to at>ate the prob­
lem of the heating of the plasma in such a collapse and 
solve it in the form of estimates. 

1. SOLUTION OF THE HEATING PROBLEM IN THE 
FRAMEWORK OF THE SOLITON MODEL 

We shall assume that in the plasma solitons with an 
initial energy iff are constantly excited and afterwards 
collapse. Per unit time a number of solitons N=Q/itf , 

where Q is the pumping power per unit volume, are 
generated. We make the obvious assumption that the 
characteristic time of collapse is much shorter than the 
characteristic time for the plasma heating QI>/ cs « nT. 
The dynamiCS of the collapsing soliton can then easily 
be constructed from energy considerations. Under the 
conditions (4) of sonic collapse the field of the soliton 
along its smallest dimension is the field of a one-di­
mensional Langmuir soliton, the spectral expansion of 
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which is well known[2]: 

whence follows 

k _eEo 
0- 6'/'r' 

dtf! S 3 (r )" S~ 2,,(. -=- 2"(.W.dSdk=- - nR-(-r) dk , , 
dr 2 e 0 ck (nkI2k o) 

(7) 

If the electron distribution functionj(v) is isotropic, we 
have 

00' (00) y,=-Jl'J;3f ;; . 

Substituting this expression into (7) we get after sim­
ple transformations 

(8) 

The interaction of a sufficiently fast (v> lwp,) electron 
with a single separate caviton resembles the normal 
acceleration of a charged particle in the field of an al­
most plane capacitor, since the potential of our soliton 
in the direction of its smallest dimension is a mono­
tonic function of the coordinate: 

which during the time of flight Cl/v< w;~ does not suc­
ceed in changing its sign. If, however, in the volume 
of the plasma there is at each moment of time a set of 
cavitons, randomly distributed in space, the evolution 
of the electron distribution function in velocity space is 
described by a diffusion equation 

(9) 

Here I:t.v is the increase in the electron velocity when it 
passes through a caviton. We can calculate it if we 
start also from the fact that the field in the caviton is 
close to the field of a one-dimensional soliton: 

Eo 
E(x)=--, 

ch kox 
(10) 

We can write the effective collision frequency of elec­
trons and cavitons in the form 

S E -(?4 T),/,(VTe) \~ff=JlU R'(E)F(E)dE, min~ - nn u' 
Emin 

where F(E) is the amplitude distribution function of the 
collapsing solitons while Em1n is the minimum amplitude 
of a soliton for which an effective interaction starts 
between it and an electron of given velocity v. 

It is, however, more convenient to use the distribu­
tion function of the solitons with respect to the proper 
time 1': 
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---------------- ~~- ---~ 

F(,) =const=N=Q//5,. 

In that case 

• 
Vernv I d-r: R'(,)N, 

'tit') 

v 
,(v)=--. 

WpeC, 
(11) 

We substitute Eqs. (11) and (10) into (9) and also use 
Eq. (5). We get 

D-""" '( M) 'I, QVTe I'd R'(rJ -"- n - -- xx--v, 
m 4nnT" R.'(x) 

Ulpe'tC. 
x=--· 

" 
(12) 

where Ra(7) is the radius of a caviton which collapses 
without damping. We retained in Eqs. (8) and (9) dif­
ferent notations for the time since they differ with re­
spect to the characteristic size and with respect to their 
zero-point (7 = 0 for each soliton at the moment of col­
lapse). 

It is scarcely possible to solve in a general form the 
set of equations which we have obtained but it allows a 
self-similar change of variables. We introduce a char­
acteristic hot electron velocity va(t) and we consider 
first of all Eq. (9) in the region v» va(t) where the 
damping is small: 

n" ( M ) '/, Q"Te 
D,=--;-- - --,-. 

:2; m 4:r.nT 
(9' ) 

We make the substitution t-Dlt and we shall look for 
the distribution function in the form 

(13) 

From the condition that the pumping of the noise is con­
stant 

lj I Q=consl = - /,.' ,,,. 
'i/ 

we get rp(t) = cr4 and also 

(14) 

Equation (14) has the exact solution: 

(15) 

We now consider the velOCity range v« va(t). The 
diffusion coefficient is here exponentially small as the 
solitons give up all their energy to particles with 
v- va(t): the distribution function in this region must, 
nonetheless, satisfy the scaling substitution (13) as it 
was established as a result of a scaling process. This 
condition is satisfied by the power-law function 

(16) 

It is convenient to match up the solutions (15) and (16) 
in the point ~ =4 in order to guarantee a zero current 
from the' non-resonance to the resonance region. We 
have thereby established the approximate form of the 
self-similar solution: 
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() { Clv' tv = 
Cv-\ (vID,t-3)exp (4-vID,t). 

va(t) =4D1t. The number of resonance particles de­
creases with time: 

nI<=4n.nC/vo (t) -1/t. 

(17) 

The width of the interaction region for the function 
(17) av - va/4. The exact form of the solution of the set 
(8), (9) in the region v- va can be established only nu­
merically but we can give a more exact value for av 
from the condition that the number of particles is con­
served. 

~ . 
I f~(v)d\"=q>(t) I cD (!;)ds, 
~o ~o 

whence 

One must, however, prove that the scaling substitution 
of variables found by us is valid not only for Eq. (9') 
but also for the exact set (8), (9) in the region v- va' 

We turn to Eq. (8). We make the substitution of 
variables: x = wpecsT/Dlt. The initial condition 
i (7 - - 00) = ifl changes to a completely similar one while 
Eq. (8) takes the form 

d/5 = C/5x I· d!;!;(]) (s) . 
dx, ch' (xl!;) 

(18) 

The self-similarity of Eq. (8) has thereby been proved. 
We show that the self-similar substutition (13) is valid 
for Eq. (9). In the expression (12) for the diffusion co­
efficient X =x/~ while the ratio R2(X)/R~(X)= g(x)/lfl • 

Therefore 

D( ) - 2D,[' I'd /5 (x) v --<,- xX-s;-. (19) 
;- 0 C!}i 

Equation (9) with the diffusion coefficient (19) indeed 
satisfies the self-similar substitution (13). 

Finally, we determine the constant C in Eq. (17) for 
the distribution function. It is uniquely determined by 
the condition that the soliton is completely damped in 
the interaction r~gion va/2 < v < vO' Equation (18) allows 
us to make the estimate C = acs' a - 1. It has no sense 
to determine this quantity with greater accuracy be­
cause of the simplifications which we have made. It 
is important to note that in the heating process there 
are at all times two sections which differ in prinCiple in 
their characteristics of the distribution function of the 
accelerated electrons (this follows frpm the solutions 
given above). To wit, to the left of voW (i. e., when 
v < va(t)) a stationary distribution function is formed 
f",(v)-1/v4 which contains the main number of particles 
which increases with time beCause of the motion of the 
boundary va(t) but which does not contribute to the total 
energy of the tail. On the other hand, to the right of 
vo(t) (v> vo(t» an exponentially decreasing front of the 
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distribution function is formedf(v)- exp(- v/D1t) with a 
number of particles in it which decreases with time as 
follows 

.!!!:._ (!!:)'I'VTe_~, 
n, M v, t 

but it is just in this part that the whole energy of the 
tail is concentrated and it is only into this small group 
of particles that the whole energy of the external source 
of the Langmuir oscillations is put. 

2. THE THEORY OF PLASMA HEATING IN THE k­
REPRESENTATION 

A problem similar to the one considered above was 
solved earlierC7J by the Fourier transform method. The 
soliton model of the collapse seems more physical to us 
but we consider our problem also in the k-representa­
tion in order to establish the correspondence between 
the models. When deriving the basic equations it was 
assumedC7J that each soliton corresponds to only a single 
harmonic with k- ko' Furthermore the quasi-linear dif­
fusion equation and the equation for the energy flux in 
k-spaee, taking damping into account, were used. In 
the three-dimensional problem these equations look as 
follows: 

(20) 

where 

dk/dT is a function of k given by Eqs. (2). We have al­
ready mentioned above that the most probable mode 
when dissipation is present is a purely sonic collapse 
when 11= Cs T, i. e., dk/dT = - k1cs ' 

We consider this case in the framework of the model 
of Galeev et al. [?] Making the self-similar substitution 

1 
f(v,t)= 2 % '( t)' (JIm. n c, CUpe 

II 
6=--, 

Wpec.t 

we get the set of Eqs. (20) in self-similar form 

It follows from E'l.' (23) that 

We substitute expression (24) into Eq. (22): 
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(21) 

(22) 

(23) 

(24) 

4(J1+6(J1 '+ ~.!£~ (Si d W, s" d1;, 4+41;,+1;,'111 m ) d(JI = 0 
i ;' ds soT] T] 0 1;, (1;,+1) d; . 

(25) 

If we assume that the function <1>(0 decreases expo­
nentially as ~ _00 we have 

Equation (25) simplifies then considerably and when 
~ »wo has the simple solution: 

l1I=const (6Iw.-3) exp (-s/w.) , 

which is, apart from the notation, exactly identical 
with the solution (15). As ~ - 0, assuming the quantity 
wW to be exponentially small we get <I> = <l>0~-4 (see (16» 
where 

(26) 

Unfortunately, when ~- ~o=wo the solution of Eq. (25) 
cannot be obtained in analytic form as in the soliton 
model and we can only estimate the constant <1>0 from the 
condition that the noise density decreases exponentially 
in the interval (~o/2, ~o). We must then recognize that 
in this interval the function <I>(~) will not decrease as 
fast as ~-4 as can be seen from Eq. (25). As to order 
of magnitude <1>0-1, i. e., in the physical variables 

(27) 

<1>0' {3-1. 

In the k-representation we obtain thus a solution of 
the same form as in the soliton model. 

One can easily generalize the results to the case 
dk/dT-lt' for any 1 < n < 3. In particular when n = 5/2 
(supersonic collapse) we can perform in the set (20) the 
change of variables 

(28) 

the system is then reduced to the self-similar form and 
one can obtain a solution which in all respects is simi­
lar to the one obtained in the previous section or inC7J • 

One can estimate the characteristic velocity vo(t) from 
the energy conservation law: 

jfV' dV=V.'i. j 'I'(,~) ds = j Q(t')dt'. . . ~ . (29) 

We shall not give the details of the calculations but 
only the main results: 

f~(v)=constlv"', 'I'(~)-exp(-~"'), ~>1, 

(Qt)' 
v.(t)= , '( 1M)'" n UTe m 

(30) 

These results were obtained from the equations ofC?] 
for dk/dT- k5 / 1 which gives us the possibility to com­
pare them with the results of that paper. To wit, incn 
a solution of the set (20) with a constant particle flux 
was given for the supersonic collapse case dk/dT- k5 / 1: 
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~~k'I'W.=const.v'f(v)W., 
k' ak 

D iJt 
--=const, 
v av 

which gave the result 

I(v) ~v-·t., W,~k-"I,. 

(31) 

(32) 

The solution (30) differs from the particular solution for 
I, shown inn], although it can be seen by comparing ex­
pressions (30) and (32) that they are formally the same 
in the range v<vo(t). However, the meaning of the self­
similar solution (30) and also the solution (17) for n = 2 
(sonic collapse) is different. 

If in the heating regime in the solution of[7] new par­
ticles (a constant flux of particles through the interac­
tion region) get involved in our self-similar solution 
there remain increasingly fewer particles in the heating 
region: 

and those which leave the heating regime form to the 
left of vo(t) the distribution function/ .. (v)-llv·+z so that 
the total number of particles in the tail is constant and 
independent of the generation power. The whole energy 
of the external source is then, as we have already shown, 
injected at once into a small group of resonance parti­
cles nR - lit to the right of vo(t) and those also deter­
mine the energy conservation of the plasma. 

Moreover, the existence of the stationary solution 
(32) with a constant particle flux into the high-velocity 
region requires the introduction of a sink of particles at 
the right-hand boundary of the distribution/(v) as in the 
opposite case there would occur an accumulation of 
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particles in the region where the noise is generated 
which contradicts the stationarity condition. In our view 
the self-similar solution of the time-dependent problem 
is more physical as it conserves the total number of 
particles and does not require the inclusion of additional 
physical mechanisms of a sink. Even if a stationary 
regime were pOSSible, its establishment requires an 
appreciably larger energy contribution as the energy of 
the tail is determined by the upper velocity boundary. 
The process of establishing a stationary regime is in 
this case also described by the solutions obtained in 
the present paper. 

In conclusion, the authors thank L. I. Rudakov for 
posing the problem and for guiding them in this work 
and L. M. Degtyarev for valuable discussions. 
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