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It is shown that the formation in crystals of bound states by two elementary excitations (two phonons, a 
phonon and an electron) is possible for an arbitrarily weak interaction between them. This occurs near 
points in the quasi-momentum space of the excitations at which the two effective masses for the relative 
motion of the excitations become infinite. The mathematical situation here is similar to the situation that 
obtains in superconductors during the formation of Cooper pairs. The binding energy turns out to be 
exponentially small in the coupling constant. 

PACS numbers: 71.10.+x, 71.85.Ce 

1. INTRODUCTION 

It will be shown in this paper that the formation in 
crystals of bound states by two elementary excitations 
(two phonons, a phonon and an electron) interacting ar
bitrarily weakly with each other is possible. This oc
curs near certain special points in the quasi-momentum 
space of the excitations. 

The question of the formation of bound states by ex
citations has attracted considerable attention in recent 
years. In Wortis's paper[l] two-magnon bound states 
were investigated. Cohen and Ruvalds, [2] Ruvalds and 
Zawadowsky, [3] and Agranovich[4] have studied the 
bound states of phonons. In the cases considered by 
these authors, however, in order for the formation of 
bound states to be pOSSible, it is necessary that the 
phonon interaction energy exceed some threshold val
ue. Another situation obtains, as is well known, in 
liquid He4• There, two rotons with an arbitrarily weak 
attraction between them can form a bound state. [5-7] 

This is explained by the fact that the energy of the roton 
as a function of its momentum has a minimum on a 
whole sphere in momentum space. Thus, this phenom
enon is closely connected with the isotropy of the liquid. 
Kozhushner[S] has discovered that two excitons form a 
bound state when they interact arbitrarily weakly with 
each other in a special model in which only the inter
action with the nearest neighbors is taken into account. 
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Some examples of bound-state formation in crystals 
under conditions when the interaction is weak have been 
considered by Rashba and Levinson. [9,10] These authors 
were, however, concerned either with phenomena that 
occur when the optical-phonon dispersion is neglected 
or with electrons in a magnetic field, when the situa
tion becomes one-dimensional. Meanwhile, as we shall 
see, the formation of weakly-bound excitation states is 
possible in crystals with the most general properties 
and, thus, should be the rule, rather than the exception. 

To see this, let us consider the Simpler case when 
two identical excitations form a bound state. (Phonons 
belonging to one and the same branch.) Let the disper
sion law for the excitations forming the bound state 
have the form w(k), where w is the excitation energy 
and k is the quasi momentum. Henceforth, instead of 
quasi momentum, we shall always speak of momentum. 
In this case the question determining the bound-state 
energy has, as will be shown in the following section of 
the paper, the form 

I. S d'q/(2n)' = 1. 
8-(0 (p/2-q) -(0 (p12+q) +iO 

(1) 

Here A has the meaning of an effective coupling con
stant, e is the bound-state energy, and p is the bound
state momentum. The function e(p) determined by this 
equation is the dispersion law for this bound state, 
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It is immediately clear from the form of Eq. (1) that 
this equation can have a solution for an arbitrarily small 
small value of the constant X only if the integral on the 
left-hand side diverges at some values of E and p. In
deed, otherwise the left-hand side would, in any case, 
be smaller than the right-hand side; the divergence of 
the integral can compensate for the smallness of X. 
Let us now indicate the case when such a divergence 
certainly occurs. For this purpose, let us note that the 
expression w(p/2 + q) + w(p/2 - q) is an even function of 
q and, therefore, expands in even powers of the com
ponents of this vector. Let us now assume that the 
crystal has a symmetry axis of order higher than two, 
and let us direct P along this axis. Then for small q 

w (p/2+q) +w (pl2-q) ~2w (p/2) +a,,(p) q,,2+a-L (p) qJ.2+_q', (2) 

where qll is the component of the vector q along the 
symmetry axis, while q-L is the component of q in the 
plane perpendicular to this axis. The coefficients all 
and a-L are functions of p, and at some value of P = Po the 
function a-L can vanish. It is easy to understand that in 
this case the integral for P = Po and e = 2w(Po/2) (Po is a 
vector equal in magnitude to Po and directed along the 
symmetry axis) diverges at small q. For a-L = 0, it is 
necessary to take terms of order qi into account on the 
right-hand side of (2).1) 

To simplify the subsequent computations, we shall 
assume that the symmetry axis is a 6-fold axis. This 
assumption does not change the fundamental aspect of 
the work. Then the terms of fourth order in ~ have 
the same form as in the isotropic case, so that 

w (Po/2+q) +w (Pol2-q) ~2w (pol2) +a" (Po) qll'+bqJ.. '. (3) 

This expression has the meaning of kinetic energy for 
the relative motion of the excitations (at a given value, 
p = Po, of the resultant momentum). The bound state at 
small q can be formed only if this energy has at q = ° a 
minimum or a maximum (and not a saddle point); in 
other words, if the constants all and b are of the same 
sign. If all> ° and b> 0, i. e., if there is a minimum, 

, then the bound-state energy must lie below the minimum 
value, 2w(Po/2), of the energy of the two excitations. 
In the opposite case, when all < ° and b < 0, the bound
state energy lies above the maximum. Below we shall, 
for definiteness, consider the case of a bound state 
near the minimum (i. e., we shall assume that all> ° 
andb>O). 

It is now easy to verify that the integral in (1) di
verges at small q when P=Po and e=2w(po/2). Let us 
substitute (3) into (1), represent d 3q in the form 
q-L dq-L dqll dcp, and integrate over the angle cpo Then the 
integral assumes the form 

where we have introduced the notation Elo = 2w(Po/2) - e. 
Integrating over 11" we obtain 
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At Elo = ° this integral diverges logarithmically at 
small q-L. On the other hand, the divergence at large 
q-L is connected with the inapplicability of the expansion 
(2) at such q. In evaluating the integral, it is neces
sary to truncate it at some q-L = A of the order of the 
reciprocal-lattice constant. Evaluating with allowance 
for this the integral for Elo« bA\ and substituting into 
~1), we obtain 

{ A} 4b.\' 
- '/ In--=I, 

16n (a"b) , 60 

whence the bound-state energy for p = Po is equal to 

e=2w (pol2) -4b,\' exp (-2/g), g=-Al8n (a"b) 'I,. 

The quantity 

.so=4bA' exp (-21 g) (4) 

has the meaning of excitation binding energy for p = Po. 
We see that a bound state is formed near the point 
p = Po for an arbitrarily weak interaction between the 
excitations. It is only necessary for the constant g to 
be positive, which corresponds to attraction between the 
excitations. 2) The binding energy, however, turns out 
to be exponentially small in the coupling constant. The 
phenomenon under consideration manifests in this an 
obvious similarity with the Cooper effect in supercon
ductors. The dispersion law for the bound state, i. e. , 
the dependence e(p) for p = Po, will be determined in 
Sec. 3. 

Let us now discuss in greater detail the question of 
the existence on the symmetry axis of the point Po at 
which the coefficient a-L vanishes. For this purpose, 
let us consider the dispersion curve w(k) for the excita
tions forming the bound state in the case when the vec
tors k are directed along the axis. Let w(k ll ) have the 
shape shown in Fig. 1. (The excitations under consid
eration may, for example, be optical phonons.) If now 
we consider k not only on the axis, then the function 
w(k) can clearly have at the point A a minimum or a 
saddle point and at B a maximum or a saddle point. 
Let the point A be a minimum. Then at p = 2kM all> ° 
and a-L> 0. If now the point B is a maximum, then 
all (2,kB ) < 0, a-L(2kB ) < 0, and the coefficient a-L should van
ish somewhere in the interval 2.kA <p < 2kB • (The van
ishing, however, of a,,, which for us is unimportant, 
occurs at some other pOint.) The same situation ob
tains if the points A and B are both saddle points. It is 
clear from the foregoing that the vanishing of a-L and, 
consequently, the formation, when the constants have 

w 
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the requisite signs, of a bound state should occur in 
many crystals having a symmetry axis of order higher 
than two. Other possible cases of bound-state forma
tion by identical excitations will be briefly discussed at 
the end of Sec. 3. 

2. THE BASIC EQUATIONS 

The investigation of the question of the bound states 
of excitations amounts, as a rule, to the investigation 
of equations of the type (1). This is not surprising, 
since (1) is the analog of the Schrodinger equation, 
written in the momentum representation, for a pair of 
interacting excitations. In our case, in which we are 
concerned with weakly-bound excitations, it is possible 
to obtain a closed equation in the general form without 
any model ideas. The point is that for a small binding 
energy the process in which the bound state breaks up 
into its constituent excitations is "almost possible. " 
We shall describe the bound state as a spectral branch 
determined by a pole of the corresponding Green func
tion. 3) Accordingly, in the equation for this function it 
is necessary to separate out the diagrams describing 
the above-indicated disintegration. Such a set of equa
tions was derived by the present author. [11) Diagram
matically, it is of the form 

6(P) -
(5) 

The vertex parts r 0 and '}'1> represented by the un
hatched Circles, are sums of diagrams that cannot be 
divided between the ingoing and outgoing ends into parts 
connected by only one or two lines. The hatched total 
vertex part r, on the other hand, contains all the dia
grams, except those connected with each other by only 
one line. 

We shall not write out Eqs. (5) in analytic form. 
(See[ll), formulas (3) and (27); in formula (3) the sign 
of the right-hand side is wrong and should be changed. ) 
The bound-state energy is determined by the pole of the 
Green function C(P). The equation for finding this en
ergy is therefore obtained from (5) by neglecting the 
free term Co. Let us write down this system, omitting 
the arguments of the vertex parts: 

Go-'(P)=i SfoG(K)G(P-K)fd'KI(2n)" 

f=fo+i S 1,G(K)G(P-K)fd'KI(2n)'. 
(6) 

Equations (6) are exact. They can be simplified, using 
the assumed smallness of the binding energy. Because 
of this smallness, the uncertainty in the energy and mo
menta of the excitations forming the bound state is 
small; it can be said that the excitations form the bound 
state with definite momentum values. Mathematically, 
this manifests itself in the fact that only the small in-
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tegration domain in which the product of the Green func
tions is anomalously large is important. Therefore, 
the vertex parts can be taken out from under the sign of 
integration. After that, the vertex part r can be elim
inated from the equations. Finally, the bound-state en
ergy is determined by the equation 

~ S G (K) G (P-K) d'K=i, 
(2n)' 

where 

A=1,+fo'Go(P). 

(7) 

(8) 

In (7) the vertex-part arguments K and P - K corre
sponding to the internal lines in the diagram (5) should 
be set equal to the energies and momenta of the excita
tions forming the bound state. Allowance, however, for 
the dependence on the bound-state momentum P, al
though permiSSible, does not also play an important 
role, since we are interested in only momenta near the 
Singular point Po. (See the Introduction and Sec. 3.) 
Therefore, the coefficient A can be assumed to be a con
stant. Notice also the growth of the interaction A as we 
approach the pole of the Green function Co, i. e., in the 
case when the bound-state spectrum is close to some 
branch of the ordinary excitations. We shall, however, 
not discuss this question in greater detail. 

The Green functions C of the excitations forming the 
bound state can be taken in the usual form 

G(K) =[k,-(i)(k)+iO]-'. 

Carrying out after this the integration over the energy 
component of the 4-momentum K {k4' k}, we finally ob
tain: 

d'kl(2n)' 
AII(P)~A S = 1 

e-(i) (k) -(i) (p-k) +iO 
(9) 

(P=P{e, p}). This equation determines the dependence 
~(p), i. e., the dispersion law for the bound state. 

3. THE DISPERSION LAW FOR A BOUND STATE 
OF IDENTICAL EXCITATIONS 

The quantity 50 computed in the Introduction is the 
binding energy of excitations with a resultant momentum 
p = Po. If P is changed, the binding energy will change. 
The dispersion curve for the bound state can also be ob
tained from Eq. (9). In this section we shall again con
sider the case of the bound state of identical excitations 
with one and the same momentum value. In this case it 
is convenient to make the change of variables 

k=pl2+q, 

after which (9) reduces to the Eq. (1) written out above. 
Let us investigate this equation in greater detail, as
suming, as in the Introduction, that the crystal has a 
6-fold axiS, the coefficient a~ vanishing on this axis at a 
pOint Po. As a preliminary, let us write down the ex
pansion in powers of q of the expression w(Po/2+ q): 

v 
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(10) 

The notation for the coefficients in (10) has been chosen 
in accordance with (3). The absence of a term with 
merely p~ ensures the vanishing of aL(p). 

Using (10), we find with the necessary accuracy after 
simple transformations that 

'" (p/2+q) +w·(p/2-q) =2w (pl2) +a_\p"ql.'+a,q/ 

+bq.L '+b (P.Lq.L) '+'/,bp.L'q.c', 
(11) 

where ap = P - Po and PL is the component of ap in the 
plane perpendicular to the symmetry axis. 

Let us determine, to begin with, e(p) on the symmetry 
axis, i. e. , for PL = O. The computations in this case 
are again very simple: 

(12) 

Here we have introduced the notation E ' = 2w(p/2) - E. 

Let us recall that, by assumption, a" > 0 and b> O. Sub
stituting (12) into (I), and solving the resulting equation 
for E, we obtain 

E (p) =2w (p/2) - [2(b6 o) '1'-a1p,,1'/4b, (13) 

where lio has the same meaning as in (4). Notice that 
Eq. (1) has, as is easy to see, a solution only if 
2(blio)1/2> aap", so that the formula (13) makes sense 
only in this region. 

The formula (13) gives the absolute value of the 
bound-state energy. A more interesting quantity, how
ever, is the "binding energy, " i. e., the distance of the 
bound-state level from the boundary of the continuous 
spectrum. For the excitations produced near the mini
mum of the expression (12), this binding energy is 
equal to 

1\ (p) =fm (p) -E(p), 

where f m(P) is the minimum value of the expression (11) 
for a given p. It is easy to verify that for p lying on 
the axis f m = 2w(p/2) for aap" > 0 and em = 2w(p/2) 
- (aap,i /4b for aap" < O. With allowance for this, we 
can rewrite (13) in the final form: 

(14) 

where we have introduced the notation 

r,,=2(b6o) "'Ia. (15) 

(For definiteness, we assume that a> 0.) 

For ap" = r" the binding energy vanishes, and the 
bound-state level for ap" > r" goes off into the continu
ous spectrum. The point ap" = r" is the end point of the 
bound-state spectrum in the sense of the paper. [11] Ac
cording to the classification of that paper, it corre-
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sponds to the second mode of termination of the spec
trum. For negative values of aap" the binding energy 
increases. It should, however, be borne in mind that 
I ap,,1 should in any case be much less than the recipro
cal-lattice constant. This means, as can easily be 
verified, that the binding energy in any case is much 
less than (liOWO)1/2, where wo- w(Po/2) is a character
istic optical-phonon frequency. 

The plot of the binding energy li(P,,) is shown in Fig. 
2a. 

Now let the resultant momentum P be directed not ex
actly along the symmetry axis, so that P - Po has a 
component PL perpendicular to the axis. Let us substi
tute (11) into the expression for n and evaluate the dq" 
and dqL integrals. Then 

1" 4bA' 
II = - , 'I S in ( "I dcp, 

16n (aub) '0 2 bE ) '+allp,,+bP.c'I2+bp.L' cos' cp 

where cp is the angle between q. and PL' The dcp inte
gral can be evaluated with the aid of the formula 

'" 1+ (1+a)'!' S In(1 +a cos' cp)dcp=2n In 2 . (16) 
o 

We finally have 

(17) 

Substituting (17) into (9), and solving the equation, 
we can find f (p). We write out at once the expression 
for the binding energy li(p) with allowance for the fact 
that the lower boundary of the continuous spectrum, 
Em(p), now has the form 

em (p)=2w(p/2) for allp,,+'/,bP.c'>O, 

em(p) =2w (p/2) - (allp,,+'/,bp.c') '/4b for adp,,+'/,bp.L'<O. 

The binding energy is equal to 

{ ( P.L ) , [ 1 (P.L)'] dp" }' 6(p)= lio 1-4 G 1-4 r.L ---;:;;-. (18) 

for aap" + ~ bP~ > 0 and 

6(P)=6o[1-(P.L) ']{1- 3p~' + P.c: _ 2dP"}. 
r.J.. r.L r..l.. Tn 
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FIG. 3. 

for ailPIl + t bP~ < 0; here r ll = 23/2155/ 4 /b i / 4. The depen
dence of 15 on P ~ for ilPIl = 0 is shown in Fig. 2b. 

Notice that the binding energy decreases with in
creasing P~, i. e., as we move away from the symmetry 
axis. The existence domain for the bound state, i. e. , 
the region where l5(p) > 0, is hatched in Fig. 3. At the 
boundary, 15 = O. Notice that the characteristic dimen
sion of the existence domain in the direction perpendic
ular to the axis turns out to be of order r~ - 155/4, i. e. , 
to be much larger than r ll - 155/ 2• 

We have thus far been concerned with states that 
form near the symmetry axis of the crystal. Let us 
now consider the question whether the formation of such 
states not on the axis, but near some "nonsymmetric" 
point in momentum space is possible. In this case the 
quadratic terms in the expression for w(p/2 + q) 
+ w(p/2 - q) have the form aik q i qk' Directing the axes 
along the principal axes of the quadratic form aik(p), 
we obtain 

00 (p/2+q) +00 (p/2-q) 

",,200 (p/2) +a,q,'+a,q,'+a3q,'. 

It is clear that in order for the integral (9) to diverge, 
it is necessary that two of the coefficients ai vanish at 
some point Po. Let us ascertain how many conditions 
should be fulfilled for that. 

The vanishing of two eigenvalues means that at the 
point P the matrix aik can be represented in the form 

where I is the eigenvector (of the matrix) correspond
ing to that eigenvalue that does not vanish. Eliminating 
three of the components li from these six equalities, 
we find: 

(19) 

The conditions (19) should be regarded as three equa
tions for the determination of the three components of 
the vector Po near which the bound state is formed. The 
fact that the number of equations is equal to the num
ber of unknowns implies that such a point does, gener
ally speaking, exist, so that the formation of such a 
state is possible also at points not on the axis of the 
crystal. Let us emphasize in this connection that the 
above-considered case of the formation of the state on 
the symmetry axis is an independent case, and not sim-
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ply a particular case of a general case. Indeed, it is 
quite improbable that the point Po will accidentally fall 
on the axis. Meanwhile, the arguments given in the 
Introduction precisely show that the location of Po ex
actly on the axis is as probable as its location at a non
symmetric point. On the other hand, from the experi
mental point of view, the search for the states lying 
near the axis is probably simpler because of the 
smaller degree of arbitrariness. Taking into account 
this circumstance and also the great complexity of the 
formulas in the nonsymmetric case, we shall not in
vestigate this case. 

Notice also that the formation of a weakly-bound 
state near a symmetry plane of the crystal is also pos
sible. Indeed, for p lying in the symmetry plane, the 
terms quadratic in q are of the form 

where the z axis is directed perpendicular to the plane 
and the indices a, (3 number the components of vectors 
in the plane. The coefficients a z , a",8 depend now on the 
two components of the vector p in the plane. These two 
components can, generally speaking, be chosen such 
that a z and one of the eigenvalues of the matrix a",8 van
ish simultaneously. In this case the point Po will lie 
exactly in the plane. 

4. THE BOUND STATES OF DIFFERENT 
EXCITATIONS 

Now let the excitations forming the bound states be 
different. Of special interest here are electron-phonon 
bound states in a semiconductor, i. e., weakly-bound 
polarons. The excitations may also be two phonons of 
different branches or two phonons belonging to one and 
the same branch, but going into the bound state with 
different quasi-momentum values. 

The equation for the determination of the bound-state 
energy in the case of two different excitations also has 
theform(9), with the only difference that (.u(k) + w(p-k) 
is replaced by 

w,(k)+w,(p-k), (20) 

where Wi and W2 are the energies of the excitations 
forming the bound state. In the preceding case, owing 
to symmetry, there could be no terms linear in q in the 
denominator of (1). Now they should first of all be 
eliminated. For this purpose, let us find the minimum 
of the expression (20) as a function of k for a given p.4) 
Let this minimum occur at k = ko. (Naturally, ko is a 
function of p: ko = ko(p).) Let us set k = ko(p) + q. Since 
the expression (20) has a minimum at k = to, its ex
pansion in powers of q will no longer contain linear 
terms. 5 ) Let us again assume that the crystal has a 
symmetry axis of order greater than two. Let us di
rect p along the symmetry axis. Then 

00, (p-·k) +00, (k) ~w, (p-ko-q) +w,(ko+q) 

""00, (p-ko) +00, (ko) +a.Lq.L'+a"q,,' (21) 

and the coefficient a~ can vanish on the axis at some 
point P=Po. 

v 
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Notice that the earlier-considered case of identical 
excitations fits into this general scheme, but there, on 
account of the symmetry of the problem, we always had 
!co = p/2. There is, however, one important difference. 
It consists in the fact that now the left-hand side of (21) 
is no longer an even function of q. Meanwhile, in order 
for a bound state to exist, it is necessary that this ex
pression for P = Po contain no terms of third order in q. 
This condition will be fulfilled automatically if the sym
metry axis is at least a fourfold axis. The presence of 
such an axis is in this case a necessary condition for 
the existence of the effects under consideration. The 
formation of weakly-bound states by two different ex
citations at a nonsymmetric point and in a symmetry 
plane is impossible. 

Let us again carry out specific computations for a 
sixfold axis. It turns out here that it is more conve
nient to carry out the expansion not about the point 
!co(p), but about the point ko(PII)' where PII is the com
ponent of P along the axis. In other words, we set 
k = !co(PII) + q. Let us at once write down the expansion 
of (20) in powers of q from general conSiderations, 
leaving out the formulas connecting the expansion coef
ficients with the derivatives of the functions w1 and wa' 

It is important that when P is not directed exactly along 
the axis the point !co(PII) be not a minimum point and the 
expansion contain terms linear in <It (but not in qll)' 
With allowance for this we have: 

(22) 

We have introduced the notation 

8,=Ul,[p-k,(PII) ]+Ul,[k,(PII)]' 

In view of the presence in (22) of a term linear in Pu it 
is not necessary to consider terms of higher order in 
this quantity, 

Notice first of all that on the axis, i. e., for P. = 0, 
the expansions (22) and (11) coincide. This means that 
for a momentum directed along the axis the binding en
ergy for different excitations is also given by the for
mula (14). The situation naturally changes when there 
is deviation from the axis. After performing the dqll 

integration, we obtain for the integral II the expression 

(23) 

where E ' = E 0 - E. 

The integral (23) cannot be evaluated in its general 
form, We can obtain only asymptotic formulas for 
small and large P.. We shall restrict ourselves to the 
determination for small and large P. of the boundary of 
the existence domain for the bound state, i. e., of the 
surface equation 15(p) = ° in momentum space. 

Let us begin with small values of P.. Let us first of 
all determine the lower boundary of the continuous 
spectrum, i. e., the minimum value of the expression 
(22) for a given p. To the minimum corresponds the 
value cos,') = 1. (For definiteness, let us assume that 
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Cl!>o, (3)0.) For t:..PII> ° and for small P., the term bqi 
is negligible near the minimum. The minimum is then 
attained at q. = {3P./ Cl! t:..PII and the minimum value of the 
energy is equal to 

Let us denote the value of II for E' = Em by lIm' differ
entiate lIm twice with respect to 1= {3P., and make the 
change of variables q. = xl/au where a. = Cl!t:..PII' (In 
view of the good convergence of the integral, we can 
replace the upper integration limit by infinity.) As a 
result, we have 

a'ilm 3bf S~S'n (l-xcos<p)xdxdlJl 

at' = - 8n'(a"'a"') [1+x'-2xcosm+(fbla ')X,],/ • 
II .L {I (I 't'.L 

For small I, only large values of x are important in the 
integral, so that we can neglect the unit term in the 
denominator and restrict ourselves to the first term in 
the expansion of this denominator in powers of 2xcoscp. 
After the computations, we obtain 

il'IIm b'I, 

---a-t' = 2na'I'a 3 II .L 

(24) 

On the other hand, for 1= 0, as can easily be obtained 
directly from (23), we have 

Integrating (24) with these boundary conditions, we ob
tain 

If we substitute this expression into Eq. (9), we di
rectly obtain a relation between t:..PII and P. on the sur
face O(p) = 0, i. e., at the boundary of the existence do
main for the bound state, After simple transforma
tions, we obtain the equation for this boundary in the 
form 

(25) 

where r ll has the same meaning as in (15), while 

(26) 

the formula (25) being valid provided pjs.« 1. The 
quantity s. characterizes the transverse dimension of 
the existence domain for the bound state of different ex
citations. Notice that s. - 15g /4, while for identical ex
citations the corresponding quantity is r. -155 /4, so that 
if the 00 in the two cases are of the same order of mag
nitude, then 

Let us now determine the boundary in the limit of 
large P.» s.. It is easy to verify that to large P. on the 
boundary correspond large negative values of Cl!t:..PII' 
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FIG. 4. 

More precisely, I t::..p,,1 »r,,, t::..p" < 0. (We assume that 
a> ° and (3) 0,) In this case the term withJ in the in
tegral for TIm is small compared to the remaining 
terms, and is important only near the minimum of the 
denominator. Therefore, we can replace in it q by its 
value, qm' at the minimum. After this, the integral 
over qL can be computed as in the derivation of (12). 
Taking into account the fact that 

and noting that we can, with the necessary accuracy, 
set 

we find after expanding in powers of J: 

II = 1 'J"In 2N 1 ba6.pu 1'1, d = __ 1 __ 1 2Nl2ba6.pu 1 ,;, 

.. 16n' (aub) 'I, 2"'~P.L(1-coscp) cp 8n(aub)'" n ~P.L 
o 

The dcp integral can be evaluated according to the for
mula 

1 " -;-J In (1- cos cp)dcp = -In 2. 
o 

Substituting TIm into (9), and solving the equation, we 
find the equation for the boundary for large p L: 

(27) 

Formally, this is the asymptotic form of the same pa
rabola whose asymptotic form for small PL was found 
above, The existence domain for the bound state of dif
ferent excitations is the hatched region in Fig. 4, The 
quantity P L/ S L is plotted along the abscissa axis, while 
the quantity t::..p" is plotted along the ordinate axis. 

Thus, we see that bound states of the type under con
sideration should probably quite often exist in crystals. 
They should be searched for, first and foremost, near 
high-order symmetry axes in momentum space. The 
most direct method of detection is the observation of 
the inelastic scattering of neutrons. The exponential 
smallness of the binding energy is hardly a serious ob-
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stacle to their detection, since in reality the interac
tion is not too weak. On the other hand, the picture 
may be smeared because of the damping of the excita
tions, It is clear from the form of the basic equation 
(9) that, if ''''I and ~ have imaginary parts 'Yl and Ya, 
then they can be neglected only when the quite rigid 
condition Yl + Ya « 60 is satisfied. The level width for 
the excitations forming the bound state should be less 
than the binding energy, Therefore, it is necessary to 
work at low temperatures and choose the excitation 
branch for which decay is forbidden. 

Notice also that even if the sign of the interaction is 
such that the bound state is not formed, the density of 
two-particle states will all the same have some singu
larity near the point Po. This density remains finite at 
the boundary of the two-particle spectrum, which can 
also be revealed experimentally. 

The author is grateful to V. M. Agranovich, A. F. 
Andreev, I. E. Dzyaloshinskil, I. B. Levinson, and 
E, I. Rashba for a useful discussion. 

!lIn the model considered inl81 the right-hand side of (2) does 
not, at some value of p, depend on q at all. In the general 
case such a situation is, of course, impossible. 

2)This pertains to the case a" > 0, b> O. In the opposite case, 
when a" < 0, b < 0, it is necessary for g to be negative too, 
so that the bound state near the maximum is formed when 
there is repulsion between the excitations. 

3 )It may seem that the bound state should be sought as a pole 
of the vertex part and not of the Green function. It can 
easily be seen, however, that the poles of the two functions 
coincide in a system in which the conversion of the excita
tion into two is possible. 

4)We are again conSidering the case of a bound state with en
ergy below the boundary of the continuous spectrum. 

5)Compare similar arguments in Kazarinov and Konstantinov's 
paper. 1121 
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