
tion (a» l)-the coefficients of proportionality in the 
latter case are different, and the ratio of the expres­
sion (8. 5b) to (8. 5a) is equal to rrr /2;,; O. 887. 

It can be shown that the range of applicability of the 
result (8.5) is not limited to the condition vTa «1. 
Moreover, the indicated result is valid independently 
of the degree of correlation (')I) of the random process. 

1) An exception is the previously mentioned real normal process, 
strictly resonant to the atomic transition. 
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Acceleration of atoms by a strong resonance field 
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A consistent investigation is carried out of the acceleration of an atom in the field of a traveling 
monochromatic wave, taking into account the quantization of the translational coordinates of the atom. It 
is shown that in the case of metastable working levels the momentum distribution arising in the process of 
acceleration is exponential and, consequently, its width tJ.p is of the order of the average momentum (p) 
transferred to the atom. Thus, the usually adopted description by means of an average force is incorrect in 
the general case. But if the lower working level is the ground level, then in the case of a large number of 
photons scattered by the atom n> 1 the momentum distribution is Gaussian, with tJ.p«p). The origin 
of the uncertainty tJ.p is determined by two. causes: recoil on spontaneous emission of photons and the 
uncertainty tJ. n in the number of photons scattered by the atom. It is shown that for n> 1 the first cause 
always leads to a small uncertainty tJ.p«p) , while it is specifically the second cause that leads to a 
large uncertainty tJ.p-(p) in the case of metastable levels. 

PACS numbers: 32.IO.Lt 

1. INTRODUCTION F(t)=V' (E(r, t)<d(t»}, (1) 

Acceleration of atoms by a resonance field has been 
investigated in a number of papers[1-4] on the assump­
tion that both the field and the translational motion of 
the atom can be treated as classical. The effect of ac­
celeration was described by means of an average force 

where 'V operates only on the intensity E(r, t) of the elec­
tric field, and (d(t) is the quantum average of the. dipole 
moment of the atom. [a-4] 

The quantum fluctuations in this force were taken into 
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account by Kazantsev(Sl in calculating the passage of an 
atomic beam across the boundary of separation between 
vacuum and the resonance field. In this case (d(t) = 0, 
but as a result of fluctuations in the dipole moment the 
atoms experience the influence of the resonance field 
and their motion has quantum features: double refra~­
tion of the atomic beam occurs. 

In this paper we have investigated the quantum fea­
tures of the acceleration of an atom in the homogeneous 
field of a traveling monochromatic wave. The atom is 
accelerated as a result of absorption of photons of the 
traveling wave and of spontaneous emission of a spheri­
cal wave (as a result of each induced absorption and a 
subsequent spontaneous emission of a photon the atomic 
acquires a momentum equal to the momentum of the 
photon of the traveling wave nko). 

The effect of acceleration in such a field was investi­
gated by Kazantsev. (Z.41ll The quantum fluctuations of 
the force (1) were not taken into account in this investi­
gation. However, their magnitude can be of the order 
of the force itself in view of the fact that the behavior 
of the dipole moment of an atom is essentially a quan­
tum phenomenon. In this case the uncertainty in the 
momentum ~P becomes of the order of the momentum 
p transferred from the field, and therefore the transla­
tional motion of the atom must be treated in a quantum 
manner. 

We have calculated the acceleration of an atom on the 
basis of a complete density matrix which contains both 
the internal coordinates of the atom and its translational 
degrees of freedom. In doing so we assumed that the 
coherent field acting on the atom is sufficiently intense 
so that the classical description of it remains valid. 

Thus, the improvement of the methodology utilized by 
Kazantsev(Z.41 consists of the replacement of the classi­
cal description of the translational motion of the atom 
by a consistent quantum mechanical description. It is 
shown that along with the situation in which such a re­
placement is not mandatory (~p« P , and consequently 
one can' assume that the atom moves along a classical 
trajectory under the action of the force (l))there exists 
a situation in which this replacement is mandatory 
(~p- p, and the concept of the classical trajectory of 
motion becomes meaningless even for very heavy 
atoms). 

In Sec. 2 it is established that the former situation 
(~p« p) occurs if the lower \Uorking level is the ground 
level and ..f<ii} »1 (n) is the average number of ab­
sorbed photons). In this case the momentum distribu­
tion is Gaussian. In Sec. 3 the acceleration is calcu­
lated for the case of metastable working levels and it is 
shown that in this case ~p - p, while the momentum dis­
tribution is exponential. 
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2. ACCELERATION OF TWO·LEVEL ATOMS 

We consider the acceleration of an atom by a traveling 
wave of constant amplitude whose frequency Wo coin­
cides with wz1-the frequency of transition between two 
nondegenerate levels of the atom. In doing so we as­
sume that the lower working level of the atom is the 
ground level. The energy levels of the atom and the 
transitions between them are shown in Fig. 1. 

We describe the state of the atom by means of the 
complete density matrix Pik(rh r z), which depends both 
on the internal coordinates (i, k), and on the coordinates 
of the centre of mass (rh r z)' In order to obtain equa­
tions which determine the variation of this matrix with 
time, we utilize Eqs. (A. 3) and (A.6), which describe 
the spontaneous emission of photons (cf., Appendix A), 
and the Hamiltonian for the atom whose matrix elements 
are 

H,,=O, H,,=nCiJ2!, H,,=-dEoexp {i(CiJot-kor)}, (2) 

where Eo is the amplitude of the electric field, d is the 
matrix element of the dipole moment, and ko is the 
propagation vector. The Hamiltonian (2) contains the 
internal energy of the atom and the energy of interac­
tion with the classical electromagnetic field (it is as­
sumed that the kinetic energy of the atom T« dEo and 
therefore one can neglect the effect of the motion of the 
atom on the process of interaction). Thus, the equations 
for Pik(rh r z) have the form 

(3) 

where R is defined in accordance with (A.7), V=dEo/li, 

a=i(p"exp [i(k"r,-CiJ,t) J-P" exp [-i(k,r,-CiJot)]}, 

a,,=cxp [ik,(r,-r,) J 
(4) 
(5) 

We adopt the following initial conditions: the atom is 
in the ground state, and its translational motion is de­
scribed by the density matrix PO(rh r z)' The matrix Po 
can, in particular, correspond to the state of the atom 
which has a distribution both in coordinate space, and 
in velocity space sufficiently narrow so that the initial 
motion of the atom can be described classically. 

We trace the evolution in time of the translational mo­
tion of the atom (the process of acceleration) by utiliz­
ing the density matrix P(t) = Pll (t) + PZ3 (t), obtained by 
taking the trace of the complete density matrix with re­
spect to the internal variables. For this we take the 
Laplace transform 

f = S e-"!(t)dt 
o 

of the system (3). Solving the equations for the Laplace 
transforms Pll' ~z and a, we obtain 

p = (S+1) (S+1/2) +2V' (1+ao) 
S(8+1/2) (S+1)+4V's+2V'1(1-aoR) 

(6) 

Thus, the solution has the form 
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P(t) = .E A,e"', 
i_I 

where Stare the roots of the denominator of expres­
sion (6), 

(7) 

We continue the further investigation in two limiting 
cases-of rapid and slow spontaneous emission: 

A. Rapid spontaneous emission (1' » V) 

In this case the roots Sj are determined by the ex­
pressions 

s,=-u{ i-a,R), s'=-1/2-2ua,R, s3=-1+u (1 +o"R) , 

where U=4V2/y. Since 

IA,I-IA31-~ IP,I<IA,I=IPol, 
'Y 

the density matrix is ,given by 

.E~ (uta,R)n 
P(t) = exp[u(aoR-1)tjP,=e-u' ---P,. 

n! 
n=O 

(8) 

(9) 

To what state of the atom does the matrix (9) corre­
spond? We note first of aU that p(r, r) = Po(r, r), i. e., 
the atom is at rest (we recall that we have not included 
the kinetic energy in the Hamiltonian and thereby have 
neglected the displacements of the atom during the time 
of acceleration). 

In contrast to the distribution of the coordinates of 
the atom, the momentum distribution undergoes essen­
tial changes, for the determination of which we write 
the matrix (9) in the momentum representation (in doing 
so we replace R by the operator R, defined in (A. 9), and 
we take into account the fact that multiplication by a3 
describes the increase in the momentum of the atom by 
the amount llkon(81): 

.E"- (ut)n , 
P(p" p,) =e-U ' --R"Po(p,-nnko, p,-nnk,), 

n! 
(10) 

n=O 

where PO(Ph pz) is the initial density matrix in the mo­
mentum representation. From (10) it follows that the 
probability for the scattering of n photons is equal to 

(ut)n e-U ' , ' n. 

i. e., n is characterized by a Poisson distribution with 
the average value (n) =ut, where u is the probability of 
photon absorption per unit time. 

The average momentum transferred to the atom is 
given by 

(p)=llk,(n)=llk,ut (11) 

and together with the displacement of the center of the 
distribution a smearing out of it occurs due to two 
causes: spontaneous emission (this smearing out is de­
scribed by the operator ft, cf., Appendix B) and by the 
increase in the uncertainty 
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I\n= l' (n')-<n)'= 1''iit. 

The former cause leads to an increase in the uncertain­
ty in aU the components of the momentum, while the 
latter leads to an increase in the uncertainty only in 
the component of the momentum along an axis parallel 
to ko (the z axis). We obtain the shape of the momentum 
distribution. Since for (n)>> 1 the distribution of n is 
well approximated by a Gaussian, while the distribution 
to which the emission of photons gives rise in the case 
n» 1 (Appendix B) is also Gaussian, then the distribu­
tion of all the components of momentum turns out to be 
of the same kind, with 

/';.p.'=a., ( Ilk,) '(n) = a., ( Ilk,) 'ut, 
/';.p.'=a..( Ilk,) '(n) =a..( Ilk,) 'ut, 

/';.p,'=a., (Ilko) '(n)+ (Ilk,)' (/';.n) '= (Ha.,) (lik,) 'ut. 
(12) 

The quantities at are characterized by at -1. Their 
values are given in Appendix B in expressions for the 
isotropic scattering of photons (B.7), for the scattering 
by the atoms of a wave linearly polarized along the x 
axis (B.8), and of a circularly polarized wave (B. 9), 

Thus since in the case discussed here 

j.p,-Ilk, l' (n>, a I (p) I =Ilko(n>, 

then for ..rrnJ» 1 we have ~Pt « I (p) I, i. e., the approx­
imation of a classical trajectory is acceptable. 

B. Slow spontaneous emission h« V) 

In this case the roots of the demonimator of expres­
sion (6) will be given by: 

S,=--} (1-a.R), S'=2iV-~ (t+a~R), 

S3=-2iV-.l(1+ a,R) 
2 2' 

(13) 

and for large times t» y-l we obtain from (6) and (7) 

(14) 

In formula (14) A2 e"2t and A3 e"3 t are omitted because 
the momentum distribution is determined largely by 
terms for Which n "" yt/2» 1, while taking e"zt and e"3 t 

into account corrects these terms only by a quantity of 
the order of smallness of (t)Yt/2. 

Comparing (9) and (14) we reach the conclusion that 
(14) describes the same physical situation as (9). Just 
as in the case y» V, in the case under consideration 
the number of absorbed photons is distributed in ac­
cordance with the Poisson distribution, but (n) = yt/2. 
From the last expression it follows that the rate of ab­
sorption of photons is equal to y /2, and not to u, as in 
the preceding case. Such a value for the rate has a 
simple explanation: the rate is equal to the product of 
the probability of spontaneous emission of a photon y by 
the average population of the upper working level, which 
is equal to t due to the fact that the intense field gives 
rise to frequent transitions (during a time V-I « y -1) be­
tween levels. 
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FIG. 2. 

The distributions of the components of the momentum 
are Gaussian, and their average values and widths are 
determined by Eqs. (11) and (12), if in them we repl,tce 
u by y/2. Thus, in the case y« V, and also in the case 
of rapid spontaneous emission, APi« I(p) I when the 
number of absorbed photons is large and the concept of 
the average accelerating force is both appropriate and 
useful. The situation is quite different in the case of 
excited states of an atom to the investigation of which 
we now proceed. 

3. METASTABLE LEVELS 

We calculate the acceleration of atoms which have 
metastable working levels. The level scheme and the 
transitions between the levels are shown in Fig. 2. In 
order to carry out the calculation we utilize the system 
of equations (3), having added to it the spontaneous 
transitions to levels 3 and 4. Moreover, we assume 
the existence of detuning A'" W 21 - woo Then the initial 
equations will be of the following form: 

PII=-Vao"cr+yRp,,-y,plI, P22=Vcr-(,+y,)p", 

P33=y,R,PII' 'p,,="(,R'P22, 
&=2V (aoPIl-p,,) -66.- t/, (y+y t +1') cr, 

~=cr6.-t/2('Y+Yt+Y2) 6, 

where a and ao are determined by expressions (4) 
and (5), 

s=pu exp [i(ko.t-illot) )+P2I exp [-i(ko.,-fllot»), 

(15) 

while Rl and R2 describe the uncertainty in the momen­
tum originating in the spontaneous transitions 1 - 3 and 
2 - 4. The quantities Rl and R2 are determined by the 
frequencies of the corresponding transitions similarly 
to the definition of R in Appendix A. 

The atom will be accelerated under the action of the 
field only in the case if at the initial moment of time 
the population of at least a single working level differs 
from O. We assume that for t '" 0 

Pll =Po(r" t,), P22=P"=P"=O. (16) 

Taking into the account the initial conditions (16) we 
calculate the momentum transferred to the atom during 
a time which is greater than the lifetime in the metastable 
levels 1 and 2. During such a time the atom goes over 
into the states 3 and 4 and, consequently, the process of 
acceleration ceases, while the momentum distribution 
is determined by the sum P33 + PH for t '" co, while in ac': 
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cordance with (15), we have 

(17) 

where 

p" = f P" (t) dt 

is the zeroth component of the Laplace transform. 
Solving the equations for Pu, ~2' a and ~ obtained from 
(15) we obtain 

Y2W~ -y-"'::'" (waoR)"aoR,Po, 

"~O 

where 

(19) 

(20) 

The expansion that has been carried out in terms of 
(waoR) is correct, since w < I, I ao I '" 1 and, in accor­
dance with (A. 7), IR I ~ 1. For the convenience of fur­
ther analysis we obtain from (18) expressions for the 
probability of scattering of n photons "If"(n) and (n>: 

7'(n)= { l-w-y.w/"( for 

(1-w) (t+y,!y)w" for 

<n>=-- 1 +- . w ( y,) 
1-w 'Y 

n=O, 
n=1,2, ... , (21) 

(22) 

Utilizing the solution (18)- (22) we determine the shape 
and the width of the momentum distribution. First of 
all we note that since the uncertainty due to sponta­
neous emission is API - nko.fri, then one can expect that 
the condition API « I (p) I will be satisfied only in the 
case ..r<;i5» 1. In this case the uncertainty associated 
with spontaneous emission is known to be small and it 
is necessary to investigate only the uncertainty associ­
ated with the distribution of the number of scattered 
photons n. In accordance with (21) we have 

7'(n)cx w"=exp (-n In w- t ) 

(we recall that w < 1), i. e., the distribution of n is ex­
ponential; the width of such a distribution is of the order 
of the average value, and therefore AP6 - (P6 ) (the photon 
momentum is directed along the z axis). 

Thus, the distribution of the component of the momen-· 
tum of the atom PI (in the case of (n)>> 1, when one can 
peglect the uncertainty due to spontaneous emission) is 
well described by the exponential law 
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dW (P.) = exp (- 2:....) ~, p.;;'O. <p.> <p,> 
(23) 

Since for (n)>> 1 it follows from (19) and (22) that 1 - w 
«1, )'1+YZ«)' andy1 «ut. we have 

(24) 

while the width is given by 

The exponential nature of the distribution is a conse­
quence of the exponential character of the spontaneous 
deactivation of metastable working levels. In order to 
illustrate this we consider the case (n)>> 1 the neces­
sary and sufficient conditions for the realization of 
which are u1 » )'1 and )'1 +)'z « Y. The first condition (in 
accordance with (20), u1 ex: E~) indicates that the rate of 
induced transitions between working levels dominates 
the rate of sppntaneous deactivation of the lower level 
Y1. The second condition is also necessary in order to 
guarantee multiple scattering of photons during the time 
that an atom spends in the working levels, since the 
rate of scattering of photons by an atom can not exceed 
Y. Since)'1 and Yz are small the acceleration process 
occurs in the manner described in Sec. 2: the atom ac­
quires a momentum, and P. =Ma,l (M is the mass of the 
atom, a. is the acceleration). The probability of tran­
sition to levels 3 and 4 in a state with momentum P. is 
proportional to 

as a result of the exponential deactivation of working 
levels (T is the characteristic deactivation time). Such 
is the physical mechanism accounting for the origin 
of the exponential momentum distribution in states 3 
and 4. 

Thus, in the case of metastable levels and in the 
presence of a large number of scattered photons (n)>> 1 
only the uncertainty in the transverse components of the 
momentum is small: 

But the uncertainty in the longitudinal component !:J.P. 
= (p,) and, consequently, the acceleration of the atom 
can not be described by means of an average force (1), 
and one can not introduce the concept of a classical tra­
jectory for the motion of an accelerated atom. This 
circumstance should also be kept in mind when discuss­
ing the problem of separating out from a multicompo­
nent atomic beam the atoms interacting with the field 
in a resonant manner, since the exponential smearing 
out of the beam hinders the selection of accelerated 
particles. 

The author is sincerely grateful to A. I. Burshteln 
for stimulating discussions in the course of the present 
work. 
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APPENDIX A 

We obtain the equations for the density matrix Pik(rb 

r z), which describe spontaneous emission and which take 
into account the change in the momentum of an atom ac­
companying the emission of photons (such equations have 
been earlier utilized by Vorobe'ev, Rautian and Sokolov­
skii[9]). We start with the Schrodinger equation for the 
total wave function containing the coordinates of the 
atom and of the electromagnetic field. [1()] We write this 
equation for the total wave function containing the coor­
dinates of the atom and of the electromagnetic field. [10] 

~ write this equation in the interaction representation 
(in doing so we assume that the kinetic energy of the 
atom is small and that therefore it can be left out from 
the Hamiltonian of the system): 

c,{t, r) = -i r, H'k exp[i(CIl,,-CIl)t+ikr)Ck(t, r), (A.1a) 
k 

i 
Ck (t, r) = - TH., exp[i(CIl-CIl,,) t-ikr lc, (t, r), (A.1b) 

(A.1c) 

Here WZ1 is the frequency of transition between the states 
of the atom 12) (excited state) and 11) (ground state) iw 
and k are the frequency and the propagation vector of 
the photon; cz(t, r) is the probability amplitude of the 
state which contains no photons, and the atom is situated 
at the pOint r and in the level 12); c1(t, r) corresponds to 
an atom in level 11); ct(t, r) corresponds to the case 
when there is an atom in level 11) and there exists a 
single photon of momentum Ilk; Hztelt.r is the matrix 
element of the Hamiltonian. 

Assuming that for t = 0 there are no light quanta (i. e. , 
only c1(0,r) differ from zero), and utilizing the solution 
of the system (A. 1) proposed by Weisskopf and Wigner 
(it is given in [10]) we derive an equation for the matrix 
elements Pik(r1, r 2) Which can be expressed in terms of 
the amplitudes which we have introduced; 

(A.2a) 

(A.2b) 

p"(r,, r,) =c,(t, r,)c;(t, r,), (A.2c) 

where Pt is the number of oscillators per unit VOlume, 
the frequency of which lies in the interval dw, while 
the direction of the vector k is restricted within dn. 
~ obtain the equations 

. 1 . 
p" (r" r,) = - '"2 PI2 (r" r,), p" (r" r,) =-1P" (r" r,) (A. 3) 

by differentiating (A.2c) and (A.2a) taking into account 
(A.1c) and the exponential law for the decay (with a life­
time )' -1) of the amp litude Cz [10 1 : 

c,(t, r)=c,(O, r) exp (-1t/2). (A. 4) 
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For Pu, differentiating (A.2b) and substituting into the 
expression so obtained (A.1b) and 

c.(t r)=-~lf oe_'k,exp(1t12 )-exp[i(oo-oo,,)tl ( ) 
, h kw C2 t, r 

oo,,-oo-i1/2 

(the last equation follows from (A.1b) and (A.4», we 
obtain 

. f 2 {eXP[i(oo,,-oo)t+1tI21-1} 
PII=P" /tilm . p.doo fa(-k) IH.,I'dQ 

oo,,-oo-q/2 ' 

(A. 5) 

where a(k)=exp[ik. (r1-ra)]. Since Ikl ::::wade the right 
hand side of (A.5) is a product of integrals over dw and 
dO. Then utilizing the equation 

2 fI {eXP[i(002t -oo)t+1tI21-1} f 
~ m . 12 j).doo IH.,I'dQ=l 
" oo,,-oo-t'Y 

(cl., [10J formula (18,8», we obtain from (A.5) 

(A. 6) 

where 

R= f a(-k) ill (kJlkl)dQ, Ikl=oo,.!c, (A. 7) 

while the "direction function" 

ilI(kJlkl)=IH.,I'[ f IH.,I'dQr (A. 8) 

is the probability for the emission of a photon within 
dO. 

Thus, the sought equations describing the evolution of 
the state of the atom in the case of spontaneous emis­
sion are (A. 3) and (A.6). The change in the momentum 
of the atom as a result of recoil is taken into account in 
these equations by the factor R. We examine how the 
momentum distribution varies when the density matrix 
is multiplied by R, Le., as a result of the emission of 
a single photon. Since in accordance with[8J, multipli­
cation by a(k) corresponds to an increase in the momen­
tum of the atom by an amount Ilk, then the product 
Rp(rh ra) corresponds in the momentum representation 
to 

f p(pl+hk, p,+hk) <D (k/lkl)dQ=Rp(PI, p,), (A. 9) 

where the integration is carried out over all the direc­
tions of the vector k. Consequently, the "coordinate" 
factor R in going over to the momentum representation 
should be replaced by the operator R, the definition of 
which (A. 9) specifies the nature of the variation of the 
distribution function pep, p). According to this law the 
width of the momentum distribution increases as a re­
sult of spontaneous emission of photons. The regulari­
tiea to which this broadening is subject are examined in 
Appendix B. 
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APPENDIX B 

We consider the variation in the momentum distribu­
tion to which spontaneous emission gives rise. If after 
the emission of n photons we have a distribution for the 
component of the momentum 

dW(p,) =p (p" p;) dp,=/" (k) dk. k=p.in, (B.O 

then in view of the fact that the variation of this distri­
bution brought about by the omission of a single photon 
is described (cl., Appendix A) by multiplying the density 
matrix by fl.: 

(here ko = Ik I = walle and ~ =klko), we obtain the. distri­
bution function ariSing after the emission of (n +1) phO­
tons in the following form: 

(B.2) 

The expression (B. 2) in principle allows us to determine 
the distribution function/,,(k) in terms of its initial form 
lo(k). However, it is more convenient to study I,,(k) by 
starting with the moments of the distribution 

+~ 

<k,m)" =J k'mj,,(k)dk 

(it is sufficient to take the even moments, if lo(k) 
= 10 (- k». We express these moments in terms of 
(11- ' )".1> l=l, 2, ... , m. Utilizing (B.2) we obtain 

+~ 

<k,m)" = f /n_l(k)dk S (k-k,!I,),m<D(/l)dQ, 

(B. 3) 

from which, taking into account <I>(~) = <I> (- ~), we ob­
tain the expression 

m 

<k''''). = 1:, <k")._IC,,,.'lk!<m-1) J I-':<m-I) <D(/l)dQ, (B.4) 
1_' 

which will serve as the basis for the subsequent analy­
sis. 

First of all, we obtain from (B.4) the width of the dis­
tribution ((ji!)" : 

<k') .=Ct,k,'+ <k') ,,-I =nCt,k,'+ <k')" 

where 

Thus, in the case of a small initial width we have 

(B.6) 

The quantities at are defined by means of formula (B. 5). 
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For example, in the case q,(p.) = 1/41T (isotropic sponta­
neous emission) 

(B.7) 

in the case of a linear dipole (along the x axis) 

(B.8) 

and in the case of a dipole rotating in the xy plane 

3 
c<x=c<, = 10 ' 

2 
C<'=5' (B.9) 

We note that Ox + Oy + Ci. = 1 and therefore ap2 =n(fiko)2. 

Finally we show that for n» 1 the distributionJ.(k) 
(with the exception of its wings) is Gaussian. In order' 
to do this we prove that the moments (B.3) have for 
m «n the properties of the moments of a Gauss distri­
bution 

<k'"') = (2m-1)!! «k'» m. (B.10) 

The restriction m «n means that only the centre of the 
distributionJ.(k) is Gaussian. 

We carry out the proof by the method of mathematical 
induction. It is evident that (B.10) is satisfied for m = 1. 
Assuming that (B.10) is satisfied for m = 2, 3, ... , l-l, 
we obtain from (B.4) and (B. 6) for m =l «n 

<k") ,,=<k") ,,_,+ (21-1)!! (c<;ko') 'In'-', 

and from this (B. 10) follows for m =l (in order to obtain 
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this it is necessary to sum over n the difference <k2/>. 
- (k2/).-1)' 

Thus, we have proved that spontaneous emission leads 
to a Gauss distribution with width (B.6) if the initial dis­
tribution is sufficiently narrow (we can assume that 
Jo(k) = ti(k». At the same time in the wings Ik I;?; nko, 
J.(k) is not of the Gaussian form in view of the fact that 
when n photons are emitted in accordance with (B.2) the 
distribution is smeared out only over a distance ak =nko. 
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