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A theory is developed for a high-frequency pinched discharge in a dense gas under conditions of strong 
skin effect, with allowance for the deviation of the electron temperature from the temperature of the ions 
and of the neutral atoms under the influence of the electromagnetic field. The structure of the transition 
layer on the plasma boundary is investigated. The dependence of the plasma temperature on the power 
input and on the surface resistance of the plasma is obtained. In the presence of strong skin effect, the 
decrease of the field in the interior of the plasma leads to a spatial inhomogerieity of the electron 
temperature, causing in turn a thermal-diffusion electron current. This current transfers the electrons from 
the transition layer both into the interior of the plasma and to the outside. With increasing temperature 
difference, the electron density inside the plasma decreases at an ever slower rate. There is a critical 
temperature difference, starting with which the electron density outside the plasma decreases so slowly that 
the total heat release becomes infinite. This means that no low-temperature pinched discharge can exist in 
a sufficiently strong field. 

P ACS numbers: 52.S0.Dy 

1. INTRODUCTION 

To ascertain the degree to which Kapitza's experi
mental resultsU- 6] offer evidence of the presence of a 
hot region in a pinched microwave discharge it was 
necessary to develop in detail a low-temperature theory 
of a high-freq\ttlncy discharge in a dense gas. To this 
end, the equilibrium structure of the transition layer in 
the high-frequency discharge was calculated, [7,8] a 
cylindrical discharge was considered without any limi
tations on the size of the skin effect, and the question 
of the heat exchange in the equilibrium structure of the 
high-frequency discharge in a gas stream was investi
gated. [9]. InUO- 12! the deviation from local thermody
namic equilibrium, due to electron diffusion, was con
sidered and a study was made of the role of the inelas
tic processes that determine the particle balance in a 
high-frequency discharge. 

In[7-12l, however, the high-frequency field E was as
sumed to be small in comparison with the "plasma" 
field Ep: 

E<:E.=[3mTe-'6el (ro'+v') 1"'. (1.1) 

where e and m are the charge and mass of the electron, 
Tis the'plasma temperature, w is the field frequency, 
1/ is the collision frequency, and 6e1 = 2m/ M is the frac
tion of energy transferred from the electrons to the 
ions in elastic collisions. The condition (1. 1) has made 
it possible to neglect the difference between the elec
tron temperature and the temperature of the ions and 
the neutral atoms. Starting with the work of Druyve
stein[13] and Davydov, [14] heating of electrons in an 
electromagnetic field was investigated many times both 
in a gas-discharge plasma[15-20] and in a solid-state 
plasma. [21] However, even though the distribution func
tion of the electrons in a strong electromagnetic field 
is essentially known, no self-consistent theory of a 
high-frequency discharge with allowance for the tem
perature difference has been constructed as yet. 
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The purpose of the present paper is to construct a 
self-consistent theory of a high-frequency discharge in 
a dense gas under conditions of a strong skin effect, 
with allowance for the overheating of the electrons. The 
situation of strong skin effect can be realized in the out
er region ("jacket") of the Kapitza pinch discharge, [1-6] 
and also in high-pressure induction plasmatrons. [22-24] 

Under the conditions of a strong skin effect, when the 
depth of penetration of the field into the plasma is small 
in comparison with its linear dimensions, the high-fre
quency field is in principle inhomogeneous. Under elec
tron overheating conditions, this leads to an inhomoge
neity in the electron temperature. A qualitatively new 
phenomenon that appears in this situation but is absent 
in the case of local thermodynamic equilibrium is ther
mal diffusion of the electrons. Thus, besides the dif
fusion flux, which is proportional to the gradient of the 
electron denSity, there is also a thermal diffusion flux 
of electrons, proportional to the gradient of their tem
perature. The thermal-diffusion flux moves the elec
trons from the transition layer both into the interior of 
the plasma and out of the plasma, as a result of which, 
with increasing field intensity (with increasing tempera
ture difference) the electron density outside the plasma 
decreases more and more slowly. There exists a criti
cal temperature difference, starting with which the 
electron density outside the plasma decreases so slow
ly that the total Joule heat release becomes infinitely 
large. This means that no low-temperature pinch dis
charge can exist in a sufficiently strong field. 

Besides influencing the transport processes, the 
temperature difference leads naturally to a shift of tI:e 
ionization equilibrium, changing the frequency of atom 
ionization by electron impact. The relative role of the 
shift of the ionization equilibrium and thermal diffusion 
due to overheating of the electrons is analyzed in the 
Appendix. We shall henceforth neglect the influence of 
the overheating of the electrons on the ionization-re
combination balance; this is justified at not too high a 

Copyright © 1977 American Institute of Physics 472 



neutral-atom temperature and at a sufficiently high 
electromagnetic-field frequency. 

We consider a high-frequency discharge in a station
ary regime in which the Joule heat released in the plas
ma by the electromagnetic field is transferred by ther-\ 
mal conduction of the gas to the cooled walls of the vessel. 
The main condition for the applicability of the theory de
veloped below is smallness of the energy-transfer length 
le = v/va;{2 in comparison with the depth of penetration 
a=c(81Twat1/ 2 of the field into the plasma: 

1;(;::,6. (1. 2) 

Here a is the electric conductivity of the plasma, v is 
the average thermal velocity of the electrons, and cis 
the speed of light. 

2. EQUATIONS OF THE SELF·CONSISTENT 
STRUCTURE OF THE DISCHARGE 

Under the conditions of a strong skin effect, when the 
depth of penetration of the field into the plasma is small 
in comparison with the discharge dimensions, all the 
quantities are functions of a single coordinate x di
rected along the electron-density gradient. The kinetic 
equation for the electron distribution function fe is 

aj. aj. e ( oj. OJ.) -+v.--- E.-+E,coswt-~- =s. at ax m av. av, 
(2.1) 

Here Eo is the static electric field due to the charge 
separation, Ey is the amplitude of the high-frequency 
field that maintains the discharge, and S is the collision 
integral. An electron distribution function satisfying 
Eq. (2.1) can be represented in the form (see, e. g., (171) 

j.=j.+vf/u, 

where the functions fo and fl depend on I v I (and, of 
course, on x). We assume that the degree of ionization 
of the gas is so small that the main contribution to the 
electric conductivity is made by elastic collisions of 
the electrons with the neutral atoms. (For hydrogen 
at atmospheric pressure this condition is satisfied at 
To < 8000 OK.) Under condition (1. 2), for a rapidly 
alternating field. (w» vael) under stationary conditions, 
the symmetrical part fo of the distribution function of 
the electrons satisfies the equation 

!.-v""(u) [(T ~- e'IE,'(x) I )_'_1 ~+f ]=0 ~ (2 2) • , ' 0 , \·uel~w~v. • 
du 36d mv2(u) mu OV 

Here 

"(v) =Nov S q (v. 0) (1- cos 8)dQ 

is the frequency of the collisions of the electron with 
the neutral atoms and To is the neutral-atom tempera
ture. From (2.2), recognizing that fo is finite at v = 0, 
we obtain the well-known expression for the distribution 
function: 

{ S' mVdV} ( ) 
f.=C(x)exp - T.+e'IE.'(x) 1/36 ,mv'(v) ,v6e'~ro~v. 2.3 

o e 
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Here C(x) is an arbitrary function of x, the form of 
which is determined by the normalization condition 

(2.3') 

The electron concentration }le(x) under stationary con
ditions satisfies the particle-balance equation, which is 
obtained from (2.1) by integrating over the velocities: 

(2.4) 

The projection of the particle flux along the concentra
tion gradient q" is expressed in the follOwing form in 
terms of fo: 

q.= SF.~d'v=- S---'!l....(~- eE. !!A)d3V. (2.5) 
v v(v) ax mu au 

When integrating over the velocities, a nonzero con
tribution to (2. 4) is made only by collisions that do not 
conserve the number of electrons, that is, accompanied 
by ionization of the atoms, by recombination, and by 
sticking of the electrons. We shall assume that the loss 
of electrons is due mainly to their sticking to the neu
tral atoms with formation of negative ions. In this case 
we have U01 

S snd'v=-~(N.-N. eq(To», (2.6) 

f3 is the sticking coeffiCient, and Ne eq( To) is the equi
librium electron density determined by the Saha formu
la. The electromagnetic field satisfies the equation[7] 

~~_ d'IE,'1 _ 64n'ro'cr IE,'I=O 
dx cr dx' c' ' 

(2.7) 

where the plasma electric conductivity a is expressed 
in terms of fo in the following manner: 

e' S v,' a fo 3 

cr=-;;: uv(v) a;;dv, (2.8) 

Under condition (1. 2), the energy acquired by the elec
trons from the field is transferred by collision to the 
neutral gas and is given up by thermal conductivity to 
the cooled walls of the vessel. Under stationary con
ditions, the thermal-conductivity equation without al
lowance for radiation is 

~% dT. +..!....crIE '1=0 
dx dx 2 • , 

where x is the thermal conductivity of the gas. 

(2.9) 

The smallness of the Debye radius in comparison with 
the depth of penetration of the field into the plasma leads 
to quasineutrality. The large value of the coefficient of 
recombination of the positive and negative ions causes 
the negative ions to produce as a result of attachment 
of the electrons to the atoms to recombine rapidly, so 
that their concentration N_ is small in comparison with 
the electron density. Taking into account the ambipolar 
character of the electron diffusion and eliminating from 
the equations the static field Eo by the same method as 
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FIG. 1. Measured cross sections for the elastic scattering of 
electrons by hydrogen atoms. Solid curve-results of[251, the 
points are from the data of[26]. The dashed line indicates the 
slope <T~V-l. and ao is the Bohr radius. 

in the Appendix ofUOl, we obtain the following electron 
balance equation: 

d D {dN, mN,S v.' of' d3 / S v.' ofo } 
dx i -;z;--r; v(v) a;; v vv(v) a;;d'v 

=pXN.-N, eq(T.) J. (2.10) 

Here D, is the ion diffusion coefficient. Equations (2. 7), 
(2.9), and (2.10) determine in a self-consistent manner 
the temperature To of the neutral gas, the distribution 
N.(x) of the electron density, and the electromagnetic 
field E~ with allowance for the overheating of the elec
trons. The electron distribution function (2. 3), with 
the normalization (2.3') taken into account, and the 
electric conductivity (2.8) are functionals of the high
frequency field I E~(x) I. 

In the interior of the plasma, as x- +"", the tempera
ture of the gas To tends to a certain limiting value Tm. 
The electron density tends in this case to its equilibrium 
value Nm= Ne eq( Tm), for as x- +"" the electromagnetic 
field E,,(x), which disturbs the equilibrium of the elec
trons with the ions and atoms, tends exponentially to 
zero. Outside the plasma, as x--"", the electron den
sity tends to zero and the flux density tends to a speci
fied value equal to the electromagnetic-energy flux So 
into the discharge: 

xdT'/dx=S., x--+-oo. (2.11) 

3. COLLISIONS OF ELECTRONS WITH NEUTRAL 
ATOMS 

The distribution function of the electrons in a high
frequency field (2. 3) is very sensitive to the form of 
the function v(v). To continue the analysis we must 
specify the form of v(v). The equations are Simplified 
to the greatest degree if it is assumed that the collision 
frequency is independent of the velocity, v(v) =const. 
In this case the electron velocity distribution is Max
wellian 

f.=C(x) exp{-mv'/2T,(x)} (3.1) 

with a temperature 

T.(x) =To+e'IE,'(x) J/3c5e.mv', 

(3.2) 

We call attention to the fact that the Maxwellian distribu
tion function causes the integral of the electron-elec-

474 SOy. Phys. JETP, Vol. 43, No.3, March 1976 

tron collisions to vanish. For this reason, allowance 
for the interelectron collisions does not affect the dis
tribution function (3.1). 

A velocity-independent frequency of the collisions be
tween the electrons and the neutrals results from con
sideration of scattering within the framework of classi
cal mechanics as scattering by a polarization potential 
that decreases with distance in proportion to r-4• The 
scattering cross section is in this case inversely pro
portional to the velocity. Figure 1 shows the measured 
cross sections for elastic scattering of electrons by 
monotonic hydrogen. The solid line shows the data Of[25l 
and the points are from[26l. The dashed line indicates 
the slope 0'- v-1" corresponding to scattering by a polar
ization potential. As seen from Fig. 1 in the electron 
energy range from 2 to 8 eV the assumed approxima
tion v(v) =const does not go beyond the limits of experi
mental accuracy with which the cross sections O'(v) are 
known. The results of theoretical calculations[27-32] of 
O'(v) in the given energy region are also close to v-1 

(see[33l, p. 150, and the review[34l). We were unable 
to find in the literature any reliable experimental data 
for the energy region S 1 eV. In this region, the elec
tron elastic scattering cross sections can have their 
own Singularities, particularly those connected with the 
Ramsauer effect. 1) The distribution function (3.1), of 
course, does not reflect the discharge peculiarities 
connected with the Singularities of the function O'(v) for 
different gases, but describes the general character of 
the overheating of the electrons by a high-frequency 
field, including the case of a strong skin effect. 

4. THERMAL DIFFUSION OF ELECTRONS IN A 
HIGH-FREQUENCY DISCHARGE 

For the electron distribution function (3.1), the inte
grals in the balance equation (2.10) are equal to 

S v,'. d" - T,N, S vx' aj" d'" _ S, 
-}o U---, -- t---. 
V mv vv aF \" 

and the usual expression 0' = e2 N.I mv is obtained for the 
electric conductivity of the plasma (2.8). The electron 
balance equation (2.10) takes the form 

(4.1) 

Here 

qxD=-D,dNJdx (4.2) 

is the electron diffusion flux, proportional to the elec
tron concentration gradient, and Do = 2DI is the ambi
polar diffusion coefficient. 

The electron temperature T.(x) (3.2), being propor
tional to the square of the modulus of the electromag
netic-field amplitude, is inhomogeneous under condi
tions of overheating and skin effect, and changes gener
ally speaking over the same distances as N.(x). As a 
result, besides the diffusion flux (4.2), the electron 
transport equation (4.1) is supplemented by an electron 
thermal diffusion flux 
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(4.3) 

which is proportional to the gradient of the Joule heat 
released in the plasma. The heat release a I E; I /2 
reaches a maximum in a transition layer at the plasma 
boundary and decreases both in the interior of the plas
ma (owing to the skin effect) and outside the plasma (be
cause of the decrease in the electron density). The 
thermal-diffusion flux (4.3) vanishes and reverses sign 
at the maximum of the heat release, and thus moves 
electrons out of the transition layer both into the inte
rior of the plasma and to its outside. 

Eliminating a I E; I with the aid of the thermal-con
ductivity equation (2.9), we can express the thermal
diffusion flux of the electrons in terms ofthe derivatives 
of the temperature of the neutral gas: 

(4.4) 

5. DIMENSIONLESS EQUATIONS AND THEIR 
INVESTIGATION 

Just as in[7-12], we change to dimensionless variables. 
Let T m be the limiting value of the neutral-gas tempera
ture To inside the plasma. It is convenient to introduce 
the dimensionless electron denSity n, the dimensionless 
temperature e of the atoms, and the dimensionless co
ordinatel: as follows: 

N. 
n=----

N,eq(Tm) 
(5. 1) 

where om = c( 81Twamr1/ 2 is the depth of penetration of the 
field into a plasma with electron density N = N (T) m eeq m, 

and I is the ionization potential of the atoms. Using the 
condition Tm« I, we have 

For pinched discharges, in which either the plasma 
dimensions or the dimensions of the transition layer at 
the plasma boundary are small in comparison with the 
distance to the cooled walls of the vessel, the neutral
gas temperature To changes slowly in comparison with 
the electron density No. The thermal conductivity 'K of 
the neutral gas and the ambipolar diffusion coefficient 
Da depend on the temperature To, which changes insig
nificantly in the transition layer. This makes it pos
sible to put in the equation x = xm;; x( T m) and Da = Dam 
;; Da( Tm). The coefficient (3 of electron sticking to the 
atoms is a relatively weak function of electron tem
perature. [l0] To simplify the calculations we shall 
henceforth assume (3 to be constant. 

Allowance for the ionization of the atoms by electron 
impact adds to the right-side of (4.1) a term propor
tional to aN., where a is the ionization coefficient. Un
der these conditions the discharge can have a station
ary state at (3 > a. If the atom ionization by electron 
impact must be taken into account, then (3 in our equa
tions should be taken to mean the difference between 
the adhesion and ionization coefficients. A. detailed 
analysis of questions involved in ionization-recom-
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bination kinetics is contained in the review by Biber
man, Vorob'ev, and Yakubov. [37] 

We introduce the dimensionless parameters,), = 0m/ d- . 
the ratio of the depth of penetration of the field into the 
plasma to the diffusion length d = (D /(3)1/2 and A 

. 2 am 
= 2 Km Tm/3IoelI1NmOm. 

In the dimensionless variables (5.1), the thermal
diffusion flux (4.4) is equal to 

(5.2) 

and the equations describing the charge with allowance 
for the electron overheating take the form 

d' 1 d'e de 
d~3 -;;~-n~=O. 

d'n die _ + A -- = ¥' (n-e- e ) 
d~' d~' I • 

(5.3) 

(5.4) 

The electron temperature (3.2) in terms of the vari
ables (5.1) is 

T,=T,( 1 +2An-'d'eld~'). 

The parameter A, which characterizes the overheat
ing of the electrons and the thermal diffusion produced 
by them, can be rewritten in the form 

(5.5) 

where wand II are in sec-I, 'Km in W/cm OK, Tm in OK, 
I in eV, 0el = 2m/ M, where M is the mass of the ion or 
atom. For example, for hydrogen at atmospheric 
pressure, a temperature Tm = 60103 OK and a field fre
quency w = 1010 sec-1 we have xm = 0.04 W/cm OK, II 

= 2.3.1011 sec-I, 1= 13. 6 eV, 0el = 10-3, and for the tem
perature-difference parameter we obtain A=O.1. With 
increasing gas pressure, the number of colliSions at a 
given temperature increases rapidly. Therefore the 
overheating of the electrons decreases rapidly with in
creasing gas pressure at a fixed temperature. With de
creaSing pressure p, the overheating parameter A in
creases rapidly (in proportion to p-2, if we disregard 
the weak dependence of the thermal conductivity of the 
gas on the pressure), and can become of the order of 
and larger than unity. In this case the electron over
heating leads to a strong thermal diffUSion, which is 
decisive Significance for the transport of the electrons 
in the discharge. At a fixed temperature and a fixed 
gas pressure, the electron overheating in the considered 
frequency interval °01 11« w« II increases in proportion 
to the field frequency w. 

Outside the plasma, as I: - _00, the electron density 
tends to zero and the heat flux tends to a speCified fi
nite value (2.11), equal to the electromagnetic-energy 
flux into the discharge. In terms of the dimensionless 
variables (5.1), these conditions are 

n-+O, deld~<oo, 1;,-+-00. (5.6) 

Inside the plasma, as 1:_+ 00 , the gas temperature ap-
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proaches exponentially its maximum value, and the 
electron density tends to the equilibrium value: 

(5.7) 

Equations (5.3) and (5.4) with boundary conditions 
(5.6) and (5.7) describe a stationary high-frequency 
discharge with allowance for the overheating of the elec
trons in the case of a strong skin effect. The coordi
nate ~ does not enter explicitly in expressions (5.3) 
and (5.4). Therefore the dimensionless electron den
sity n and the dimensionless gas temperature a are 
functions of ~ - ~o (~o is an arbitrary constant) and de
pend on I' and X, which serve as parameters. Outside 
the plasma, as ~ - - 00, the dimensionless heat flux 
de/d~ assumes a constant value that depends on the 
parameters I' and X: 

(5.8) 

Comparing (2.11) with (5.8) we obtain the electromag
netic-energy flux density Sn needed to heat the gas to 
the temperature Tm 

(5.9) 

The functions F(y, X), n(~ - ~o) and e(~ - ~o) can be ob
tained only by solving the equations. 

In the limiting case X« 1, when the overheating of 
the electrons is negligible, Eq. (5.4) goes over into 
Eq. (2.11) ofnol, where a study was made of a high
frequency discharge with allowance for the deviation, 
due to diffusion of the electrons, from the local thermo
dynamic equilibrium, characterized by the value of the 
parameter y. 

The electron balance equation (5.4) describes the 
deviation of the electron density n from equilibrium as 
a result of transport processes (diffusion-the term 
d2n/d~2-and thermal diffusion-the term Xd~/d~4). 
Outside the plasma, as ~ - - 00, the dimensionless gas 
temperature e increases linearly with increasing 1 bI, 
so that the term y 2e-®, which describes in our model 
the thermal ionization of the gas, tends exponentially 
to zero. As shown in[10l, the diffusion of the electrons 
in conjunction with their sticking to the neutral atoms 
leads to an exponential decrease of the electron density 
with increasing distance outside the discharge. We 
shall show that thermal diffusion in conjunction with 
formation of negative ions leads to a slower, power
law decrease of the electron density with increasing 
distance outside the discharge. Omitting from (5.4) 
the terms that decrease exponentially outside the dis
charge, we have 

n=(I.i1')d'9Idt', t-+- oo• (5.10) 

The term nd6/d~ in (5.3) tends to zero together with 
the electron density n. Therefore 

d' 1 d'e 
--~=O as ~ ..... -oo. 
dt' n d~' 

Integrating (5.11), we obtain 
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(5.11) 

d'eldt'='/2[c,(t-~o)'+~,ln, t-+- oo . (5.12) 

The integration constants Co and c 1 are functions of the 
parameters I' and X, which can be obtained only by 
solving Eqs. (5.3) and (5.4) at all values of~. Natural
ly, at I' -1 and X - 1 the constants Co and c 1 are also of 
the order of unity. As 1 ~ - ~o 1- 00, the constant c1 of 
(5.12) can be omitted. Eliminating the electron den
sity n from (5.10) and (5.12), we obtain the following 
equation for the coordinate dependence of the Joule heat 
release 6" = d2a/ d~ 2 outside the discharge: 

(5.13) 

Its solution, which tends to zero as ~ - - 00, is of the 
form 

where the degree of decrease of the heat release with 
increasing distance outside the discharge is equal to 

b=('/,.+2/x)"'-'/,. x=}.coh'. 

Thus, thermal diffusion of the electrons in conjunction 
with their sticking to the neutral atoms causes the heat 
release 0", and consequently also the electron density 
n-d~/d~\ to decrease outside the plasma in power
law fashion. The dependence of the exponent b on x 
= XCO//,2 is shown in Fig. 2. With increasing x, the ex
ponent b decreases. The condition (5.6) that the heat 
flux be finite at ~ - - 00 means that the heat release a" 
must decrease as ~ - - 00 in integrable faShion, from 
which it follows that b> 1 or 

x=l.c,l"{'<1. (5.14) 

The condition (5.14) limits the region of the physically 
attainable values of the parameter X characterizing the 
overheating of the electrons and the thermal diffusion 
caused by it. 

In the limiting case X« 1 and 1'-1, the overheating of 
the electrons does not play any role, and thermal dif
fusion can be neglected in comparison with diffusion. 
This case is investigated in detail in(10l. 

6. ELECTRON OVERHEATING IN THE LIMIT 
OF WEAK 01 FFUSION. CONTRACTION OF 
HIGH-FREQUENCY DISCHARGE 

We consider below the limiting case of weak diffusion 

"(~ 1, 1. arbitrary , (6.1) 

" 5 

" J 

2 

0 0.5 J: 1 

FIG. 2. Plot of the function b(x). 
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FIG. 3. Plot ofj(x) (6.5). 

q 

2 

0 0.5 I , 

when thermal diffusion in conjunction with the sticking 
of the electrons to the atoms dominates over all the 
transport processes. This case is of greatest interest 
from the point of view of overheating of electrons in a 
high-frequency discharge. Neglecting in the transport 
equation (5.4) the term d 2n/db2 , which describes elec
tron diffusion, we obtain the following expression for 
the dimensionless density 

(6.2) 

In the weak-diffusion limit y« 1, the deviation from 
local thermodynamic equilibrium is determined by the 
parameter AlY-. Therefore the deviation from local 
equilibrium due to overheating of electrons has a strong 
influence, in the limit of weak diffusion, on the dis
charge characteristics only in the case of strong over
heating, when X ~ y2 » l. 

Substituting (6.2) in (5.2) and noting that nde/ db is a 
total differential, we obtain the first integral of (5. 3): 

~(~)=1- -.+~(e"'e'-~) d7;,' n e l' 2' 
(6.3) 

Equation (6.3) takes into account the boundary condi
tions (5. 7). Outside the plasma, as b - - 00, the right
hand side of (6.3) tends to unity and thus the integration 
constant Co in formulas (5. 12) and (5. 14) is equal to 
unity in the limit of weak diffusion: Co = 1, y» 1. In 
this case X= X/y2, so that the region of the phYSically 
attainable values of the electron overheat parameters 
is given by 

(6.4) 

The total heat release at x;. 1 becomes infinite because 
the region of the Joule heat release outside the plasma 
increases without limits because of the insufficiently 
rapid decrease of the electron denSity. This means that 
the distance to the cooling walls of the vessel cannot be 
regarded as large compared with the dimension of the 
heat-release region. Thus, a critical value A"r = y2 

exists for the electron overheat parameter and deter
mines the limit of the contraction of a high-fre
quency discharge. At X < A"r the above-described 
state of the discharge detached from the walls of the 
cooled vessel and occupying a small fraction of its 
volume is possible. At X;'Xcrt the region of the Joule 
heat release is limited by the dimensions of the vessel, 
so that its entire volume can be occupied by the dis
charge. For an unpinched discharge, at :>C;'A"r, in con-
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trast to a pinched one, an important role is played by 
the concrete mechanisms of the interaction of the elec
trons and the ions of the plasma with the vessel walls, 
mechanisms not conSidered by us. 

The function F(y, X) (5.8), which determines the de
pendence (5.9) of the temperature on the power, de
pends in the weak diffusion limit y » 1 on X and y in 
the combination X=Aly2: 

(6.5) 

The function f(x) (6. 5), obtained by numerically inte
grating (5.3) and (6.2) with the boundary conditions 
(5.6) and (5.7), is shown in Fig. 3. For the pinched 
discharge considered by us, the region where it is de
fined is limited to the interval (0,1). At x« 1, the 
electron overheating does not play any role and we have 
f(x) = 1. 57 .•. , x« 1, as should be the case in the pres
ence of local thermodynamic equilibrium in a discharge 
charge. (7] Near the contraction region, as x- 1, the 
function f(x) is proportional to (1 - X)-l, so that the 
energy flux denSity (5.9) increases without limit. 

The spatial distributions of the heat release a", of 
the electron denSity n, and of the thermal-diffusion 
flux -xa'" (see (5.2» are shown in Fig. 4 in the limit 
of weak diffusion y» 1. The numbers on the curves in
dicate the corresponding values of the parameter x. 

By the same method as in[7], we obtain for the sur
face resistance of the plasma in the liqlit of weak dif
fusion 

R=(4nw6",lc)f(),.!y')' 1~1, (6.6) 

where f(x) is the same function as in Fig. 3. If the 
overheat of the electrons is small, thenf(x) =1. 57 .•. , 

8" x=0.95 
0.5 

b 

0.93 

-5 

. . 
FIG. 4. Coordinate dependences of the heat release ®" (Fig. 
a), of the electron density n (Fig. b) and of the thermal-dif
fusion flux x El'" (Fig. c) in the transition layer at the dis,
charge boundary in the limit of weak electron diffusion. The 
parameter x characterizes the overheating of the electrons. 
Its values are indicated by the numbers on the curves. 
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x«l and formula (6.6) yields the surface resistance of 
an equilibrium discharge. In the opposite limiting case 
of strong overheating near the contraction boundary 
(x-l), the surface resistance increases without limit 
in proportion to (1 - X)·l, this being due to the Joule ab
sorption of a large amount of electromagnetic energy in 
the external region of the discharge. 

The authors are grateful to Academician P. L. Ka
pitza and Professor L. P. Pitaevskil for useful discus
sion. 

.APPENDIX 

Let us analyze the conditions under which the over
heating of the electrons influences the transport (ther
mal-diffusion) processes more strongly than the ioniza
tion equilibrium. The thermal diffusion changes aN,,1 at 
by an amount 

II (ON.IOt) T=dq,T Idx. 

In terms of the dimensionless variables (5.1) we have 

(A. 1) 

The change of aN,,1 at due to the shift of the ionization 
equilibrium, with allowance for the overheating, is 

6( ON,). =N. J Gionv[jo(T.)-/o(To) ]d'v, 
Ot Ion 

where fo(T,,) is the distribution of the overheated elec
trons (3.1), fo( To) is the distribution function of the elec
trons in the absence of overheating, and O"lon is the cross 
section for the ionization of the atom by electron im
pact. For hydrogen, with accuracy sufficiency for our 
estimates, the cross section of the ionization by elec
tron impact near the threshold is equal to O"lon'" 1Ta ~(1 
-II E), where ao is the Bohr radius and E is the energy 
of the ionizing electron. In the approximation linear in 
the overheat parameter X we have 

I~To. (A. 2) 

VT is the average thermal velocity of the electrons in 
thg absence of overheating. The relative role of the 
shift of the ionization in comparison with thermal dif
fusion is determined by the parameter 

A "( UN.) /"( eIN,) 8 en ,N,vT,lim'I _I/T 
Ll.=V -- U -- =-=-31([0 ----e o. 

at jon at T l'rc 8'" Dam To 
(A.3) 

the value of which does not depend on the degree of 
overheating X. Noting that the ambipolar diffusion co
efficient is 

we obtain for A (A. 3) the estimate 

I M 'I, 6m 2 

Ll~-(-) -, 
To m lrplion 
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where If>> is the free path length, and lion is the electron 
path in which it acquires an energy sufficient to ionize 
the atom. Recognizing that 6!=cZ(81TWO"",tl-w·lef/ZT"" 
we can easily see that the parameter A is inversely pro
portional to the field frequency w, and its temperature 
dependence is determined mainly by the factor exp( - II 
2T",). For hydrogen at atmospheric pressure, a field 
frequency w = 1010, and a neutral-atom temperature T", 
=6 -103 OK, the ratio (A. 3) is small: A'" 2. 5 ·10""« 1. 

Thus, in the range of parameters considered by us, 
the influence of electron overheating on the ionization
recombination balance can be neglected in comparison 
with thermal diffusion. 

1) As indicated in [35] (see also[36]), in the absence of skin effect 
these Singularities can influence the character of the electron 
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We solve the three-dimensional problem of the production of accelerated electrons in a plasma during 
Langmuir collapse. We show that the problem has a scaling solution in which practically the whole energy 
of the external source of the Langmuir oscillations is put into a small. decreasing with time, group of 
resonance particles. 

PACS numbers: 52.50.Gj. 52.35.Ck 

INTRODUCTION 

We consider in the present paper the problem of the 
heating of a plasma in which strong Langmuir turbulence 
is excited constantly by an external source. This kind 
of problem is of great interest for the problem of plas
ma heating by a powerful electron beam or by laser 
light. The most important property of strong Langmuir 
turbulence is the location of Langmuir noise in regions 
with a lower density-cavitons. The characteristic size 
6 of the cavitons and the density perturbation 6n are 
connected with the local noise energy density W through 
the relation 

(1) 

where rD. is the Debye radius. 

ZakharovU ] has shown that such formations are not 
stationary in the three-dimensional problem: when the 
energy density is sufficiently high, the cavitons col
lapse-their size 6 vanishes after a finite time, and the 
quantity W becomes infinite. We shall call such for
mations in what follows collapsing solitons, without in 
general having in view any analogy whatever with a 
stationary Langmuir solitons (see, e. g., [2]). 

It is clear that if we take into account kinetic effects, 
the size 6 cannot vanish while condition (1) is retained, 
since under the condition Ii - rD e the characteristic phase 
velOCity of the harmonics is w/k- vTe' so that strong 
Landau damping sets in. This is not the only possible 
channel for dissipation during the collapse, but Ruda-
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kov[3] has shown that under the conditions when the 
noise is pumped in a stationary way, this mechanism is 
the most probable one and in that case the whole energy 
of the collapsing soliton is transferred to a small group 
of resonance particles with velocities which are appre
ciably above the thermal one, V» VTe' strong Langmuir 
turbulence leads, therefore, as in the one-dimensional 
model, [2,4] to the formation of non-Maxwellian tails of 
hot electrons. This result of Rudakov's[3] has been 
confirmed by the solution of a model problem about the 
heating of a plasma by spherical, quasi-planar col
lapsing solitons. [5,6] Similar statements have been 
made by Galeev et ale [7] who solved the problem of the 
heating of a plasma during" supersonic" collapseCl ] and 
for that case the spectra of the noise and of the fast 
electrons were obtained. 

We pr~ent in the present paper the results of3,6,7] in 
correspobdence to one another. We also show that the 
methods for solving the problem in[6,7J are essentially 
equivalent. We give here the calculations for what is 
(according to present-day results) the most realistic 
mode of collapse-the formation of a kind of plane disk. 

We dwell in more detail on this model which was first 
suggested by Rudakov. [3] The dynamics of the collapse 
in the hydrodynamic approximation is described by the 
set of equationsU1 

( 8E 3 ) lOpe 
div -i-+-;-WperDe'l72E =·~-div6nE. aT 2 ~no 

8' ) 1 
( --c.'I72 6n=--'I72'IEI'. 

ih' 16nM . 
(2) 
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