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The cross section for Coulomb scattering is found and the process of fast-proton deceleration in a plasma 
with a magnetic field is studied in the case when hws. ~ k T,. The magnetic field affects the deceleration if 
the Larmor radius PL of the electron of the medium is less than the Debye radius Pn after colliding with a 
proton. For pL:S Pn the rate of proton-energy loss is ex: A II = In(PL/pmin), where Pmin is the minimum impact 
parameter. As the field strength increases, the stopping length and time increase, and the regular deviation 
of the protons from the field lines, which sets in at a rate ex: Al = In(Pn/PL)' begins to playa role. If the 
field is so strong that a proton moving along it cannot excite an electron to a high Landau level, then it 
loses energy only after a sharp regular deviation of the trajectory from the direction of the field. The 
stopping length and time in this case attain maximum values that are roughly 21n( M 1 m) times greater 
than the maximum values attained in zero field. At the cyclotron-resonance points, wh,ere mv2/2 = nh ws. 
(n = 1, 2, ... ), the energy-loss curve may have sharp peaks whose effect on the stopping length and time is 
negligible. 

PACS numbers: 52.20.Hv 

1. INTRODUCTION 

The strong magnetic fields used in laboratory in­
vestigations of plasmas can appreciably influence the 
processes determined by Coulomb collisions. [1) This 
influence is even more important in white dwarfs and 
in neutron stars, the magnetic fields on the surfaces 
of which can attain strengths of 103_1013 G. In the 
present paper we consider the deceleration of a fast 
(e 2/lfv« 1) nonrelativistic proton in a plasma with a 
magnetic field, B, so strong that the quantization of the 
plasma-electron motion is important (kT;~, ffu; Be)' This 
problem is important for the construction of models of 
x-ray pulsars[Z,31 and the study of processes in the 
atmospheres of magnetic white dwarfs. 

In a plasma without a magnetic field, [4) proton de­
cleration occurs primarily as a result of energy trans­
fer in distant Coulomb collisions with the electrons of 
the medium. The energy losses and the stopping length 
Lo and time 7" 0 for decleration along the z axis are then 
gi ven by the formulas 

mE~ mE,' 
L" ~ 4nNe"iI1A" ' To = 3nNe' (2M) 'I'A, 

(1 ) 

where N is the plasma-electron concentration, v is the 
velocity of the decelerating proton, Eo is its initial en­
ergy, m and M are the electron and proton masses, 
Ao=ln(PD/Pmln) is the Coulomb logarithm, PD is the 
Debye radius, and Pmln = n/mv is the minimum impact 
parameter. The average angle of deviation from the 
initial direction of motion of the proton over the stop­
ping length is equal to zero and the root-mean-square 
deviation is - (m/M)l/ 2. 

The proton-deceleration process in a strong mag­
netic fieJd can be qualitatively different because of 
the sharp anisotropy of the electronic c~mponent of the 
plasma. With the aid of the cross section obtained in 
Sec. 2 for Coulomb scattering in a magnetic field, we 
shall find the energy losses and the stopping length and 
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time for three cases. In Sec. 3 we consider very 
strong fields B» Bo = m 2v2c/2en= 2.2 x 1013(V/ C)2 G, for 
which nWBe»mv2/2 and the transition of a plasma elec­
tron to another Landau level is forbidden. In this case 
for small inclination angles ~ of the proton trajectory to 
the magnetic field, distant Coulomb colliSions do not 
lead to energy losses. Therefore, the proton has time 
to deviate markedly from the lines of force of the field 
during the deceleration, the most important deviation 
being, in turns out, the regular (d{)/dU 0) angle change, 
which is connected with an increase in the transverse­
to the field-effective electron mass. The stopping 
length and time increase in comparison with Lo and 7" 0 

roughly 21n(M/m) times. For B- Bo (Sec. 4) the en­
ergy-loss curve exhibits peaks connected with the cy­
clotron resonances, mv2/2 = nnw Be' usually observed in 
quantizing magnetic fields. In spite of the increase on 
the average of the energy losses at small~, the devia­
tion of the proton from the direction of the field is, as 
before, important. As Bo / B increases, the stopping 
length slowly decreases. 

For, B« Bo (Sec. 5), .an electron after a collision can 
be treated classically. The magnetic field influences the 
deceleration of the proton until the Larmor radius of 
the knocked-on electron PL < PD' In this case the devia­
tion of the proton during the deceleration is important 
if A.L = In(PD / P L).?: All = In(PL / Pmln)' For A.L < A,,, only 
the Coulomb logarithm changes in (1) (Ao - All)' In Sec. 
5 we also derive for the stopping length and time unique 
formulas which are approximately applicable in an 
arbitrary magnetic field and which contain the two 
Coulomb logarithms All and Av 

2. CROSS SECTION FOR COULOMB SCATTERING 
IN A MAGNETIC FIELD AND THE GENERAL 
FORMULAS DESCRIBING PROTON DECELERATION 

To solve the problem of interest to us, it is necessary 
first to find the cross section for Coulomb scattering in 
a magnetic field. In the Born approximation (e 2/nv 
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«1), it is necessary for this purpose to compute the 
matrix elements of the interaction potential V(rl - ra) of 
two particles between the initial and final states. The 
state of a charged particle in the magnetic field B = Bz 

will be specified by the quantum numbers n, P z' and Py;, 
where n is the number of the Landau level (n= 0, 1, 
2, ... ), Pz is the component of the particle momentum 
along the direction of the magnetic field, and Py; de­
termines the y coordinate of the center of the Larmor 
circle: Yo= - py;p~ 1{1 (Po= (cn/eB)l/a is the Larmor 
radius in the ground Landau level). The corresponding 
wave functions and energy levels of a particle of mass 
m have the form 

1jJ=(L.L,)-"· exp [i(p,z+p.x)/h]x,p.(y) , (2) 

X'P.(y)=(2nn!pol'~-"'H,(1]) exp (-1]'/2), 1]= (Y-Yo)/po; (3) 

E=E.+E.L' E,=p,'/2m, E.L =hCOB(n+'/,) , (4) 

where Lx and Lz are normalization lengths in the cor­
responding directions, Hn is a Hermite polynomial, 
and W B is the cyclotron frequency (below W Be and W Bi 

will denote the electron and proton cyclotron frequen­
cies). The formulas (2)-(4) have been written without 
allowance for spin, since its effect on the deceleration 
of a nonrelativistic particle is negligible. 

To compute the matrix element, let us expand the 
potential V in a Fourier integral: 

V(r,-r,)= (2nh)-' J dq V. exp[iq(r,-r,)/h) 

and use the equalities 

-J x:'p' (y) exp (iq.ylhlxnp (y)dy=Sn'n (po' -P .. q.) exp (iq.Yolh) , . . 
2 n! , n'-n 

ISn'n(q.,q.) 1 =-, sn-n[Ln (s»)'e-', 
n! 

(q.'+q.') Po' = q.L'PO' 
s = 2h' 2h' 

(5,) 

(6) 

(7) 

where L~'-n is a Laguerre polynomial. Averaging the 
square of the modulus of the matrix element of the 
potential (5) over the initial states and summing over 
the final states of the particle 2 with allowance for the 
homogeneity of the distribution of the particles 2 over 
the coordinate y, we obtain for the probability of transi­
tion per unit time of the particle 1 from the state 
I nlPlzptx) into the state I ntPtzPj,y;) the expression 

dw,,_,=K6(E,'+E,'-E,-E,)dp,/dp,/, (8) 

-
K= (4n'h'L.L.L.) -, ~ In"" J dq. JV.Sn,'n, (q.L) Sn,'n, (q.L) I', (9) 

n, n:Pn _00 

where Ina'2Z is the distribution function of the particles 
2 in the initial state and qa = pfa - Pia = P2a - P~a (a 
=x, z). Let us rewrite (8) in the form 

where 
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!J. is the reduced mass and v z = Viz - v2z is the relative 
longitudinal velocity of the particles. The two ,:alues 
of the transferred longitudinal momentum q. that are 
allowed by the conservation laws correspond to two 
possible scattering channels. The sign (+) corresponds 
to scattering, as a result of which the particles in 
their center-of-mass system reverse their direction 
of motion along the z axis; in the (-) channel such a 
change does not occur. 

The obtained formulas allow us to find the cross sec­
tions for scattering of any nonrelativistic particles in 
a magnetic field. Let us, for example, consider the 
scattering of an electron by a stationary proton. Then 
it is necessary to impose in (9) the condition ~ II Sn'n 12 
= 1. Going over from (8) to the differential scatter~n2g 
cross section, using the Fourier transform of the 
screened Coulomb potential 

(11) 

and integrating over P~ and Pi, we obtain for the total 
cross section in the given channel the expression 

(12) 

-
w .. , .. (s)=(n!in'!) J dss"-"[L~"-"(s)l'e-'(s+~,)-', (13) 

o 

This cross section has been found by another method by 
ventura. 5 His formula differs from ours only in that 
the expression for wn'n(l;) is much more unwieldy than 
(13). It can, however, be shown that the two expres­
sions are two different representations of the same 
function. 

Let us now consider the scattering of a proton by an 
electron. For EI~» nw BI we may neglect the quantiza­
tion of the proton motion, while for W B I P D« VI we can 
assume that during one scattering event the proton 
moves along a rectilinear trajectory and that we can, 
in deriving (9), replace the proton wave functions by 
plane waves. Then the cross section for scattering by 
an electron is given by 

q=p,'-p,. (14) 

Of special interest is the case of sufficiently strong 
magnetic fields, when the electron before the scattering 
is in the ground Landau state (kTe'.5nwBe) and the longi­
tudinal velocity of the proton is much higher than the 
longitudinal velocity of the electron. Then 

4 ! nmax 1 '2 2 2 

___ e_' __ ~ [-s"e-']6(P -p +nhcoB,+.i:...)dP" 
v (q'+h'pn-') , n~O n! 2M '2m 

(15) 

The maximum number, 11m"", of the Landau level to 
which the knocked-on electron can jump is determined 
by the laws of conservation of energy and momentum. 
As mv2/nw Be - 00 we have 11m",,» 1. For large n the 
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expression in the square brackets in (15) is a sharp 
function, different from zero only near s = n, when 
n1fwBe= q~/2m. Then the delta-function can be taken out 
from under the summation sign, the summation over 
n yields unity, and (15) goes over into the usual Ruther­
ford cross section. 

The proton deceleration process is determined by 
the rate of change of its energy and of the angle of 
inclination, ,9, of the trajectory to the magnetic field. 
The small changes in the energy t:.E, the angle ~,9, 
and the square of the angle ~,92 in one scattering event 
are equal to 

M'~~+2M{) 
Jf'v' ' 

(16) 

the latter formula being valid for ,9« 1 and the system 
of coordinates having been chosen such that Py = 0. Let 
us average these quantities with the cross section (15). 
For the integration over p', let us represent the cross 
section in the form of a sum over the (+) and (-) chan­
nels (see (10)) and introduce the dimensionless quanti-
ties. 

Eo mv2 

e ~ B ~ 2tuJ)n, ' 
q.L 

U=-, 
mv 

I! 
6=--, 

mvp.u 

( n m )';' u±=-cos t)::;= cos' t)-2ux sin t) - - -- - u' . 
e M 

(17) 

As a result, for the rates of change of the energy, the 
angle, and the square of the angle, we obtain 

dE 2nNe" 
-=----F 
dz mv' cos t) , 

dt) 4nNe' 
-a;- = mMv' cos t) Q, (18) 

dft' 4nNe' r m ] -=-- 2t)Q+-(G+2Ap ) • 

dz mMv" M 
(19) 

The factor cos,9 in the denominators of (18) arose be­
cause of the transition from the variation of the quanti­
ties (16) along the trajectory to variation in the direc­
tion of the magnetic field. In (19) we have included a 
term taking into account the variation of ,92 as a result 
of the proton-proton collisions (Ap is the corresponding 
Coulomb logarithm). The function F has the form 

"max 

F= L/no Fn=F~+)+F,~-), F~±)= S du(u±'+n/e)R~±), (20) 

R~±) = (nn!) -I (cos' ft-2u. sin t)-n/e-u'ml M) -'J, 

X(u'+u±'+6')-' (en') n exp( -en'). (21) 

Let us split up the functions Q and G in similar fashion: 

(±) S ("') 
Qn = du(uxcost)-u±sint)Rn , 

(±) S 2 t:l:.) 
Gn = duu Rn . (22) 

As will be shown, in a strong magnetic field in which 
,9 '* 0, 7T/2, the anisotropy of the dispersive medium 
leads to a preferred direction of variation for the angle 
,9, so that the mean rate of variation of the angle-a 
rate which is proportional to the function Q-can be dif­
ferent from zero. As,9- 0, obviously, Q - 0, and only 
the mean rate of change of,92 determined in (19) by the 
terms containing m/M is different from zero. In zero 
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field[4] F=G=2Ao and Q=O (see (1)). 

The integration domain in (20) and (22) is determined 
by the positiveness of the radicand in (21), the contri­
bution of the values of w 2 > n +} being exponentially 
small. If esin2,9> (n+})(m/M)2, then 

cos't)-nle 
U:;c<U o = ---,---

2 sin () 
nG::t(1+sint)'. (23) 

According to the first inequality in (23), the integration 
domain is a half-plane; the second inequality deter­
mines the set of n values that make a substantial con­
tribution to the sums (20) and (22). When the inequali­
ties in (23) are fulfilled, the quasi-classicality condition 
for the proton, ESin2,9» (m/M)2, is always valid, and 
we can neglect in (17) and (20)-(22) the terms u2m/M 
under the radical sign. We shall, in the main, re­
strict ourselves to this case. The case when these ap­
proximations break down is interesting for very strong 
fields B?BoM/m, and is considered at the end of Sec. 3. 

3. PROTON DECELERATION AT B» Bo 

According to (17) and (23), in a sufficiently strong 
magnetic field B» Bo (E« 1), the energies of colliding 
particles are not high enough for the excitation of an 
electron to another Landau level to be possible. There­
fore, in the cross section (15) and the functions F, Q, 
and G only the terms with n= ° playa role. Such a 
cross section differs from the Rutherford cross sec­
tion only by the presence of the exponential function and 
in the argument of the delta-function. For 10< ~ we can 
replace the exponential function in (21) by unity, after 
which the functions F, Q, and G are computed by per­
forming the int-egration first over U x and then over uy • 

For e>,92 the exponential function should be retained, 
and the integration should be performed in cylindrical 
coordinates after expanding the integrand in a series 
in ,92. Matching the results for the two cases, we ob­
tain 

F~1+AHsin2,~, Q~Ansinttcos{), G~2AB' 

where 

AB=ln [o(l'e+sint))']-I=ln [pD/(Po+Pminsin t)] 

+ In [Pmin/(Po+Pminsin t)l 1 

(24) 

(25) 

is the Coulomb logarithm for B» Bo, which is assumed 
to be sufficiently large in comparison with unity. The 
dependence of G on A B is the same as on Ao for B = 0. 
The angular dependence of Q has a simple meaning: In 
a sufficiently strong field the effective "transverse 
mass" of the electron increases, so that q.» q x' Then 
it follows from the laws of conservation of energy and 
longitudinal momentum that qz= - 2mv cos,9, and, ac­
cording to (16), ~,9 = (m/M) sin2,9, which corresponds 
with (24). As,9- 0, the function F -1, which corre­
sponds to losses due to "head-on" colliSions, which, for 
,9 - 0, are determined by the (+) channel; distant col­
lisions (the (-) channel) do not in this case lead to en­
ergy losses, because of the conservation laws. As,9 
increases, the quantity AB sin2,9 begins to playa role 
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FIG. 1. Decrease of 1he energy E and increase of 1he angle J 
during the deceleration of a proton. The continuous curves 
depict the dependence of E/Eo and Jon 1he relative stopping 
length Z/LB (1he curves la and 2a) and relative stopping time 
t/TB(lband2b)forB»Bo• Ap=AB• andJ~«2m/M. The 
dashed curves give the dependence of E/Eo on the relative 
range (a) and time (b) for B=O. 

in F. The first term in AB is due to the (-) channel; 
the second, to the (+) channel. The role of the minimum 
impact parameter is played in both cases by Po 
+ PmiD sin,9, since the minimum dimension of the inter­
action region is limited in the direction of the magnetic 
field by the de Broglie wavelength Pmln in the transverse 
direction by the value Po < Pmln' For,92 > A-i the role of 
the distant collisions becomes decisive. Notice that 
when e« 1 the functions F, Q, and G depend on the 
quantity B only logarithmically. 

Let us substitute (24) into (18) and (19) and, neglecting 
the dependence of the Coulomb logarithm on E and ,9, 
integrate the resulting equations in the two cases. For 
,9« 1 we shall seek the change in the angle of inclina­
tion of the proton trajectory with the aid of d,92/dz . 
For ,92» {3 we shall use the formula for d,9/ dz. Here 
{3= (1 +Ap/AB)m/M. For reasonable values of the 
Coulomb logarithm (3 «1. In both cases it is easy to 
find the dependence E(,9) and, since the regions of 
their applicability overlap, it is not difficult to repre­
sent the result in the form of a single formula, valid 
for any ,9: 

E=EoAy/, cos ft/cos tto, A= (~+tg' fto) / (~+tg' ft). (26) 

Here Eo and ,90 are the initial energy and angle and 'Y 
= Ail· Substituting (26) into (18) and (19) and taking (1) 
into account, we can similarly obtain the ,9 dependence 
of the z -coordinate of the proton trajectory: 

4Lo S A' sin ft dft 
z = b cos' fto ~+tg' ft 

4Lo cos fto [<D(fto)- ( cosft )' A'<D(ft)], 
b (3+21) cos tto 

". 
(27) 

where <I> (,9) = F(l, t; 'Y + t; cos2,9 - (3) is a hypergeometric 
function and b = A B / Ao' Taking into account the fact 
dz/dt=vcos,9, we can Similarly obtain the time depen­
dence of ,9: 

t=~[!lJt(tto)- (~) "'A'T/'<Dt(ft)], 
b(1+1) cosfto 

W, ('iJ) =F(1, 'I.; 7/.+31/4; cos' 'iJ-~). (28) 

It is assumed in (27) and (28) that the proton coordi­
nate Zo = 0 at the initial moment of time to = O. It follows 
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from (27) and (26) that the proton deceleration is ac­
companied by the increase of ,9 and that the proton comes 
finally to rest (E = 0) when ,9 = 1T/2. The distance LB 
along the magnetic field over which the deceleration oc­
curs and the stopping time T B are therefore given by 
the formulas (27) and (28) if we discard in these formu­
las the second terms in the square brackets. Using the 
transformation formulas for the hypergeometric func­
tions, we obtain for the values of ,9~ +{3« 1 from (27) and 
(28) the expressions 

L. 2 
L,"" = Ty{1- ('iJo'+~) '[ 1+21 (i-ln 2) ]}, 

::= b~ {1-'('iJo'+~) 3,1' [1+ ~1 (; -ln8)]). (29) 

For sufficiently large values of A B , when 'Yln({3+,9~rl 
«1, the formulas (26)-(29) get Significantly simplified: 

E cos'iJ 
Eo = cos'iJo ' 

Z 4 { 1 ~+4tg'('iJ/2) } 
- = --- cos 'iJ - cos 'iJo + -In -'-..,--~-.,-,--
Lo b cos' 'iJo 2 ~+4 tg' (tto/2) , 

To 

3 { ( l'cos tt-l'cos tto ) arctg ----- ,-
b(cos'iJo)~' 1+l'costtcosf)0 

(30) 

1 ~+4sin'('iJ/2) 1+l'cOS'iJo } 
+-In +In . 

2 ~+4 sin'(tto/2) 1+l'coso(} 
(31) 

The stopping length and time obtained from (20) and (31) 
for ,9~ +{3« 1 (see also (29)) are equal to 

L./Lo=2 {In [41 (~+tto') J-2} boo', T.!To='/.{ln [81 CiHfto') J-:-r/2} boo'. 

(32) 

If Ap =AB and ,9~« 2m1M, then LB I Lo = 12. 4b-1 and T BI 
To=llb-1 • If the quantity AB is not very large, then a 
more exact value for LB is obtainable from (29). For 
example, for AB=Ap=10 the ratio L BILo=10.5b- 1 • The 
decrease in the coefficient b-1 in comparison with the 
case of very large AB is connected with the increase in 
the role of energy losses at small values of the angle 
,9. The results obtained above are illustrated in Figs. 
1 and 2. 

Thus, for B» Bo the stopping length and time for a 
proton that initially moves along the field increase in 
comparison with Lo and To' This happens because of 
the drastic decrease in the energy losses, which, for 
,92<Ai, are determined not by distant, but by head-on, 
collisions. If the proton moves along the direction of 
the field, then LBI Lo =T BIT 0 = 2Ao. In fact, these 
ratios are smaller, since the variation of ,9 plays an 
important role. As can be seen from (19) and (24), so 
long as ,92 < (3, the deviation occurs in the usual diffusive 
manner; then the effective mechanism of regular devia-

1.0 --~-----

FIG. 2. Decrease of the.stopping 
leng1h LB and time TB as the initial 
angle "Qo is incr'eased. The curves 
1 and 2 depict the dependences 
LB(JO)/LB(Jo =0) and TB(JO)/TB(JO = 0) 
for B »Bo and Ap = AB • When Jo 
= 71/2, the quantity TB = 2To Ao / AB • 
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tion is switched on. The rate of the deceleration ex­
ceeds that of the deviation only at large angles. There­
fore, along the main part of the path the increase of the 
angle occurs almost without a change in the energy 
(Fig. 1), the domain part of the energy being dumped 
at the very end of the path, when the trajectory of the 
proton becomes circular. This is why the main re­
sults of the present section for ~o« 1 can be obtained 
bysolving Eqs. (18), (19), and (24) only for ~«1. 
Then, for example, for L B / Lo and,. B;" 0 we obtain the 

,formulas (32) if we replace in them the expressions in 
the curly brackets by In(j3 + ~~rl, which gives an error 
of less than 10%. 

The increase in the path length when B» Bo was first 
pointed out by Basko and Syunyaev, [3J but the value LB/ 
Lo = 54b-1 obtained by them is greater than our value by 
almost a factor of five. The discrepancy is explained 
by the fact that the effect of regular variation of the 
angle in a strong magnetic field was not noticed in[3\ 
and the losses due to head-on collisions at ~« 1 were 
not taken into account. 

The above-obtained results are, strictly speaking, 
inapplicable at B>BoM/m and at E~2< (m/M)2, when 
the quantization of the proton motion in the magnetic 
field should be taken into account. When f~2 < (M/ M)2, 
the number of the Landau proton level before scattering 
is not large. However, if in this case B«BoM/m, 
then mv 2 » 21fw B i, and transitions' of the proton to high 
Landau levels are energetically allowed. However, 
after the first collision, which is unimportant for the 
stopping length or time, the proton reaches the already 
considered region. Therefore, the obtained formulas 
for LB and,. B remain valid. 

For B > BoM/m the energy involved in a proton-elec­
tron collision is not high enough for the excitation of the 
proton to another Landau level to be possible. The 
cross section for scattering by an electron in a lower 
energy state can be obtained from (8)-(10), it being 
determined by the (+) channel. Knowing the cross sec­
tion, we can easily compute the energy losses and the 
proton range. In particular, if the proton is in the 
Landau ground level, then 

dE 2nNe" 
~=- mv/' ' 

(33) 

while E 1 does not change during collisions with elec­
trons. Notice that the same results are obtained if, 
not quantizing the motion of the proton, we consider its 
deceleration at a constant small~. If B» Bo(M/m)2, 
then a slight increase in E 1 occurs as a result of col­
lisions with the protons of the medium. For B» Bo(M/ 
m)2, when Mv2« nwBi' transitions to other Landau 
levels are forbidden even in collisions with the protons 
of the medium, and there is no transfer of transverse 
energy. 

4. PROTON DECELERATION AT 8 -80 

If the energy of the impinging proton exceeds the 
threshold value (see (17) and (23», at which e '" En 
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= n(l + sin~r2, then a new scattering channel correspond­
ing to an electron transition to the n-th Landau level is 
switched on. 

In the most interesting case of ~o« 1, to estimate the 
stopping length and time, it is sufficient to assume (as 
in the case when B» Bo) that ~«1. If in this case (10 
- n)2 »~2e(n +!) (the proton energy is not too c lose to 
the threshold value), then the integrands in (20) and 
(22) can be expanded in a series in powers of ux~/(l 
- n/e) and integrated over the entire plane (U., uy). 
Then 

(±)+ 

F(±'=~W (s(±') 
n Y1-nle n " , 

1 sooS"e-'ds 
W,,(S)=-;;T, (S+£)2 

n-2 
= __ (_-_S)_"'_" [(n+')e' Ei(-')+1- ~_k_!_(n_--ck_-_l.:....)] 

nl " • ~ (-s)k+' , 

(34) 

(35) 

For ;«:n+'/2 Wo=s-', W,=-ln s-C-l, W,,>,=I/n(n-l), (36) 

For s~n+'I, W,,=s-', For n~1 Wn=(n+s)-'. (37) 

Here Ei(~) is an exponential integral function and Cis 
the Euler constant. The functions Qn are given by the 
expressions 

For 

o (±) = ____ 1)_ ( (n+ 1) W n +, (:;.~±) ) 

, ~~t=;;/E 1 I-nle 

+(n+x.~"') [W,,(s~±' )=!o2(tl+1)U,,+,(s~±() l}. 
I s~ s"e-' ds 

U (~)=- ,---
", nl" (s+s)" 

(38) 

(39) 

;«n c,=;-', U,=-(2In s+2C+3)/'+. I,,=I/n(n-I) (n-2), (40) 

For 
l;~n U,,=s-', For n~l Un=(n+s)-', 

If e» 1, then 

(41) 

The formulas (42) are valid for large-in comparison 
with unity-values of the logarithms 

NOl=ln( 1 +pD/po), (43) 

For nmax - e ~ 1 the quantity PL '" Po Y2nm :u + 1 coincides 
with the Larmor radius of the electron after scattering. 
If the proton energy considerably exceeds the energy of 
the n-th threshold, then, without allowance for the 
Debye screening, 

(44) 
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FIG. 3. Schematic representation of the dependences F n(e) 

and Qn( r) for n» 1 and,,« 1. The maximum values of the 
functions, which are determined by the quantity g = 171n2 + C 
+ Inn= 12.4 + Inn, are attained at £= er "" n(1 + ~); en"" n(I-~) 

is the threshold value of the dimensionless energy e. 

The expressions for F nand Gn are valid for 8 »n, while 
the expression for Qn is valid only when 8» n2, since 
for n < 8 < n2 we must take into account in the asymptotic 
expressions for WI! and Un the next corrections in 
powers of ~/n. Notice that the functions (42) and (44) 
are determined primarily by the (-) channel. For PD 
< Po, the Debye screening leads to a considerable de­
crease in these functions for n< (PO/PD)2, not changing 
them for n> (Po/PD)2. 

In 2n,9« 8 - n« n (not very far from the threshold), 
then the two channels make the same contribution, and 
the Debye screening is not important, since li = (Pmlr,! 
PD)« 1. Then 

2(n+1)W.+,(n) 
G" = ---=.=--, 

l'l-nle 
Q. 

ti (n+ 1) W.+, (n) 

(t-nlt)'" 

(45) 

For n» 1 the formulas (34) and (38) assume the form 

t 
Fn=---=! 

nl'1-n!e 

2-nle 
G"=--F,,, 

2 
Q,,= _~+ it . (46) 

2n' 4e(1-nle)" 

Thus, when, decreaSing, the proton energy approaches 
the n-th threshold, the functions F n, G", and Qn in­
crease, the sharpest increase occurring in Q". 

To compute F", Q", and G"for the "near-threshold 
energy" 18 -nl $2n,9, we can set 8"'n in the slowly 
varying parts of the integrands in (20) and (22) and inte­
grate in cylindrical coordinates over the azimuthal 
angle. The result is expressible in terms of the elliptic 
integrals Elk) and KIk). The subsequent integration 
over I u'l for n -1 can be carried out only numerically. 
For n» 1 in the function (21) 

(s"/nl) exp (-s)",(2nn)-'''exp [-(s-n)'/2nl-ll(s-n), s=eu'. (47) 

Then for n(l- 2,9) .. 8 < n(l + 2,9), we obtain 

2G,,=F,,=K(k)/(nnl'it) , Q,,=[K(k)-2E(k) 1/(2nnl'ti), 
k=[ (1+u;Ve!n)/2]''', (48) 

where U o is given by the formula (23). For er - I> 

«2n,9(8 r =n(1 - sin,9r2), 

F,,=~/(2nn"l~), Q.=(~-4)/(4nnl'F), ~=ln (64nti/le-B,/). (49) 

By writing out the expressions similar to (48) for t > 8 r , 
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we can easily verify that they go over into (46) when 
e - 8r » 2n,9. The functions (49) increase logarithmical­
lyas 8-8 r • Their values at 8=E r (see Fig. 3) can be 
obtained if in integrating in the region u" - ,In/ 8 r ~,9 we 
take the finite width of the function (47) into account. 
This same width determines the finite magnitude of the 
interval A8 -,9,fii in which the sharp change in the func­
tions (20) and (22) occur in going through the threshold 

When n -1, the function (47) ceases to be so sharp. 
Therefore, although the behavior of F", Q", and G" 
remains qualitatively the same, their dependence on E 

inside the near-threshold region becomes smoother 
(cf. Figs. 3 and 4). The functions F", G", and Qo are 
positive everywhere, while Q" for n:;.l is negative when 
E :s Er and E ~ n2 • The dependence F(E) is shown in Fig. 
4. The presence of the peaks is due to the switching of 
the scattering channels to new n. For,9« 1 and n -1, 
the width of the peaks - Er - E" - 4n,9, and for 4n,9 < 1 it 
is less than the threshold spacing. The peak height 
-l/n..fa (while ,9 ~m/M) can Significantly exceed the 
value 2Ao, which the function F assumes for B = O. As 
n increases, the peak height falls off in proportion to 
n-1, and for E » 1 the function F - 2Ao. As,9 increases 
at fixed n, the thresholds become smeared and the 
maxima of the peaks move towards the region of higher 
energies. For n» 1 the structure of the near-threshold 
region becomes more complex-the threshold-peak sepa­
ration 8" at E "" 8r increases (Fig. 3); for n~,9-1 the 
near-threshold regions for neighboring n overlap. 

The appearance of peaks is connected with the root 
Singularities in the number density of the final states 
and, by the same token, in the cross section (15) for 
those collisions after which the electron has, relative 
to the proton, zero longitudinal energy. The very fact 
that such singularities appear is due to the quantiza­
bility of the electron motion across the magnetic field 
(see, for example, [61). The peaks were missed in[31, 
because the ordinary Rutherford cross section was 
used there in place of (15) to compute F. Notice that 
the region liE - Eb /liWBe near the peak centers is deter­
mined by those collisions after which the longitudinal 
particle energy is so small that the formation of quasi­
bound particle states of binding energy Eb is possible. [71 
In this region the Born approxmation, used by us, can 
break down, but for 1fw Be »me4/li 2 (B» 2x 109 G) the 
quantity lie« 1, and the obtained results are not quite 

Jr-----,-----~----~-----------, 

F 
q 

J 

2 

FIG. 4. Dependence of the energy loss (i.e., of the function 
F) on B for" "" (m/ M)1 /2. The dashed sections of the curve 
in the region of the peaks, where the accuracy of the computa­
tion is not high, are illustrative in character. 
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exact only at the very centers of the peaks. 

Let us proceed to the analysis of the proton range. 
Let us first consider the B > Bo case, when electron 
transitions to levels with n? 1 are not yet allowed. 
Then from (34)-(39) we obtain 

(50) 

where ~ = ~~» = 4£.. Here we have allowed for the fact 
that Q~-)>> Q~». For B» Bo these expressions go over 
into (24), while for B ~ Bo they differ from (24) only by 
the quantity F(+). For an initial proton energy Eo close 
to the first threshold, F(» increases in the course of 
the deceleration from 0.16 to 1 (the role of the head-
on collisions increases as Bo/B decreases; see Fig. 4). 
Since F(» determines the proton deceleration only 
along that part of the trajectory where ,92AB ~ 1 and E 
- Eo, let us, for the purposes of making estimates, set 
F(»(E) =F(+)(Eo) in (50). Then Eqs. (18) and (19) for 
,9« 1 can easily be integrated, and yield 

(51) 

where the latter relation is valid if y=F(+)(Eo)/AB «1. 
The closer Eo is to the first threshold, the more ex­
actly it is fulfilled. To estimate the stopping length in 
(51), let us set ,9 -1. Then LB is given by the formula 
(51) is A - i3 +,9~ in it, which coincides with (29) and (32) 
to within -l/ln(M/m), an accuracy which is inevitable 
in the approximation ,9 «1. Thus, the general picture of 
the deceleration remains as before, while LB for B 
> Bo only slightly exceeds LB for B» Bo, more exactly 
coinciding with the asymptotic value (32). In both 
cases there occurs at the initial stage of the deceleration 
a deviation of the proton from the direction of the field 
at almost constant energy. 

Let us consider for B < Bo the proton deceleration in 
the region of the most powerful threshold n = 1, where 
the rates of change of the energy and the angle attain 
their extremum values and undergo abrupt changes. 
Let the proton reach the near-threshold region from 
the higher-energy side e -1+2,9. If ,93/ 2A B :1, then 
F"-'F1 -,<f l/2 and Q"-'Ql' If the proton were decelerated 
at constant,9, then, according to (18), the distance 
which it would traverse, remaining in the near-thresh­
old region, is oLE- Lo b- 1,93/ 2• If the energy of the pro­
ton were fixed, then the angle ,9 would tend to a value 
,9c at which (Fig. 3) Q(,9c) = 0, irrespective of whether 
the initial angle was greater or smaller than ,9c' Since 
for,9 -3c the function Q(3) -- (,9 - ,9c),9-3/2, the charac­
teristic length over which ,9 - 3 c is, according to (19), 
equal to oL~ -OLE' Consequently, E and,9 vary at 
roughly the same rate, and take the proton over the 
indicated distance out of the near-threshold region. 
The ratio of oL to the subsequent stopping length (32) 
-33/2A B /ln(M/m):S 1/1n(M/m). Therefore, the crossing 
of the near-threshold region n = 1 by the proton does not 
make a substantial contribution to the stopping length 
(and time). A still smaller contribution is obviously 
made by the crossing of the thresholds with n> 1. Thus, 
it is sufficient to find the stopping length and time, 
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using the functions F, Q, and G smoothed over the 
near-threshold peaks, which is what we shall do in the 
following section. 

5. PROTON DECELERATION AT B« Bo AND 
EXTRAPOLATION TO THE CASE OF ARBITRARY 
FIELDS 

For B«Bo (£»1), as follows from (17) and (23), 
electron transitions to high Landau leve Is n ~ nmax = e(1 
+ sin,9)2 are allowed. Let us compute the functions Fn , 

Qn, and Gn for all possible n and an arbitrary ,9. 

If ecos2,9-n»v'e{n+l)sin,9, then the dominant con­
tribution to the scattering is made by the (-) Channel, 
it being possible then to extend the integration in (20) 
and (22) over the entire (u", u y) plane. For ,9-1T/2, the 
(±) channels make the same contribution, and it is con­
venient to perform the integration over the half-plane 
u" .,,; 0 in cylindrical coordinates. The same expres­
sions, which can be considered to be valid for any ,9, 
are obtained in the two cases. For n=O and n= 1, 

Fo=.\(O) sin' ,:}, F.~.\(!) (1+cos' {t); Qo=A'O) sin {teos t/, 
Q.=_A'll sin {t cos \~. (52) 

These formulas are valid if A (0) and A (1)>> 1 (see (43)). 
For n? 2, without allowance for the Debye screening, 
Fn "-'n-1» Qn,9-1- n-2 + e-1• These formulas are valid for 
n < e(1-sin,9)2, but when ,9-1, they are also valid when 
e(1 - sin,9)2 «n <nmax • OWing to the influence of the 
Debye screening, a substantial contribution to the sum 
over n is made by the terms with n ~nmin - (Po/ PD)2. 
Therefore (with allowance for the expression given in 
(44) for Gn), we obtain 

For electron transitions to levels with n - nmU., the con­
sidered fixed value of the proton energy approaches the 
n-th threshold. Therefore, for ,9« 1, the functions Fn 
increase, deviating from the law l/n. It is easy to 
show, however, that the contribution to the sum over n 
due to this additional growth is small compared to the 
large logarithm (53), which is determined by the large 
number of terms with n < nmax • The values of Qn in­
crease in magnitude in precisely the same way, as n 
- nmax , and may change sign at n"" nmax • However, if 
we average the dependence Q(E) over the near-threshold 
discontinuities, then the negative values of Qn will can­
cel out the positive values, and the sum will not contain 
the large logarithm. 

Summing (42) and (52) with (53), we obtain 

F=2.\,+.\.l sin',:}, Q='\l sin':} cos,:}, G=2 (.\,,+AJ, (54) 

where 

(55) 

Since All + AJ. = A o, the expression for G is the same as 

G. G. Pavlov and D. G. Yakovlev 395 



for B= O. If PL »PD' then A~ - 0 and A" = 11. 0 , i. e., the 
magnetic field has no effect on the deceleration process. 
If PL «PD' then A~ = In(PD I PL) and A" = In(PL I Pmln)' The 
last logarithm arises in the problem of temperature re­
laxation in classical magnetized plasmas. [1] Notice 
that in (54) we have used only the asymptotic forms of 
Fn , Qn, and Gn far from the corresponding thresholds, 
where the Born approximation is applicable also in a 
weak magnetic field. 

If, instead of (55), we take 

'\.L = In [t + PDP min ] , 
(P,+Pminsin ttl' 

then for B« Bo (56) goes over into (55), while for B 
»Bo, A~=AB' A,,-~, and (54) goes over into (24). 

(56) 

Then we can assume that the formulas (54) are ap­
proximately valid for any relation between B and Bo if 
we neglect the discontinuities in the functions F, Q, and 
G near the thresholds, which, as shown in the preced­
ing section, have little effect on the stopping length 
and time. The valueof A" virtually determines the 
smoothed-out energy-loss curve at small angles. Thus, 
the process of proton deceleration and deflection is, 
generally speaking, determined by the two Coulomb 
logarithms A" and A~, and only in the limiting cases 
B» Bo and B« Bo is it determined by one of them. The 
quantity A~ influences to a great extent the deflection of 
the proton, and is due to transitions to the levels with 
n = 0 and n = 1. Such a privileged position of the two 
levels is connected with the original formulation of the 
problem-the electron before scattering is in the level 
with n = O. The quantity A", on the other hand, affects 
primarily the deceleration of the proton, and is due to 
transitions to levels with n;:. 1. 

Let us substitute (54) into (18) and (19) and solve the 
resulting equations. It is easy to see that the solution 
is given by the formulas (26)-(32) if we set in them 

396 Sov. Phys. JETP, Vol. 43, No.3, March 1976 

These three parameters determine the ratios LBI Lo 
and TBITo for all the considered cases. 

Notice that considerable increase in the stopping 
length and time, as compared to Lo and TO, is also 
possible in the" classical" case of B« Bo if A~.2: A" • 
For example, for protons with Eo= 50 MeV (Bo= 2. 3 
x 1012 G) and ,')~« mlM, decelerating in a plasma with 
N= 1021 cm-3, T= 107 K, and B= 1011 G (such conditions 
are possible on the surface of a neutron star), we ob­
tain: £::::nmu=23; 11.0 =8.3; A~=4.4; and 11.,,=3.9. 
Then b=0.54,y=1.7, and, since {3-mIM and yln~l 
»1, the second term in the curly brackets in (29) is 
unimportant. Therefore, the quantities LB = 2. 2Lo= 14 
m and TB=2.2To:::: 1.9x10-7 sec differ from (1) only by 
the substitution 11.0 - A". Under the same conditions, 
but in a field B= 1013 G, £::::0.23; nmax=O; A~=AB 
::::8.7; y::::O.ll; b::::1.05, andfrom(32)LB=10.4Lo=66 
m; TB = 9. 4To= 8. 2x 10-7 sec. 

The authors are grateful to Yu. N. Gnedin and R. A. 
Syunyaev for useful discussions. 
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