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Isotopic and hyperfine structure collapse of the atomic-spectrum structure resulting from resonant 
interaction between colliding particles is calculated. The relaxation matrices of both processes are 
determined and a qualitative difference is found between them. After averaging the spectrum structure over 
the pressure, this difference leads in one case to a broadening and in the other to a narrowing of the 
spectrum with increasing pressure. 

PACS numbers: 32.1O.Nw 

INTRODUCTION 

The isotopic and hyperfine structure of atomic ab­
sorption spectra broadened by resonance collisions is 
calculated in the present paper within the framework of 
the impact theory of the broadening of overlapping 
lines. 

In resonance interaction, the broadening is always 
accompanied by the transfer of excitations, which leads 
to the result that both colliding particles take part in 
the light absorption, and the role of one of them does 
not reduce at all to the occasional interruption of the ab­
sorption process for its partner in the collision. Ac­
count of the change in the internal state of the perturb­
ing particle in the collision process is always neces­
sary in the broadening by its own gas and, as is well 
known, [1-11] manifests itself in a specific broadening 
and line shift. 

If the gas is a mixture of isotopes, the lines of which 
are spectrally reSOlved, then the resonance interaction 
between them leads not only to a broadening, but also 
to the exchange of positions in the spectrum (spectral 
exchange), which appears, with increase in pressure, 
as a distinct transformation of the isotopically mixed 
components and can serve as a means of measurement 
of the cross sections of resonance transfer with a 

. small energy deficit. It turns out that the "pseudocol­
lapse, " which is due to the resonance interaction, by 
averaging the frequencies of the isotopic components, 
shifts the mean frequency of the line remaining in the 
spectrum but, in contrast to the previously considered 
cases of field[4,5] and rotational[6] structures, leaves 
the width of the "collapsing" spectrum without change. 
The latter continues to increase linearly with increase 
i,n pressure. 

Besides the resonance interaction, exchange inter­
action, which is responsible for broadening of the hy­
perfine components of the spectrum of magnetic reso­
nance of the ground state, has also been considered. It 
was shown that exchange of electron spins in collisions 
broadens the hyperfine components at the same rate as 
it exchanges them. The equality of the secular and 
nonsecular elements of the relaxation operator gives 
rise to an extremal course of the collapse, which is 
manifest in the fact that the lines merge at the center 
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of the spectrum upon increase in the pressure, and 
subsequently the spectrum narrows with increase in 
the frequency of the collisions. This is the onlyex­
planation of the EPR-spectrum exchange narrowing in­
herent in gases to the same extent as in condensed me­
dia, [7.8] when the exchange mechanism of broadening 
predominates. 

1. GENERAL FORMALISM 

We consider a gas conSisting of a mixture of isotopes 
with partial densities ni (i = 1, 2) at thermal equilibrium 
with a temperature T, and denote the total gas density 
by n = n1 + n2 • If the Doppler broadening is small in 
comparison with the impact broadening, then all the 
atoms are subjected to the action of a uniform field 
lif.( t) = ,wo coswt. In this case, as is well known, (9] the 
linearly absorbed intensity 

(1.1) 

is determined by the Fourier transform of the dipole­
moment correlation function 

where 

i [ (xl ) (x) (xl (xl K,(t) =-Trp(i) d, (t d, (O)+d, (O)d, (t)l (i=l,2). 
2 

(1.2) 

(1. 3) 

Here p(i) is the equilibrium density matrix and di(t) is 
the dipole moment operator of the i-th atom. 

The time evolution of di(t) in the impact apprOXimation 
is determined by two essentially different components. 
The first determines the time development of the dipole 
moment over its free path, the second describes its 
change as a result of pair collisions. The effect of in­
teraction with the perturbing molecules is represented 
by the impact operator, the method of derivation of 
which can be found in many places. [10, III Therefore, 
without going into detail, we write down the set of equa­
tions which describe the time evolution of the dipole 
moment of each of the two interacting isotopes, in a 
form that is most suitable for further applications: 
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d,(t) = ~ [Ho(i),d,(t)]-( nd,(t) - ~n.Tr.p(k) 
11._1,2 (1. 4) 

X8+(i,k)[d,(t)+d,(t)]8(i,k) ). 

Ho(i) is the Hamiltonian of the i-th atom on its free 
path, S(i, k) is the two-particle scattering matrix; the 
angle brackets denote averaging over the impact param­
eter b and the relative velocity of the colliding particles 
v. 

In the external field formalism, (llb.121 the scattering 
matrix is characterized by the quantum degrees of 
freedom of only one of the particles participating in the 
collision; the second is regarded as the source of the 
external field. This limiting case is easily discerned 
from (1. 4): if, for example, we make the substitution 
S( 1, 2) - S(l), and assume that n2 »n1, then the well 
known kinetic equation of impact theory is obtained(11bl: 

<t(t) = :, [Ho(1),rl,(t)]-n,(d,(t)-8+(1)d,(t)8(1). (1. 5) 

If the gas of interest to us is dissolved in the mass of 
another, but spectral exchange between the perturbed 
and perturbing particles (nonresonant collisions) is ab­
sent, then the internal structure of the latter can be 
accounted for by a natural extension of (1. 5) (see also 
Refs. 11, 12): 

. i 
d, (t) = h [Ho (1), d, (t) ]-n,(d, (t) -Trz p(2)8+ (1, 2)d, (t)8(1, 2) >. 

(1. 6) 

However, in the presence of resonances, the set of 
equations (14) generally does not reduce to (1. 6) .and 
certainly not to (1. 5). Criteria for the applicability of 
Eq. (1. 6) in the resonance situation will be discussed 
later. 

The Hamiltonian Ho is spherically symmetric in the 
absence of a constant external field; therefore, it is 
natural to seek a solution of Eqs. (1. 4), (1. 5), and (1. 6) 
likewise in a spherically symmetric form: 

. 1 ., 
(jmld,(t) Ii'm')=(-1);-m(jld(t) Ii'> (J ] ,), (1. 7) 

-m q m 

assuming that only the reduced matrix elements of the 
dipole moment change with time. The expression in the 
large parentheses is the 3j-symbol, j is the total elec­
tron angular momentum of the atom. For Simplicity, 
the remaining quantum numbers are omitted. Convolut­
ing (1. 4) with the help of (1. 7), we get a set of equations 
for the reduced matrix elements of the dipole moments: 

[ ( :t. - iUJ;,;,' ) 6;",6;",.'+n,r" (j,i,' 1,1,') +n,r,,(j,j,'I,I,') ] (I, Id(1) II,'> 

a -n,r" (j,j,'I,I,') (1,ld(2) 11,'>=0, (1. 8) 

[ ( at - iUJ;>!,,) 6;",6"",+n,r" (j,j,'I,I,') +n,r21 (f,j,'I,I,') ] (1,ld(2) II,'> 

-n,r21 (j,i,'I,I:) (1,ld(1) 11:>=0. 

Summation is carried out in (1. 8) over the dummy in­
dices. We label the multiplet structure of the ground­
state term by j l' and l10 and that of the excited state 
by j~ and l~; we use the same notation for atom 2. 

In Eqs. (1.8), 
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are the reduced matrix elements of the impact operator, 
and are responsible for the self-broadening. The 
broadening by the extraneous gas is represented in (1. 8) 
by the matrix elements of the impact operator, which 
has the same structure as in the formalism of the ex­
ternal field (1.6): 

r (. "11')-(" ~ ( 1)m'-H"-"'( i, 1 i:)( I, 1 I:) 
t:!. l171 I I - Vjl/IVi,'l,' - - f' 

. -mt q m, -nt q nt 
rnnq 
jj' 

XP;;(2) (;:' 18+(1,2) I :,'~,)( l;:~: 18 (1,2) 1\:''» . 
(1. 10) 

The appearance in Eqs. (1. 8) of additional elements of 
the impact operator 

X(iJ,mm' I 8+(1,2) I i'm')( i'm' 18(1 2) I j,'m,'» 
/znz l/n/ ' jm ' 

(1.11) 

is, in prinCiple, a new feature that distinguishes the 
kinetic equation (1. 8) from (1. 6), and even more, from 
(1.5). These elements are responsible for the recoil 
experienced by the perturbing particle in the collision pro­
cess. Exchange of excitation is taken into account in 
the self-broadening by the last term on the right side of 
(1. 9). The notation used for the elements of the S ma­
trix has a simple meaning: the upper indices refer to 
the first particle, and the lower, to the second. The 
elements of the impact operator for the second particle 
are obtained from (1. 9)-(1.11) by the corresponding 
substitution 1- 2. 

In the case in which the particles collide with an ener­
gy deficit AW = WJ~JI - W J;J2 such that AWT e» 1 (T e is the 
mean time of the colliSion), the matrix elements (1.11) 
are exponentially small (like exp( - AWT e)) and the set 
of equations (1. 8) reduces to the kinetic equation (1.6), 
which is written down for each of the particles sepa­
rately. But in the reverse situation, AWT e« 1, the 
complete system of equations is necessary only if the 
detuning AW is small or comparable with the value of 
the matrix elements of the impact operator (1.11). In 
the opposite case (large AW) we can always carry out 
a secular simplification of the r operator and reduce 
the situation to the solution of Eq. (1. 6). 

2. ABSORPTION SPECTRUM IN A GAS OF 
RESONANTLY INTERACTING ISOTOPES 

The resonance broadening of a spectral line is deter­
mined by the interaction of the excited atom with the 
other atoms surrounding it. We shall assume that the 
population of the excited level is small, so that the 
principal contribution is made by collisions of the ex-
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cited atom with unexcited ones. We denote by j the 
total electron angular momentum of the excited atom, 
and by jo that of the unexcited one. We assume that the 
isotopes have different frequencies of the ground-state 
transition Wi = wJjo(i), and the detuning is such that the 
condition of nonadiabaticity t.WT c« 1 is satisfied, but 
WIT c» 1, which enables us to neglect the nonresonance 
transitions. In what follows, we shall assume that the 
isotopes are equivalent in the sense of their electric 
interaction with each other; therefore all the constants 
are the same for the two isotopes (see, however, Ref. 
13). 

We introduce the notation dl=(jold(t)IJ)i. Then the 
set of equations (1.8) will be written in the following 
fashion: 

d (d,) (-i(w,-n,~)-nr in,~ ) (il') (2.1) 
di d, = in,~ -i(w2-n,~)-nr d, ' 

where the matrix element of the impact parameter, 
which is responsible for transfer of the excitation, 

. i ~{j l/.} I 
I~ = 2j.+1 ~ / 1 /, (ImSMM> 

1M 

(2.2) 

is pure imaginary, and the matrix element of the im­
pact operator characterizing the collision without ex­
citation transfer, 

r = < 1 (2/.+1)1 (2/+1) E He Su' ) 
1M 

(2.3) 

is always real. The expression in the curly brackets 
is the 6j-symbol, S ~M are the elements of the scatter­
ing matrix in the basis 

In the derivation of (2.1)-(2.3), we have shown that the 
ground state liomcl is not excited by the collisions, and 
we have further set PJj=O and Pioio=(2jo+ltl. 

The solution of the set of equations with constant co­
efficients (2.1) is trivial, and we shall not describe it, 
but only give the final results-the loss spectrum (1.1): 

() w 2 (2/+1) g' [ nrA+ + nrA_ ] 
1 w = 3n niC. (2/.+1) 4 (w-w+Ll+)'+(nr)' (w-/il-Ll_)'+(nr)' 

(2.5) 
The nonresonance components in (2.5) are omitted. 
The intensities are given by the formula 

where 

and the shifts by the expressions 

,_ (j,ldl/>' 
g - 2/+1 ' 

(2.6) 

(2.7) 

The coefficient t in Eq. (2.5) appears because of the 
fact that in reality, instead of the correlation function 
(1. 3), it is better to calculate the correlation function 
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(d(t)d(O), which is equal to 3(dx (t)dx(0) in isotropic 
space. Moreover, we have taken it into account that 
tanh(lfw/2kT)", 1 since Ifw» 2kT at optical frequencies. 

The loss spectrum in a gas that is homogeneous in 
isotopic composition is obtained from Eq. (2.5) for 
t.w=O: 

"() 8..: E -'I () 4..: ,2/+1 nr 
8 W =~. w = 3n ng 2/,+1 (w-/il+n~)'+(nr)" (2.8) 

The presence of a line shift n{3, in addition to its broad­
ening, is a consequence of the correct account of the 
recoil in the collision of the particles. In the external­
field formalism the shift is determined by the imaginary 
part of the diagonal element of the impact parameter 
(1.10) and should inevitably be absent in the resonance 
interaction (Imr = 0, as is clear from (2.3)). The 
parameter {3 is negative as a rule. It was shown in 
Ref. 2a that, because of the non analytic character of 
the real part of the scattering amplitude as a function 
of the scattering angle, there is an additional component 
in the line shift (in addition to (2.2)): 

4..: ,2/+1 
9n ng 2j.+1· 

Actually, the effect of the far quasistatic wing of the 
line on the position of its center is accounted for by 
this term. This takes the calculation outside the frame­
work of the impact approximation. 

Analysis of the general formulas (2.5)-(2.7) shows 
that as long as t.w» n{3, the broadening of the compo­
nents of the spectrum (2.5) takes place independently. 
The doublet consists of two isotopic components, each 
of which is centered at the frequency Wi - ni{3 (i = 1,2) 
with the intensity ratio n/n2 • When t.w« n{3, one of 
the components (with AJ, decreasing in intensity, van­
ishes completely and the spectrum becomes such as it 
should be in the case of a homogeneous gas (with t.w 
= 0) with the only difference that its center is shifted to 
the frequency (w) - n{3, where 

It is appropriate to call this phenomenon "pseuodcol­
lapse, " to distinguish it from the previously studied 
collapse of the field C4,5] and rotationalCS] structures 
which arose when the expression under the square root 
in n (2.7) represented the difference, and not the sum, 
of the squares. In the case of pseudocollapse, only the 
location and line intensity transform nonlinearly with 
increase in pressure; their widths do not. This unique 
transformation of the shifts and intensities of the 
isotopically mixed components of the spectrum can be 
of great help in the spectroscopic estimate of the cross 
sections of resonance collisions of atoms taking place 
with a small energy deficit. 

In conclUSion, we note that for the values of j and jo 
that are most interesting from the spectroscopic point 
of view, the numerical estimate of the parameters r 
and {3 can be found inCH] (Table 7.6). For example, 
for j = 1 and jo= 0, we have 

r=2.41ng'/Il, ~=1.11ng'/Il. 
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3. ACCOUNT OF THE HYPERFINE STRUCTURE 

The results of the previous section are easily gen­
eralized to the case in which the hyperfine structure of 
the lines of the resonance transition are taken into ac­
count. The basic assumption which we make use of 
here is that during the time of the collision, the state 
of the nucleus does not change. This is justified by the 
fact that, as a rule, ~w FT c «1, where ~w F is the char­
acteristic hyperfine splitting; therefore the nuclear 
spin cannot flip during the time T c' Since the interac­
tion does not depend on the nuclear spins, the reduced 
matrix elements of the dipole moment 00Fi d(t)ljF') 
differ from (io I d(t) IJ) in (1. 7) only by a constant. [15] 

Therefore, the set of equations describing the evolution 
of UoFi Id(t)ljF;) has the same form as (1. 8) with the 
same matrix elements of the impact operator (1. 9)-
(1. 11), in which we mean by j and l the total angular 
momentum of the atom F. Generally speaking, this 
was obvious earlier, since the property of j as the to­
tal electron angular momentum in (1. 7) has been used 
nowhere. 

The further courses of the discussion is as follows: the 
vectors I ~~~p, which enters as the bracketing operators 
of the S matrix in (1. 9)-(1. 11), resolve into the total basis 
set of vectors of the system I F1F2FM); these in turn 
are expressed in terms of the vectors I JIFM) and the 
elements of the impact operator are calculated simply 
in this basis. Here J and I are the total electron and 
nuclear angular momenta, respectively, of the system. 
The connection between representations which differ by 
the scheme of addition of the angular momenta is uni­
versally known. (151 In order to take into account the 
possibility of resonance transfer of the excitation in 
the collisions of the isotopes, it is necessary to intro­
duce an even set and an odd set of vectors of the sys­
tem IJIFM). (see (2.4)). Calculation of the elements 
of the impact operator give the same results in this 
representation as in (2.2) and (2.3), since the nuclear 
variables have no effect on it. Omitting the intermedi­
ate calculations, we give the final result: the nonzero 
reduced matrix elements of the impact operator, which 
characterize the collision without excitation transfer, 
are 

r,,(F,F,'F,F.') ~r" (F,F/F,F,') =f, (3.1) 

while the matrix elements responsible for the transfer 
of the excitation are given by the relation 

r 12 (F,F,'F,F;) = i [(2F t + 1) (2[/ + ~) (2F; + 1)]" L (2F + 1)(2/ + 1) 
,+ FIHf 

x {FI: F F2}{j, ;: J1 } l'~O, ;, ~} (ImSi.rM> 
F, 1 F, F,' F. F . F, F; F 

(3.2) 

and reduce to a single parameter {3, excluding the triv­
ial case 11 =12 = 0, only for jo = ° (or j = 0). The matrix 
elements r 21 are obtained from (3.2) by interchanging 
the indices 1 by 2. The impact-operator elements 
responsible for the self-broadening consist of two 
terms: the first is, naturally, (3.1), and the second is 
(3.2), in which we must set 11 =[2' The expression in 
the curly brackets is the 9j symbol. In the derivation 
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of (3.1) and (3.2), we made essential use of the cir­
cumstance that the lower level is not perturbed by the 
collisions (S+ = 1). 

4. MAGNETIC RESONANCE OF THE GROUND 
STATE 

In this section we investigate the absorption of mi­
crowave power by a gas of identical atoms in the ground 
state, in the presence of a constant magnetic field B 
oriented along the z axis. The magnetic field will be 
assumed to be sufficiently strong so that the coupling 
of the electron angular momentum J with the nuclear 
angular momentum I can be regarded as broken. In 
such a case, the unperturbed Hamiltonian is 

(4.1) 

where JJ. is the Bohr magneton, g the Lande gyromag­
netic ratio, and A the constant of hyperfine interaction. 
Collision of the atom turns on the exchange interaction 

V(t)=,-M(t)J,J,. (4.2) 

in which ~(t) is the exchange integral and is a functional 
of the classical trajectory of the colliding particles R(t). 

In the representation of the total electron angular 
momentum of the pair of colliding particles 

(4.3) 

the scattering matrix is diagonal and does not depend 
on M: 

](1+1) +~ 
b, = [-2-- i.(j.H)] S IHt)dt. (4.4) 

Substituting the S-matrix elements calculated in the 
basis (4.3) in (1. 9)-(1.11), we obtain the impact-oper­
ator matrix element responsible for the broadening, 
and the impact-parameter matrix element that deter­
mines the frequency of the spin exchange: 

< 1: (21+1) (2I'H) {] 1 I'}' . ) 
~= 1- SS' , (2' +1) ... ", 

JJ' Jo 10 Jo Jo 
(4.5) 

(4.6) 

Since the expression under summation in (4.6) is sym­
metric in J, J', it is easy to prove that the parameter 
(3 is real, in correspondence with its definition. We 
can show by direct calculation that the rate of spin re­
laxation f3 is identical with the frequency of spin ex­
change for all jo except jo = 0. For jo = 0, the interac­
tion (4.2), broadening this state, is absent. 

In a homogeneous external magnetic field, the dipole 
moment matrix elements J.Jx(t) = - JJ.gJAt) cannot be writ­
ten down in the form (1. 7), since the symmetry of the 
Hamiltonian Ho is reduced from spherical to axial. 
Therefore, we expand the operator of the angular mo­
mentum Jx(t) in terms of the irreducible tensor opera­
tors 1';[15]; only operators with >-1.= 1 enter into the ex­
pansion in the case of a homogeneous field(16]: 
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I.(t) =.E (-1) ql_,(t)T,', (4.7) 

where J_q(t) are already c numbers (not operators!), 
equal to 

L,(t)=1'3'\' (_1)m-J,-q ( i, 1 i',) (ml/.(t) 1m'), 
::: -m q m 

(4.8) 

and 

1,(0) =0, 1 ±, (0) ==F[j,(j,+l) (2jo+1)/6p. (4.9) 

By virtue of our assumptions, the z projection of the 
nuclear spin does not change in the collision process; 
therefore, relaxation transitions are possible only be­
tween states with identical values of M. Here the spin 
exchange is accompanied by frequency exchange if the 
colliding atoms belong to different components of the 
hyperfine structure (HFS). The set of equations for 
Jq(t) which describes the spin exchange between com­
ponents of the HFS has a form similar to (1. 8): 

l q(M,·) = [-iq(w,+AM,)-ny]lq(M,)+ 27:1L I,(M:), 
M,' 

. nl '\' 
l,(M,) = [-iq(w,+AM,)-nl]/q(M,)+ 2Hll.... Iq(M/), 

(4.10) 

M.' 

but, in contrast with the case of spherical symmetry, 
the Hamiltonian Ho in (4.10) is diagonal in q only be­
cause the quantization axis coincides with the direction 
of the field B. Here Wo = IlgB /Ii is the Larmor preces­
sion frequency. The impact operator in (4.10) is also 
diagonal in q. This fact is not aCCidental, and follows 
directly from the theorem proved by D'yakonov and 
Perel', [171 'according to which the impact parameter in 
an isotropic space reduces to diagonal form in the 'Xl! 
representation. Solution of Eqs. (4.10) is easily found 
by transforming to the Fourier expansion of the com­
ponents 

i. e., 

. 
1,(00)= J dte'·'I,(t). (4.11) 

Simple algebraic transformations lead to the result 

1,(00)=1,(0) f.(oo) 
I-nl/q (OO) 

where 

1 J 1 
f.(oo) = - '\' . 

2H1 ~ -i[w-q(w,+AM) ]+nl M __ I 

(4. 12) 

(4.13) 

With account of the initial condition (4.9) and also with 
use of the expansion tanh (liw/2kT)"" liw/2kT for liw 
«2kT, we get the final expression for the absorbed in­
tensity (1. 1): 

J( ) - 00 B' "( )_ oo'B' x' R.E /,(w) 00 -- ,x.. 00 -- ,- e . 
2 2 2 1-nl/q(OO) 

q=±t 

(4.14) 
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Here Xo is the statistical magnetic susceptibility of the 
system: 

_ j,(j,+1) ( )' x,-n"3kT Jlg . 

The nonresonance component with q = -1 in (4.14) can 
be omitted. 

In the region of slow exchange A» ny, all the com­
ponents of the HFS are resolved and have a Lorentzian 
shape with halfwidth ny. In the region of rapid exchange, 
A« ny, the spectrum collapses: all the lines join (at the 
Larmor precession frequency wo) in a single line, the 
halfwidth of which 

J(Hi) A' 
!'J.w,/,=---

3 ny 
(4.15) 

decreases with increase in the collision frequency, as­
suring the narrowing of the HFS spectrum with pres­
sure. 

A phenomenon of this type has already been observed 
in the molecular spectroscopy of gases after pressure 
averaging of the hyperfine structure of the electron 
paramagnetic resonance spectrum. [181 

We estimate the possibility of observation of this ef­
fect in atomic spectroscopy. For example, for the im­
portant case jo = t, we have from Eq. (4.5) (or (4.6)), 

• +- !'J. (t) 
l=(vO' >. 0'. h=S2nbdbsin'S--dt. exch xc 2 (4.16) 

, 

The numerical estimate of the cross section of spin 
exchange in collisions of alkali metals is given in Ref. 
14 (Table 7.2). The characteristic scale of the quan­
tities (vd)/(v) -10-14 cmz; therefore, we can expect that 
the HFS spectrum of the alkali metals collapses com­
pletely even at pressures of the order of several atmo­
spheres. For 39K, we have ny »A even at 2 atm (T 
= 500 OK). 
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Transitions from a discrete level to the continuous 
spectrum upon adiabatic variation of the potential 

E. A. Solov'ev 
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An adiabatic approximation describing transitions between a molecular term and the continuous spectrum 
is developed. The motion of the nuclei is assumed to be classical. The developed approximation is utilized 
for an investigation of the processes which take place during the collision of a negative ion with a neutral 
atom. A universal distribution with respect to the momenta of the emitted electrons is obtained for this 
case, this distribution being valid for all momenta. The effect of the formation of a quasistationary s-term 
on the low-energy part of the spectrum of the emitted electrons is considered. The probability of populating 
the discrete levels of the system via the continuous spectrum is calculated. Possible applications of the 
approximation developed in this work to other problems in the theory of atomic collisions are discussed. 

PACS numbers: 34.10. + x 

1. INTRODUCTION 

One of the important problems in the theory of atomic 
collisions is the problem of the interaction of a molecu­
lar term with the continuous spectrum when, on the one 
hand, the motion of the nuclei can be regarded as clas­
sical and, on the other hand, as sufficiently slow. The 
goal of the theory is a calculation of the populations of 
the discrete terms and the momentum distribution of the 
electrons which are emitted into the continuous spec­
trum. The results obtained in this field are basically 
connected with either the exactly soluble model of Dem­
kov-Osherov[1] or else with an assumption concerning 
the smallness of the interaction between the term and 
the continuous spectrum. [2] The interaction of a term 
with the continuous spectrum is not small in the majority 
of experimentally important cases. At the same time 
the models describe only the low-energy part of the 
spectrum of the emitted electrons, where one can ab­
stract from the specific features of the utilized models, 
and do not permit one to investigate certain effects con­
nected with reverse motion of the system with respect 
to the term. Thus, the existing theory does not give a 
complete description of the cited processes. In this 
connection an approach which does not contain any re­
strictions on the form of the Hamiltonian and the be­
havior of the terms, but only utilizes the smallness of 
the colliding particles' velocity, is of interest. Such a 
problem is solved in the present article. 

The approximation developed in Sec. 2 is not related 

453 SOY. Phys. JETP, Vol. 43, No.3, March 1976 

to either model representations or to an assumption con­
cerning the smallness of the interaction of a term with 
the continuous spectrum. It is asymptotically exact with 
respect to the small parameter v which characterizes 
the time rate of change of the electronic Hamiltonian. 
The electron wave function is sought in the form of an 
integral over the energy E of the adiabatic wave func­
tions, in the same way as this is done in the Demkov­
Osherov model. Such an approach differs from that 
adopted in the theory of nonadiabatic transitions between 
discrete terms[31 by the fact that the expansion in terms 
of states of the instantaneous Hamiltonian is still inte­
grated over E. This difference has a simple phYSical 
meaning. The integration over the energy allows one to 
uniquely take into consideration the retardation, which 
is unimportant for transitions between discrete levels 
due to the localized nature of the wave functions. 

In Secs. 3 and 4 the approximation is utilized in order 
to investigate the processes which take place during the 
collision of a negative ion with a neutral atom. In spite 
of the fact that the theory is most highly developed for 
this case, the approximation developed in this article 
enables us to obtain a number of new results. The mo­
mentum distribution is calculated for the reaction involv­
ing the detachment of an electron, the result being valid 
for all momenta of the emitted electrons (the previously 
obtained results only pertain to the low-energy part of 
the spectrum of the emitted electrons). The influence 
of the turning point of the s-term and of the formation 
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