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A theory of nucleus-nucleus collisions has been developed for kinetic energies substantially in excess of the 
binding energy. The very high pressure produced in the compound system as a result of the coalescence of 
the two colliding nuclei is the reason for the subsequent hydrodynamic expansion of the nuclear medium. 
The energy and angular distributions of the reaction products are investigated. The charge distribution is 
also determined in the case where the nucleon and ion components of the reaction products are 
predominant. A solution is found for the expansion into vacuum of a sphere in which the initially 
uniformly distributed material is initially at rest and at an ultrarelativistic temperature. 

PACS numbers: 24.90.+d 

1. INTRODUCTION 

Progress in the technology of acceleration of multiply 
charged ions[1J has substantially contributed to recent 
developments in this important field of research in nu­
clear physics. The complexity of the colliding sys­
tems, i. e., the accelerated ion and the target nucleus, 
gives rise to a variety of possible reaction channels 
specific for this category of processes. Let El be the 
kinetic energy of the incident nucleus per nucleon. For 
El -1-10 MeV, the nucleon binding energy in the initial 
systems, and the Coulomb barrier, which impedes the 
approach of the two particles, may still play an appre­
ciable role. This, of course, leads to an increase in 
the fraction of reactions involving the transfer or cap­
ture of individual nuclear particles during the interac­
tion. [23 However, these values do not, in principle, 
represent the limit of experimental pOSSibilities, and 
there is a promising tendency for El and the atomic 
weight of the colliding systems to increase. The physi­
cal picture may then be expected to undergo a substan­
tial change, and the predominant mechanism responsi­
ble for most of the interaction cross section turns out 
to be relatively simple. 

To avoid unnecessary detail with very little bearing 
on the essence of the situation, we shall confine our at­
tention to a head-on collision between two identical nu­
clei and, unless stated to the contrary, we shall carry 
out our analysis in the center-of-mass system (c.m.s.). 
Suppose that the kinetic energy per nucleon in this sys­
tem is Eo, the mass number of the nuclei is A, and the 
atomic number is Z 0 For sufficiently high values of Eo, 
we can neglect electric forces and assume that, as the 
nuclei approach one another, an overlap between the 
spatial distributions of the initially cold medium will 
appear from a certain instant of time onward. To ob­
tain an approximate measure of the strong interaction 
which results in this situation, let us estimate the mean 
free patho The cross section ann for the interaction be­
tween the initial elementary particles, L e., nucleons, 
is known from experiment (see, for example, [33) and is 
of the order of the pion Compton wavelength n/mvc, 
whereas the role of the various constraints imposed by 
the Pauli prinCiple decreases with increasing Eo. Very 
approximately, therefore, we have 

(1) 
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where n is the density of nucleons in nuclear matter 
(the possible creation of new particles will require a 
more careful analysis, and in the discussion below we 
shall interpret n as the spatial density of baryon 
charge). The mechanism and the possibility of a theo­
retical description of the phenomenon are very depen­
dent on the relative free path given by (1) and the nu­
clear radius 

(2) 

It is well known that 

(this has already been used above in estimating n). We 
thus find that, in the case in which we are interested 
here1) 

(3) 

Since the mean free path is short, the initial stage is 
the coalescence of the nuclei into a "compound system." 
It is, however, important to emphasize the difference 
between this system and the usual compound nuclei 
formed, say, by nucleon capture. In cold ot relatively 
low-temperature nuclei there is no appreciable pres­
sure, and such nuclei exhibit no noticeable tendency to 
expand. On the other hand, a very high pressure is 
produced during the formation of the system in which 
we are interested. Thus, the most conservative esti­
mates, which do not take into account the compreSSion 
of the medium during coalescence, show that the pres­
sure is proportional to the total internal energy 
E = 2AEo. This results in the expansion of the com­
pound system into vacuum. The condition given by (3) 
enables us to consider the second stage, i. e., expan­
sion, in hydrodynamic terms. It is not clear whether 
any systematic theory would be capable of providing a 
detailed quantitative description of the" coalescence 
stage." The essential feature is that the entropy of the 
system increases from zero to some maximum value S. 

The formulation of the problem is thus quite close to 
the suggestion put forward at one time, on Fermi's 
initiative, [83 for the description of collisions between 
relativistic strongly-interacting elementary particles, 
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namely, hadrons. These ideas were extended further 
in an interesting paper by Landau. (9] Without going into 
the various aspects of this complex problem, we shall 
merely note some of the features of the difference be­
tween the nuclear case and the "elementary interaction" 
between two hadrons. The initiating interaction between 
the two initial paFticles may in itself be capable of 
creating "hadron matter" in macroscopic amounts, but 
this entire question is, to some extent, shrouded in 
doubt. On the other hand, during the coalescence of 
heavy nuclei, the number of particles is known to be 
macroscopically large because of the nucleons that are 
present right from the beginning. This enhances the 
credibility of the above thermodynamic and hydrody­
namic conditions (see above). 

Strictly speaking, only the second stage of the pro­
cess, i. e., the expansion stage, will be subjected to 
theoretical analysis. Let us begin with a few prelimi­
nary remarks on the physics of the phenomena involved 
in this process. The expansion of matter into vacuum 
occurs with near-sonic or ultrasonic velocities, so that 
viscous friction and thermal conductivity can hardly be 
expected to lead to an appreciable increase in entropy. 
If the resulting adiabatic motion (S = const) of the con­
tinuous medium is to be treated in a simplified mecha­
nistic way, the internal energy of the liquid will, so to 
speak, play the role of potential energy. This provides 
a clear physical picture of why the overall character of 
the motion of the individual elements of the medium (the 
fluid particles) depends on the order of magnitude of the 
velocities communicated to them. 

In the case of inelastic collisions between nuclei, the 
physically interesting region is the relatively extensive 
nonrelativistic region Eo« m nc2 (mn is the nucleon 
mass), which is even more accessible to current ex­
perimental possibilities. We shall write the nonrela­
tivistic energy of a fluid particle in the form of the sum 

Mv'/2+e 

i. e., the sum of kinetic and potential energies (M 
= const by definition and e is the internal energy). In 
very approximate calculations, we can initially ignore 
the energy of interaction with the ambient fluid (i. e., 
the work done by pressure), and suppose that the veloc­
ity v increases due to the reduction in e during the adia­
batic expansion. The latter leads to a subsequent re­
duction' in pressure, so that the assumption that the in­
teraction between the fluid particles is small will be­
come increasingly valid. The net result is that Mv2 » 10, 

i. e., the fluid particles become "freed" and execute in­
ertial motion with v'" const. This condition also deter­
mines the validity of the assumption that the true par­
ticles of the medium have negligible thermal velocities 
(due to cooling on expansion), as compared with the 
translational velOCity v of the fluid. Thus, the final 
velocity distribution of the particles, i. e., the reac­
tion products, is predetermined while, on the other 
hand, the hydrodynamic conditions which demand that 
the mean free path is small in comparison with the lin­
ear dimensions of the entire system may still be valid. 
Essentially, this stage is actually reached in a rela-
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tively short time t;;;: l/uo, where 1 represents the linear 
dimensions of the system before the onset of expansion, 
and Uo is the initial velocity of sound. 

The foregoing general ideas lose their validity as we 
enter the ultrarelativistic region Eo» m nc2 • The single 
expression 

e/(1-v'/c')'J· 

cannot be divided into "kinetic" and "potential" compo­
nents in an entirely natural fashion. We note that the 
idea of a "freed" liquid particle is not altogether con­
sistent with tl16 general character of relativistic rela­
tionships. It is clear, for example, that the reduction 
in e should be compensated by a reduction in the de­
nominator. The fluid continues to accelerate and, in 
reality, the pressure [for which at ultrarelativistic 
temperatures one usually employs the equation of state 
given by (30)] remains effective. The only process 
capable of terminating the reduction in e during expan­
sion, and of stabilizing the velocity, is the formation of 
individual particles in the hadron matter, the rest 
masses of which begin to dominate all the contributions 
to the internal energy. Here again we return to the 
situation where the energy and angular distribution of 
the reaction products are predetermined and, corre­
spondingly, the equation of state for the medium 
changes and departs from (30). In the opinion of 
PomeranchukClO ] and Landau, (9,11] this occurs at tem­
per atures T - m.c2 . 

2. COLLISIONS OF NONRELATIVISTIC NUCLEI 

We shall suppose below that the change in the internal 
state of the medium during expansion is described by 
the Poisson adiabatic curveCl2 ]: 

pV'=con~t. (4) 

If we recall that dE = - pdV and integrate, we can write 
the basic relationships in the following form, which is 
particularly convenient for subsequent calculations: 

2v+3 
1= 2v+l' 

2v+l , 
w=-2- u , dw= (2v+1) u duo (5) 

In simple cases, the parameter y is the ratio of spe­
cific heats, but this is not essential; w is the enthalpy 
per unit mass. Moreover, for adiabatic (isentropic) 
flow 

(6) 

where p is the density of the spatial mass distribution 
and s is the entropy per unit volume. For the so-called 
simple (self-similar) rarefaction wave, we have 

(7) 

where u is the local velocity of sound (see, for exam­
ple, Cl3]) and 

Vrnax= (2v+l) Uo (8) 
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is the limiting value of the velocity of free expansion of 
the medium which is initially at rest in vacuum. 

To obtain an estimate for the preliminary compres­
sion of nuclear matter, we shall suppose that the co­
alescence of nuclei occurs gradually. Initially, in the 
region of space where the two media have come into 
contact, the liquid undergoes intensive "boiling" but, 
outside this region, it remains cold. Since, prior to 
collision, the product of the nucleon momentum by its 
velocity is 2Eo, we find that the momentum transported 
out of the ambient space through unit area on the sepa­
ration boundary per unit time is 

p=2n,Eo (9) 

where no is the usual equilibrium density of the baryon 
charge at zero temperature. The momentum transfer 
specified by (9) is obviously equivalent to a pressure p. 
After the medium has been brought to the boil, the 
pressure in the medium is approximately given by 

p='/,nE, (10) 

which is the equation of state for an ideal gas. 2) As­
suming that mechanical equilibrium is established more 
rapidly than thermal equilibrium in the neighborhood of 
the separation boundary, we can equate the expressions 
given by (9) and (10). This yields 

(11) 

prior to the onset of free expansion. We emphasize 
that the result given by (11) is insufficient to determine 
both the longitudinal and transverse size of the figure at 
the very beginning of the hydrodynamic stage. The me­
dium may undergo some flow in the transverse plane 
which is perpendicular to the x axis during the coales­
cence of the nuclei, and this is not impeded by external 
pressure. More accurate estimates of the radial size 
L > R reached in this direction are difficult because of 
the highly nonequilibrium character of the coalescence 
stage (see also the Introduction). ' 

Let us now consider the adiabatic stage of the expan­
sion process. The initial configuration can be sche­
matically represented by a disk of thickness 21. It is 
natural to assume that 

Z«L. (12) 

In the first approximation, therefore, the hydrodynamic 
flow can be looked upon as one-dimensionaL The sym­
metry of the problem enables us to confine our atten­
tion to the region x> O. In addition to the coordinate 
measured from the center of symmetry, it will occa­
sionally be useful to use the variable x' =x -I. The 
edge of the distribution of matter moves forward with 
the velocity given by (8). As long as t < lluo, the situa­
tion is no different from the solution of the well-known 
problem on the expansion of a half-space into vacuum. 
Against the flow, we have the propagation of a simple 
wave up to the "weak discontinuity" x' = - uot (i. e., the 
point at which the sonic signal reaches at this time; 
see, for example, (131). When t> lluo, the weak disc on-
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tinuity moves in the positive direction of the x axis, and 
the relative size of the region occupied by the simple 
wave decreases rapidly. The space on the other side of 
the weak discontinuity, where the appropriate value of 
the so-called general integral of hydrodynamic equa­
tions3) is reached, begins to play the dominant role. In 
principle, a general analytic expression can be ob­
tained for it for integral values of v. [13,141 

In the case of an ideal gas of elementary particles, 
we have y = 5/3 and v = 1. The corresponding general 
solution can be written in the form 

(13) 

where F 1 and F2 are certain arbitrary functions. The 
"velocity potential" can be used for the impliCit deter­
mination of the required functions w(x ' , t) and V(X', t) 
from the formulas 

, ax fix 
x=p---

i}w iiu 
(14) 

(see, for example, [13], pp. 474-479). By satisfying the 
boundary conditions both at x' = -I (x = 0), at which the 
fluid is at rest, and at the point of contact with the sim­
ple wave (7), we finally obtain 

31{( ")' } z=-- U+- --ll' . , 2 n ;) 0 
(15) 

By substituting in (14) [see also (5)], we immediately 
return to the physically most interesting time t» lluo 
(in which case, u« uo, where Uo is the initial velocity 
of sound in the originally resting medium): 

(16) 

The velocity field given by (16) corresponds to the in­
ertial motion of the fluid particles, and the velocity dis­
tribution of the masses remains unaltered (see also the 
preliminary remarks in the Introduction). In fact, at 
any time 

pdxo:pdvo: (uoZ-v'/g) du. (17) 

If we now transform to the new variable defined by 
vex: ..fE, dv ex:dE/ve and normalize the expression 
W(e)deex:pdx to the unit integral between 0 and Emu' we 
obtain the following expression for the energy distribu­
tion of the reaction products, i. e., nucleons, in the 
center-of-mass system (see Fig. 1): 

3/4 de 
W(e)de = -(--),-,. (ema,,-e)-~-. 

cmax ' £ 

(18) 

The presence of the cutoff point E = Emu in (18) is a con­
sequence of the hydrodynamic character of the expan­
sion stage. The energy E' averaged over the entire 
spectrum is given by 

(19) 

(E' =Eo follows from energy considerations). 
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FIG. 1. The dashed curve shows the particle spectrum in the 
c. m. s. Curve 1 refers to particles traveling in forward di­
rections in the laboratory system. Curve 2 refers to particles 
traveling in the backward directions. In the laboratory system 
Elm"" = (6 ± 2.[5 )E. 

When (12) is satisfied, the angular distribution of the 
nucleons is confined to the forward and backward di­
rections. It cannot be calculated in a closed form, and 
we shall therefore confine our attention to an estimate 
of the characteristic angle 6'" v/v, where v,» is the 
transverse component of the fluid-particle velocity. Its 
total acceleration dv / dt is given by the Euler equation, 
the transverse component of which is 

(20) 

The solution given by (16) is used here for approximate 
purposes and is valid for uot $ L, after which expansion 
enters the three-dimensional phase. Integrating up to 
the above limit, and recalling that v-uo, we find that 

9-(lIL)'''. (21) 

Transforming to the laboratory system, in which one 
of the nuclei was at rest prior to collision, we obvious­
ly obtain E1 =4Eo=4e for the primary energy per nu­
cleon. For most particles, the observed angle 8 be­
tween their momenta and the collision axis has the same 
order of magnitude, i. e., 8 - ()« 1. If we apply the 
Galilean transformation to (18), we can readily show 
that 

3/8 - - de, 
W(e,)dB, = --[5~-(l'e,'Fl'e)']-=, 

(5£)'1. fB. 
(22) 

where e.1 is the laboratory nucleon energy, and the up­
per and lower signs refer to particles traveling in the 
forward and backward directions in this frame, respec­
tively. The distribution given by (22) is normalized to 
a unit total integral evaluated over both regions, and 
the corresponding branches of it are shown in Fig. 1. 
We note that, when e1 $E1()2, the angular distribution 
of the nucleons becomes broad, filling the entire solid 
angle (in the laboratory system). 

The foregoing discussion was, in fact, confined to 
the case Eo $ m.c2• When the inequality 

is satisfied, the position is modified somewhat because 
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of the creation of a large number of relativistic pions 
during the coalescence of the nuclei. In the region de­
fined by (23), most of the mass is carried by the nu­
cleons. On the other hand, the internal energy (less 
the nucleon rest mass, as is usually assumed in non­
relativistic theory) resides mainly in the meson degrees 
of freedom, and these particles are also largely re­
sponsible for the pressure in the medium. By analogy 
with blackbody radiation[12J [see also the next section 
and, in particular, the equation of state given by (30)], 
the pressure will be approximately specified by the 
equation 

p='/~nEo . (24) 

Equating the pressure given by (24) to the external 
pressure given by (9), which, during the coalescence 
stage, describes the cold part of the medium for a cer­
tain interval of time, we find that 

nlno"'6. (25) 

The increase in the preliminary compression as com­
pared with (11) suggests that the validity of (12) may 
improve. 4) 

Blackbody radiation and other similar ultrarelativ­
istic modifications of matter correspond to y = 4/3 and 
v = 5/2. In principle, for fractional values of v, there 
is no closed general analytic solution of the equations 
of one-dimensional hydrodynamics that are analogous 
to (13) and (14). However, for large times t, the as­
ymptotic behavior of the form given by (16) can readily 
be generalized to fractional values of v: 

v=x/t, t~l/uo, 

0: u"+' = r(2v+1) I [u' ___ V_'_] , 
p 2"[r(v+1)]' t 0 (2v+1)' . 

(26) 

If we use this expression to determine the energy dis­
tribution of the particles in the center-of-mass system, 
we have for v = 5/2, 

16/5n 'f de 
W(e)dB=-(--'3(emax-e) '~, emax=8e 

8 max J r £. 

(27) 

which is valid for any reaction products with nucleons 
and pions predominating. The quantity emax is propor­
tional to the mass of the particles with which we are 
concerned. For example, en max/e. max = mn/m.. Be­
cause the conditions for the validity of the theory are 
unfavorable (see the last footnote), the equation en~ Eo 
is, in fact, satisfied only approximately. Finally, if 
we estimate the transverse forces in the Euler equation 
by analogy with the derivation of (21) from (20) and 
(16), we get the expression 

6-(IIL)'I. (28) 

for the effective angle at which the particles are emit­
ted in the center-of-mass system. We shall not con­
sider here the kinematics of the transformation to the 
laboratory system, since it is analogous to that dis­
cussed above for the case Eo $ m.c2• 
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3. COLLISIONS OF ULTRARELATIVISTIC NUCLEI 

When 

(29) 

we must use the method of relativistic hydrodynam­
ics. [12,9,11] We begin by writing down the basic thermo­
dynamic relationships. In the spirit of the Landau 
idea[9,l1J on the nature and the probable form of the 
equation of state for hadron matter at ultrarelativistic 
temperatures T» m.C'-, we assume that 

p=i. e=ks''', T= :: = : ks·". (30) 

In these expressions, e is the energy per unit proper 
volume of the liquid particle in its rest system, s is 
the entropy per unit proper volume, P is the pressure, 
and T the temperature. This yields the following con­
stant value for the velocity of sound: 

(31) 

The numerical value of k cannot be established by pure­
ly deductive means. Dimensional considerations sug­
gest that 

k-fic. (32) 

The volume of the compound system produced as a re­
sult of the coalescence of the original nucleus is given 
by 

(33) 

where R is the nuclear radius and the factor mncz/Eo 
appears as a result of the Lorentz compression: 

nlno-Eolmne'. (34) 

Recalling also the expression given by (2), we can 
readily show that the temperature and entropy of the 
system at the time preceding the onset of adiabatic ex­
pansion are given by 

• ( m .. ) ". VE:o-
To"""'m:tc~ - -,-, ' 

m:t m,.('~ 
S-A(!!2.)'·V~ . 

nl., 11l"C-
(35) 

Let us now consider the hydrodynamic stage. Be­
cause of the geometry of the initial configuration, this 
stage has the character of one-dimensional flow over a 
certain interval of time. However, analysis shows that 
the increase in the influence of transverse forces grad­
ually leads to the isotropization of the flow and its rapid 
transformation into the three-dimensional phase. 5) As 
a result, the liquid is so rapidly accelerated that it be­
comes concentrated largely at finite distances from the 
surface which is expanding with the velocity of light. 
One way of describing this is to say that a "cavity," 
i. e., a region of sharply reduced density, is produced 
inside the spatial distribution of matter with this pecu­
liar geometry. We shall first describe this isotropic 
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part of the process and will return to the influence of 
the initial conditions later. 

It is well known that the equations of relativistic hy­
drodynamics are contained in the differential conserva­
tion laws 

where Ttkis the energy-momentum tensor of the medi­
um. [9,11,13,15J It will be convenient to use the system of 
units in which c = 1 and adopt (30) to simplify all the ex­
pressions to the case of spherical symmetry. Instead 
of the radial distance r, we shal1.use the independent 
variable 

(37) 

and expand into a series in powers of the reCiprocal of 
the relativistic 4-velocity 

1 
,=--:>1 

lI1-v:.! ' 
(38) 

retaining only the first two terms (t/~-y, as we shall 
soon show). In terms of the new variables, we then ob­
tain the following set of equations for the ultrarelativ­
istic flow: 

. as 1. ~, 1 as 1 [a'Y' 1 a'Y] "('-+2-,'s+2-,s+--+- ---- s=O 
at t t' 2 as 2 at 'Y as . 

" Os _~!.:+~[ a,' +~~]s=o. 
iJt 2 <.is 2 iJt ,Os 

It is readily verified that all the requirements6) are 
satisfied by the following very simple solution 

1 t' 
,'="21' . 

(39) 

(40) 

The singularity at ~ =0 reflects, formally, the inability 
of matter to propagate with velocities in excess of the 
velocity of light and this is, of course, the basic fea­
ture of the equations of relativistic hydrodynamics. In 
pOint of fact, the value of the general integral of these 
equations given by (40) is valid only up to a certain 
~o > O. The sphere ~ = ~o is a surface of weak disconti­
nuity. Integrating the differential equation of its mo­
tion [it can be s~t up with the aid of the relativistic law 
of addition of velocities; relative to the fluid, the weak 
discontinuity always propagates with the velocity of 
light which, in this case, is 1/13, see (31)], we can 
verify that ~o - const when 

(41) 

To achieve a more specific physical interpretation of 
~o, let us consider the conservation laws. The spatial 
energy density is the time component 

T"= (e+p) 'Y'-pe,,'I.e'Y' (42) 

of the energy-momentum tensor. [9,13,15]. Moreover, the 
total entropy S is a constant in the case of adiabatic 

V. G. Nosov and A. M. Kamchatnov 401 



Wr,'1 

WrE,J 

o L-:.i,-=O . ."J""""' ... O . ...,...::~O 
r1 E,j",.C Z 

FIG. 2. These graphs were plotted for (48) replaced by an 
equation in which the proportionality factor was taken to be 
equal to unity. 

flow. Using (30) and (40), we obtain 

4 4 C'/' t' ~ d~ 8 C'I, 
E = f -ks"'l' dr = -' 4nt'k-- f-~ = -nk-

3 3 t' 2 "'~' 15 so' ' 

C t ~ d~ 2'" C 
S = f s1 dr=4nt'--=-f-= -n-

t' 'I' 2 ,. ~' 3 /;03 
(43) 

which. enable us to calculate ~o and the arbitrary con­
stant C: 

2 ( 3 ) ',', S'/' 2 ( 3 )" ;0 = --=- - k - = -;:- - V''', 
,) n E ;) Jt 

2'/, ( 3 )' S' 2'/' ( 3 )' C=- - k'-=- - SV. 
125 n E' 125 Jt 

(44) 

Consequently [see (33), and we return to ordinary units] 

(45) 

When the temperature is reduced to T - m.c2 , the in­
dividual particles are finally formed, and the relativ­
istic acceleration mechanism ceases to operate (see 
also the preliminary remarks at the end of the Intro­
duction). To estimate the corresponding time t, let us 
return to (40). It is clear that the volume in which the 
medium is concentrated is - (ct)2~o. Moreover, 
Y - ct/~o' We may therefore conclude that the order of 
magnitude of the "proper volume" is (ct)2~oY- {ct)3. In 
this volume, the above temperature corresponds to pion 
separations of the order of their Compton wavelength. 
Thus, 

. Ii 'I. 
et ---No. 

moe 
(46) 

We note that this result is similar to the well-known 
formula given by (2). Since N. »A, comparison with 
(45) shows that the inequality given by (41) is clearly 
satisfied. The energy spectrum of the particles must 
be judged from the entropy distribution (see the original 
papers in [9.111). Its observed density is sy and is de­
termined by (40). Therefore, 

(47) 

This distribution cuts off sharply at Y=Ymu' which 
corresponds to ~ = ~o at time given by (46). It is readily 
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seen that 

(48) 

The particle-energy distribution in the center-of­
mass system, normalized to unity, assumes the form 

W(e)d6=-( 3 \3 e'de, 
Emax 

3 
e=T 8 max 

In this expression, m is the rest mass of the particular 
type of particles with which we are concerned. Let us 
now briefly consider the kinematics of the transforma­
tion to the laboratory system. Elementary relativistic 
transformation yields: 

where El is the primary laboratory energy per nucleon 
in the bombarding nucleus. The particle energy and 
angular distribution can be found without great difficul­
ty, but the process is laborious. Integrating it with re­
spect to one of the variables, we find that 

(m"c'IEo)' do 

W(tt)do= [()'+(m"c'IE,),], " 

E. 
f'max=Eo t'max (50) 

for the angular and energy distributions, respectively. 
The quantity do = 27T&f{J is the solid-angle element and, 
as can be seen, :;<j'- mnc2/Eo« 1, i. e., the angular. dis­
tribution is confined to forward directions in the lab­
oratory system. We emphasize these such simple dis­
tributions are valid for the great majority of particles 
but, strictly speaking, not for all of them. As a matter 
of fact, the laboratory energy has the lower bound 

1 m Eo 
El min =-:,---« fl max, 

- m l , "(max 

which is relatively low but still ultrarelativistic. In the 
"soft" part of the spectrum adjacent to e1 mID' the par­
ticles are emitted at relatively large angles right up to 
the maiimum possible 

These details of the ultrarelativistic distributions are 
illustrated in Fig. 2. 

One further remark must be introduced in connection 
with the foregoing. The general principles of solution 
of this kind of hydrodynamic problem would appear to 
enable us to say that the region of space ~ < ~o cannot be 
absolutely" empty." It should contain the simple wave 
which is in direct contact with vacuum. Since in the 
equation of state given by (30) the edge of the distribu­
tion of matter (strictly speaking, it, too, is a weak dis­
continuity) always moves with the velocity of light, the 
radial size to of the simple wave will also remain con­
stant in the ultrarelativistic limit which we have con­
sidered. To estimate it, therefore, we must return to 
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an earlier stage in the expansion process. 

The one-dimensional Landau-Khalatnikov theory'9,l1,16l 
is valid for ct« ~o. The initial configuration was char­
acterized by the longitudinal size l- Rmnc21Eo [see also 
(33)]. When ct> z.f3, both weak discontinuities move in 
the same, positive, direction. It is readily shown that, 
in the one-dimensional relativistic simple wave (self­
similar, see, for example, !13l), we have 

( "1'3-1)' -
1.= -=-- =i-41'3~O.Oi 

, 1'3+1 
(51) 

which describes the distance ?:o between the weak dis­
continuities as a function of time. Thus, 

l et)' mne' t -/ - -I-R--. 
-" \ / E, 

(52) 

if, for the purpose of very approximate calculations, we 
neglect the effect of the small exponent, and take into 
account the short duration of the entire one-dimensional 
phase of the expansion process. Comparison with (45) 
then yields 

(53) 

We may, therefore, neglect the contributions of the en­
ergy and entropy of the simple wave, and this was taken 
into account in the derivation of the formulas consid­
ered below. 

4. CHARGE DISTRIBUTION OF REACTION 
PRODUCTS 

The fact that the individual particles (hadrons) have 
certain discrete quantum numbers, i. e., different 
"charges," enables us to derive a number of interesting 
relationships. 

The equilibrium character of the resulting electric 
charge distribution is clear even from (46). Immedi­
ately after the formation of the individual hadrons, the 
free path -lilmrc is still small in comparison with the 
linear dimensions of the entire system, so that hydro­
dynamics and thermodynamics remain valid, as before, 
for an appreciable length of time even after transition 
to the region T« m r c2 in which we have a Boltzmann gas 
with a practically constant number of particles. 7) Un­
der these conditions, elastic interactions between the 
particles, including charge-transfer processes, are 
sufficiently effective. 

We shall base our analysis on the principle of iso­
topic invariance (see, for example, [17-19l). When nu­
clei with the same number of protons and neutrons co­
alesce, the initial state is completely isotropic in iso­
topic space, with all the ensuing consequences. In par­
ticular, all pions (11+, 110, 11-) are then created in equal 
numbers. However, in practice, sufficiently heavy nu­
clei have a neutron excess A-2Z. Using the analogy 
with thermodynamics, and the statistics of rotating 
bodies, [12l we can adhere to the point of view that, in 
equilibrium, a fluid particle rotates as a whole in iso­
topic space with angular velocity O. The Boltzmann 
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distribution then contains the factor exp{JinrIT}, which 
includes the component r of the particle isospin along 
the rotation axis. Consequently, 

(54) 

where Np is the number of protons and N. is the number 
of neutrons among the reaction products, and the other 
subscripts refer to pions of the appropriate type. 

The validity of relationships such as those given by 
(54) does not depend on the presence of other particles. 
Let us suppose now that antibaryons can be practically 
neglected, and baryons are represented only by protons 
and neutrons. Conservation of the baryon charge 2A of 
the entire system then yields 

( fiQ) Np=A 1+ 2T ' ( fiQ) Nn=A 1- '.!.T . 

Let us now apply the conservation of electric charge 
Np+Nr+-Nr-=2Z. We have 

fiQ A-2Z 
-=-?---
T - A+'I,N, ' 

A-Np= 1 
A-2Z 1+'!,.v,,'A 

(55) 

(56) 

Thus, after the reaction, the neutron excess A-Np de­
creases in comparison with its original value A-2Z, 
and hence the pion fraction contains more negative piOns 
than positive pions. 

We note that the above formulas are even more valid 
for Eo :S mnc2 when, roughly speaking, there is not 
enough energy for antinucleon creation. Even in the 
absence of pions, the relative neutron excess is not 
large enough to enable us to assume that IiIT« 1, as 
above. For the region defined by (23), we can readily 
show that, very approximately, 

E ) 'I, 
N,-S- (-', A. 

m.,c-
(57) 

In the ultrarelativistic limit Eo» mn c2, the situation 
can, at least in principle, become modified by the crea­
tion of baryon pairs. However, under these conditions, 
since Nr-S [see (35) and [9,11l], the neutron excess in 
the nucleon fraction is negligible compared with the ini­
tial excess. 

We leave on one side the somewhat obscure question 
as to whether the specific "charge" of the so-called 
strange particles (for example, kaons) affects their 
yield in such nuclear reactions. 

5. DISCUSSION 

Let us now briefly review the conclusions of the the­
ory of collisions between energetic nuclei, which refer 
to the energies of the individual particles after interac­
tion. Their mean value is, as a rule, of the order of 
the temperature To of the resulting compound system. 
However, the shape of the energy spectra of the reac­
tion products does not in itself exclude the possibility 
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that the mechanism may be interpretable as purely 
thermal and "evaporative." 

It is difficult to imagine, for example, that the re­
striction on the maximum energy of the emitted particle 
is due to anything other than the hydrodynamic charac­
ter of the expansion of the compound system. There is 
a particularly sharp jump in the distribution function at 
f = f in the ultrarelativistic limit [see (49) and the . max 

explanation in text]. When we refer to the nonrelativ­
istic case Eo« m nc2, we must also emphasize the shape 
df/re of the soft part of the spectrum, which is totally 
uncharacteristic for particle-evaporation processes in 
the case of the usual compound nucleus. When the 
necessary experimental data become available, there­
fore, one would hope to be able to achieve a sufficiently 
reliable identification of the hydrodynamic mechanism 
discussed in the present paper. 

We must now briefly consider the specific features 
of collisions that are not of the head-on type. The com­
pound system whose evolution is described by the above 
theory arises in the region of space where the colliding 
nuclei overlap. Those parts of the nuclei which do not 
overlap remain as relatively cold fragments, in effect, 
truncated on collision. They largely continue to execute 
inertial motion with energy Eo per nucleon. Subse­
quently, the shape of a fragment in its rest system 
tends to an equilibrium, and the oscillations of the sur­
face become transformed into heat. The final tempera­
ture reached in the course of this process is probably a 
slowly-varying function of the primary energy Eo and is 
low. Consequently, the velocity of the nucleons evapo­
rated from the fragment is also small in comparison 
with its translational velocity as a whole. The nucleons 
evaporated by this mechanism should therefore produce 
an additional monochromatic peak at f '" Eo in the energy 
spectrum (in the center-of-mass system). This inter­
esting feature of the phenomenon suggests that the ex­
perimental energy distributions should be even more 
informative. 

We should like to extend our gratitude to A. 1. Baz', 
I. 1. Gurevich, L. P. Kudrin, V. A. Novik~v, A. A. 
Ogloblin, I. 1. Roizen, Ya. A. Smorodinskii, Yu. A. 
Tarasov, and K. A. Ter-Martirosyan for discussions 
of the present results. 

APPENDIX 

There is undoubted fundamental interest in the expan­
sion of matter which initially occupies uniformly a 
spherical volume of radius R at rest. We shall assume 
that the temperature is ultrarelativistic. 

In the limit f» R, when the one-sided expansion away 
from an internal weak discontinuity ~ = ~o has taken 
place, we have the general integral given by (40). On. 
the other side, ~ -:: ~o, we have a spherically symmetnc 
simple wave. To establish the shape of the singularity 
on the surface of the external weak discontinuity, i. e. , 
on the boundary with vacuum, let us consider the cor­
responding self-similar solution (which depends only on 
the variable 1) =rlf). Detailed analysis, which we shall 
omit for lack of space, leads to the following natural-
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looking result 

1 t' (~ )' 
l'=TV -t ' 

t>R, ~<t. 

(A.l) 

Here, in contrast to ~, the coordinate, is measured 
from a different bounding surface of the light signal 
(see also below); '0 is the position of the internal weak 
discontinuity on the, scale. In (A.l), the constants have 
been chosen so as to ensure that it agrees with (40) 
when ~ = ~o. For the conserved total energy and en-

I "S S' S" h E' tropy, we now have E=E +E, = + ,were 
and S' are given by (43) and E" and S" can be calculated 
by analogy, using the solution (A.l) for the simple wave, 
and then integrating with respect to , between zero and '0. The result is 

2 /• C ( ~, ) 8 C'!' (. 5~, ) S=-1£- 1+- , E=---:nk- 1+-- . 
3 ;0 3 ~o 1;) So' 3 So (A.2) 

To ensure that the "asymptotic" solution (40), in gen­
eral, misses the region in which the equations of hy­
drodynamics are at least formally satisfied (this is dis-

. cussed below with a suitable choice of the origin of 
time), the sphere ~ = 0 must be reduced to a point. It 
is clear, on the other hand, that, in reality, this kind 
of singularity at r = 0 occurs only when the surface of 
the internal weak discontinuity contracts to the origin, 
t=RI3. During the same time, the external weak dis­
continuity will move forward to a distance R.[3. Sub­
sequently, the distance 

(A.3) 

between the singular surfaces (the spheres, = 0 and 
~ = 0) of the two solutions to be matched undergoes no 
changes because both surfaces expand with velocities 
strictly equal to the velocity of light. This is the nec­
essary third condition which, together with (A.2), de­
termines finally all three arbitrary constants C, ~o, 

and?; o. Since 

S' 4 
k"E' =IT=T,,R', 

we obtain an algebraic equation of a high (sixth) degree 
in the ratio R/~o. Numerical solution yields 

~,,=O.52R, ~,=3.25R, ~,!6,=6.3, 

C = 2412 (1+;;~o!3;o) 3 R'S. 
1:!:;" (l+~o!;,,)5 

(A.4) 

Returning now to ordinary units, and using the dimen­
sionless small combinations 

r+Y311 r-R 
:'=1---(-,t-' :"=1-7 

for the sake of brevity, we finally obtain 

C (') 3 1 ( ')_1 s=--z -, i=-;=Z 
(el)' f2 

1 ~o( ")_1 1=--=- Z 
¥~ ;, 

t::PR/c, 
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ct 

for 

(A. 5) 
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Equations (A.4) and (A. 5) form the solution of our prob­
lem. 

If, as a result of further expansion, the medium cools 
down to nonrelativistic temperatures, the equation of 
state given by (30) will be violated and the particle en­
ergy distribution will cease to vary. We shall not con­
sider the details of this; the necessary derivations are 
similar to those leading to (47) and (49). We merely 
note that the "weakness" of the internal discontinuity at 
~ = ~o is reflected in the continuity of the thermodynamic 
and hydrodynamic quantities (but not of their spatial 
derivatives). However, to determine the particle-en­
ergy spectrum, we must transform to the y scale, in 
which case the spectral density weE) itself exhibits a 
discontinuity. It is not difficult to show that 

(A. 6) 

directly at the singularity E =E 0 = mc2y(~0) (the subscripts 
+ and - indicate the values of the functions to the right 
and to the left of it). The final result is that the energy 
density Wee) increases discontinuously [see (A.4)] and 
thereafter decreases in accordance with the formula 
W(E)dE<xdE/e\ E >EO' On the other hand, it follows 
from (53) that, in the case of the problem considered 
in Sec. 3, the initial geometry ensures that the distri­
bution function wee) falls to a negligible value for 
E = EO = Emu' 

1)In our previous papers[4-7J on the macroscopic treatment of 
apparently unrelated nuclear phenomena, we always came 
across the condition kfR» 1, where kf is the limiting mo­
mentum of the Fermi-liquid quasiparticles. It is readily 
seen that the condition given by (3) reduces to a very similar 
criterion. 

2)This means that we are neglecting the potential energy of the 
interaction between the nucleons. The assumption that an 
ideal gas is produced seems, at first sight, to be somewhat 
drastic. Nevertheless, there are reasons to suppose that it 
does, in fact, lead to a reasonable description of the main 
features of the phenomenon. It is clear from the foregoing 
that the resulting particle-energy distribution essentially re­
flects the hydrodynamic character of the process, but is not 
too sensitive to the particular choice of the adiabatic curve. 
It is also important to remember that the contribution of the 
interaction energyTapidly decreases during the expansion 
process. 

3)m the model example corresponding to JJ = 0, the" joining" of 
the general integral to the simple wave is readily achieved 
exactly and in an explicit form for any time t > llu o. The 
fraction of energy and entropy which is asymptotically taken 
up by the simple wave turns out to be of the order of lluot 
«1. Similar estimates are characteristic for other values 
of JJ. It must not, however, be supposed that the fact that the 
Simple wave is negligible for large times t is a universal 
feature of all hydrodynamic problems involving the free ex­
pansion of material into vacuum. In the ultrarelativistic 
case, the fluid is rapidly accelerated and tends to the limit­
ing (light) velocity so that, in general, a considerable frac­
tion of the total energy and total entropy is concentrated in 
the simple wave. A specific example of this is the problem 
solved in the Appendix. 
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4)Nevertheless, the narrowness of the region in which (23) is 
valid is a serious defect of the theory applicable to it. The 
condition given by (23) may not be sufficient because the nu­
cleon and ion rest masses are not, in reality, all that differ­
ent from one another. 

5)This phenomenon was considered qualitatively in the original 
papers. [9,11] Landau called it "lateral" or "conical" expan­
sion. He used conservation laws to predict a time depen­
dence of the main quantities, which is confirmed by the rig­
orous formula (40); see below for further details. 

6)From the more formal point of view, the simplicity of this 
solution and the complexity of the one-dimensional Landau­
Khalatnikov solution [9,11,16] are probably connected with the 
three-dimensional character of real physical space. Both 
the hydrodynamic equations (39) and the equation of state (30), 
which is taken into account in their derivation (this also im­
plicitly assumes the three-dimensional character of space), 
correspond to this nature of physical space. In this sense, 
complete concordance of the equations of hydrodynamics and 
thermodynamics in the "one-dimensional world" also results 
in an exceedingly simple solution. We shall not reproduce 
this solution here and merely note the following: when the 
one-dimensional analog of the thermodynamic relationships 
given by (30) is used, the equations of hydrodynamics turn 
out to be strictly linear and can be readily solved in general 
form. The solution is some explicit function of the initial 
conditions. 

7)Transition to the Boltzmann region T« m~c2 is accompanied 
by the strong suppression of pion annihilation processes be­
cause, as the density falls, the role of triple (and higher or­
der) collisions falls rapidly to zero. 
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