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An analysis is made of relaxation processes in Mossbauer spectroscopy of substances exhibiting 
superparamagnetism. The experimental results are compared with the theoretically calculated Mossbauer 
spectra using a stochastic model of substances with cubic magnetic anisotropy. The theory of random 
processes is used in the derivation of equations for calculating relaxation time and the form of the 
Mossbauer spectrum for an arbitrary value of the magnetic anisotropy energy. 

PACS numbers: 76.80.+y, 75.30.Gw 

Mc)ssbauer (nuclear y resonance) spectroscopy makes 
it possible to investigate successfully the magnetic 
structure of solids. There have been many papers on 
this subject and, by way of example, we may refer to 
our own investigation[l] of such a complex ferrimagnet 
as hexagonal barium ferrite, for which we determined 
the orientations of the magnetizations of some sublat­
tices relative to the hexagonal axis c. The Mossbauer 
level has a lifetime T and a magnetic moment /J., which 
precesses at the Larmor frequency wL in a field Heff" 

If the magnetization vector can vary with time and its 
characteristic time To is in the range l/wL :;:; To :;:; T, we 
can use MBssbauer spectroscopy to study not only the 
magnetic structure of a given substance but also the 
dynamic aspects of magnetic interactions. This can be 
done particularly conveniently in the case of single­
domain particles. Investigations of this kind not only 
provide information on the magnetic structure and anisot­
ropy but also make it possible to study more deeply the 
nature of coercive forces and permeability of magnetic 
materials. 

A reduction in the dimensions of single-domain par­
ticles increases the probability of thermal fluctuations 
of the magnetization orientations and this leads to super­
paramagnetic phenomena. The MBssbauer method has 
been used in studies of superparamagnetism of a - Fe20 s, 
some ferrites, and other substances with various crys­
tal and magnetic structures. Such investigations are 
successful only if there is a sufficiently highly developed 
theoretical model of relaxation processes considered 
as a function of the structure of matter. Up to now only 
one such model has been known and it can be used to 
obtain quite simply the form of MBssbauer spectra 
throughout the whole range of relaxation times of inter­
est in superparamagnetic phenomena. [2-5) This model 
is based on the assumption that the part of the hyper­
fine interaction Hamiltonian responsible for relaxation 
effects may be diagonalized by selecting a certain co­
ordinate system and corresponding wave functions, i. e. , 
that there are only two possible directions of the mag­
netization vector. This situation should occur in sub­
stances with uniaxial magnetic anisotropy. The most 
convenient system for investigations of this kind is 
a - Fe20 s• However, recent investigations have dem­
onstrated anomalous behavior of this substance when 
particles are of the order of 80 A. [6,7) In the case of 
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systems with a more symmetric structure one may ex­
pect deviations from the uniaxial case. However, in 
analYSis of the form of MBssbauer spectra it is assumed 
implicitly that these deviations are not of basic im­
portance. 

Our investigations of superparamagnetism in sys­
tems of simultaneously deposited hydroxides[S) dem­
onstrated that the Dekker relaxation model cannot ex­
plain experimental results and a more general model is 
needed which would reduce to the Dekker treatment in 
the special case of a magnetic substance with uniaxial 
magnetic anisotropy. 

1. SUPERPARAMAGNETIC PHENOMENA IN 
SUBSTANCES WITH CUBIC STRUCTURE 

Figure 1 shows the MBssbauer spectra of amorphous 
(as determined by x-ray diffraction) hydroxide of tri­
valent iron, heated at 300°C for 8 h, which were de­
termined at various temperatures. Samples were pre­
pared under conditions described in[S]. The magnetiza­
tion curves indicated that the samples were in a mag-

FIG. 1. Mossbauer spectra of amorphous (as deduced by x­
ray diffraction) iron hydroxide heated at 300 0 C for 8 h. 
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FIG. 2. Mossbauer spectra calculated using Eq. (1) for var­
ious relaxation frequencies (N = 6). The dashed curves are 
the spectra calculated for the uniaxial anisotropy case (N = 2). 
The values of ware given in 109 sec-I; N is the number of 
easy magnetization axes. 

netically ordered state even at room temperature, al­
though the Mossbauer spectra were in the form of a 
parametric doublet at 300 oK. Hence, we concluded that 
the material was in a finely dispersed state and it was 
superparamagnetic. 

An interesting feature of this and similar systems[S] 
is the zero value (to within ± 0.01 mml sec) of the quad­
rupole splitting parameter at 4.2 oK when the Mossbauer 
spectra can be approximated correctly by a Zeeman 
sextet of lines. This shows that the angle e between 
the direction of the effective magnetic field and the z 
component of the electric field gradient (EFG) satisfies 
the relationship 3cos2 e - 1 = O. This situation oc curs if 
the effective magnetic field and the z component of the 
EFG tensor are oriented relative to one another in the 
same way as the [100] and [111] directions in a cube. 
Thus, the observed form of the Mossbauer spectra is 
governed by the cubic anisotropy of the substance and 
cannot be described satisfactorily by the Dekker model. 
The assumption of the cubic structure is not in conflict 
with the results of van der Giessen. [9] 

It is clear from Fig. 1 that when the temperature 
during measurements is increased by 30-50%, the re­
laxation frequency increases by a factor of 10-20. This 
is evidence of the usual exponential dependence of the 
relaxation frequency on the reciprocal temperature 
found in superparamagnetic phenomena. There should 
be also a similar dependence of the relaxation frequency 
on the volume of the particles. Therefore, the actual 
distribution of the particle volumes should result in a 
fairly complex superposition of a large number of 
Mossbauer spectra corresponding to different relaxation 
frequencies. In the case of finely dispersed ferrites, 
which also have the cubic structure, such effects result 
in Mossbauer spectra representing superpositions of a 
broadened Zeeman sextet and a doublet. [10,11] 

The application of general formulas for the calculation 
of the form of the Mossbauer spectra, obtained within 
the stochastic model framework, [12] meets with con­
siderable computational difficulties because of the need 
for inversion of high-rank matrices. For example, in 
the case of easy magnetization axes of the [111] type the 
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matrix rank for the cubic anisotropy is 64. However, 
in certain models of relaxation the problem can be sim­
plified considerably. [13] We estimated the influence of 
the crystal structure on the form of the Mossbauer spec­
tra and found the relaxation frequencies by calculating 
these spectra on the assumption that averaging over 
stochastic states could be made using the exact formulas 
of Blume. [12] 

We were also acquainted with the work of Afanas'ev 
and Onishchenko, [14] who carried out a detailed analysis 
of the cubic anisotropy case and obtained an analytic 
expression for the form of the spectrum in the case of 
easy magnetization axes of the [100] type. A program 
which we prepared on the basis of the work of Afanas'ev 
and Onishchenko enabled us to estimate the average 
relaxation frequencies from the Mossbauer spectra by 
the method of least squares. However, the complexity 
of the observed spectra-superposition of a large num­
ber of components corresponding to different relaxation 
frequencies-made it difficult to select the sign of the 
magnetic anisotropy 'constant and the relationship be­
tween the probabilities of transitions per unit time be­
tween various easy magnetization axes. Therefore, we 
restricted our calculations to easy magnetization axes 
of the [100] type and assumed the probabilities of tran­
sitions per unit time to be the same between all the 
axes. These assumptions were not of basic importance, 
in contrast to the description of experimental results 
by the spectrum derived for the uniaxial magnetic anisot­
ropy case, which would have been quite incorrect. 

According to Afanas' ev and Onishchenko, [14] the form 
of the M6'ssbauer spectrum is given by 

1 <po ("') 
<p ("') = - -- 1m -,----~-__;_-,-

12n l-'I,ip<po("') 

where 

~ (",-y.)-i(6p+f/2) 
</,0("')= i=! (",-y.)2+(6p+f/2)2 q.; 

(1) 

(2) 

here, qk' Yk are the intensities and positions of Moss­
bauer lines in the case when the probability p of a tran­
sition per unit time (If = 1) between any pair of easy 
magnetization axes vanishes; r is the width of a Moss­
bauer level. Figure 2 shows the Mossbauer spectra 
calculated using Eq. (1) for various relaxation frequen­
cies. The relaxation frequency is understood to be the 
probability of orientation, per unit time, along a se­
lected easy magnetization axis, i. e., this frequency is 
5p. For comparison, Fig. 2 also shows the spectra 
calculated in the uniaxial anisotropy model. A simple 
comparison of Fig. 1 with Fig. 2 shows that the ob­
served Mossbauer spectra cannot be approximated by 
the Dekker model for any reasonable assumptions. One 
should mention the specific, to the investigated sub­
stance, manifestation of the particle volume distribu­
tion in the Mossbauer spectra. Although the investi­
gated substance is cubic, there is no superposition of 
the Zeeman sextet with broadened lines on the doublet, 
in contrast to finely dispersed ferrites[10,l1] which can 
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FIG. 3. Mossbauer spectrum of amorphous (as established 
by x-ray diffraction) hydroxide heated at 300°C for 8 h. The 
continuous curve is the theoretical spectrum found by the 
method of least squares using the form of the spectrum given 
by Eq. (1); w=9x108 sec-I. 

be explained qualitatively by the Dekker model. 

An analysis of the MBssbauer spectra shown in Fig. 1, 
carried out on the basis of Eq. (1), gives the most 
probable relaxation frequency 5 x 108 sec-1 at 95 OK and 
7x 108 sec-1 at 105 OK. The continuous curve in Fig. 3 
shows the theoretical spectrum calculated by the meth­
od of least squares. The experimental MBssbauer 
spectra can be described satisfactorily by the theory 
proposed in[141. 

We also attempted to approximate the distribution 
function of the relaxation frequencies by a Gaussian de­
pendence. The estimates of the width of the distribu­
tion amounted to about 5% of the average value and the 
agreement between the theoretical and experimental 
spectra did not improve considerably, which indicated 
that the distribution was asymmetric. A better agree­
ment between the theory and experiment should be ob­
tained by allowing for the particle volume distribution 
and for the dependence of the relaxation time on the 
particle volume. This approach will in future give valu­
able information on the degree of dispersion of a sys­
tem and on the dynamics of magnetization in matter. 
However, one must first analyze the possibility of ob­
taining the frequencies of transitions between various 
directions in a crystal as a function of its structure. 

2. DESCRIPTION OF MOTION OF MAGNETIZATION 
VECTOR IN MATTER AND CALCULATION OF 
RELAXATION TIME 

The problem of calculation of relaxation times in­
cludes determination of the time scale or pre-exponen­
tial factor in the expression for the relaxation time and 
selection of method for calculating the transition fre­
quencies. There are several different approaches to 
the first task, whereas the second task involves a fairly 
laborious solution of the diffusion equation. Therefore, 
we have to consider the various methods for calculating 
the time scale factor and to find a simpler way for cal­
culating the transition frequencies between various easy 
magnetization axes. 

In MBssbauer spectroscopy it is quite correct to de­
scribe the motion of the magnetization vector in matter 
by classical methods. The spectroscopy of Fe57 allows 
us to investigate relaxation times in the range from 
10-7 to 10-10 sec. Since the characteristic times of mag­
netic interactions in crystals are of the order of 10-13 
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sec, clearly, these processes are averaged over the 
time intervals of interest to us. This makes it possible 
to apply the theory of stochastic motion of the magneti­
zation vector and to write the Hamiltonian of hyperfine 
interactions in the form 

(3) 

where H(t) is the effective magnetic field on the nucleus, 
i. e., a classical and (in this case) a random quantity; 
Ie.1f is the spin of a nucleus in the excited and ground 
states; A··1f are the corresponding constants. The ef­
fective magnetic field follows completely the direction 
of magnetization in matter. The motion of the mag­
netization involves the motion of the momentum for 
which the indeterminacy of the position (in our case the 
angle I)) is found from the indeterminacy relationship 

<s>NoM8-h. (4) 

Here, (s) is the average (over the substance) spin of 
paramagnetic ions and No is the number of such ions. 
For all reasonable particle dimensions the value of I) 

can be regarded as small so that the indeterminacy of 
the magnetization orientation can be ignored. The 
probability of finding a system in a particular state can 
be obtained from the diffusion equation (x are the coordi­
nates of the magnetization vector on a sphere): 

a 1 8' f} 
-W~ ,E---(Wcrlj)- ,E-. (Wai), at i.j 2 f}Xif}Xj i OX, 

(5) 

where W(x, t; Xo, to) is the probability of detecting a 
system in a state x at a moment t if at a time t = to the 
system is in a state Xo; U1i(X, t) and ai(x, t) are the dif­
fusion and drift coefficients. Equation (5) applies if the 
equations of motion of the magnetization can be approxi­
mated by stochastic differential equations and fluctua­
tions of the magnetization vector are due to an interac­
tion which has the properties of white noise. It is clear 
that such an interaction occurs in a typical time inter­
val of the order of 10-13 sec in a solid and that in the 
range 10-7_10-10 sec it should be possible to obtain 
satisfactory results by modeling the steady-state pro­
cess of white noise. Equation (5) should satisfy the 
steady-state distribution function 

(6) 

where F is the anisotropy energy density; V is the vol­
ume of a particle; k is the Boltzmann constant; T is the 
absolute temperature; z is the normalization factor. 
This distribution function gives the drift coefficients 

a ~e-Fi'lkT ~ ~[~cr e FV1hT ] , ~ox· 2" . , ' 
(7) 

If the stochastic equations of motion of the magnetiza­
tion vector are selected in the form 

~x,~E,(x.t)+ ~ <D,,(x,t)nj(t), 
dt 4" 

(8) 
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whereE j and <Pjj are determined functions, and nj(t) 
are random processes with the properties of white nOise, 
we find from Eq. (8) the coefficients a i and aij' Then, 
the diffusion coefficients are defined only in terms of 
<P jj : 

(Jij=C L $,,$j, (9) . 
(c is the spectral density of white noise). If these func­
tions depend on x, the drift cO,efficients are governed 
not only by the functions Ei but also (in this case) by <P ij • 

Thus, in determination of the diffusion coefficients it 
is necessary to specify the quantities <P ij • This ap­
proach gives no assurance that all possible mechanisms 
of thermal fluctuations of the magnetization vector are 
taken into account (a similar method is used int15l ). 
Brownt16l assumed that the diffusion coefficients are 
independent of x and used the Gilbert equations to find 
the drift coefficients [by selecting suitably Ei in Eq. (8) 
and assuming that <Pij =0] to find aij actually from Eq. 
(7). However, this approach is satisfactory only to the 
extent that the Gilbert equations allow for thermal fluc­
tuations of the magnetization vector in the dissipative 
term. One should also mention the approach suggested 
in[17l where general considerations are used in an at­
tempt to estimate the time scale of thermal fluctuations 
in magnetic interactions. 

In determining the diffusion coefficients we must find 
how thermal fluctuations of the spins of paramagnetic 
ions give rise to fluctuations of the magnetization vec­
tor. The magnetic moments of ions can be divided ar­
bitrarily into two components: the steady component 
m(T), which is stabilized by the exchange field, and the 
random component (Om) =m(O) -m(T). The relaxation 
time of the second component is h/kT. An ensemble of 
No ions produces a fluctuating macroment of a particle 
AM, equal to the sum of the moments of individual ions. 
The thermally induced and intrinsic uncompensated 
magnetic moments produce a net instantaneous moment. 
If the relaxation time of this moment is much less than 
the characteristic times of the magnetic interactions, 
the exchange field, being isotropic, follows the direc­
tion of the net magnetic moment, i. e., the magnetiza­
tion of the investigated substance relaxes. The diffu­
sion equation for the random component of the magnetic 
moment of an ion ~m is of the form 

(10) 

Then, the vector ~M is described similarly by 

a 1 <tim>' 1: a'w 
-W=-N--kT ---at 2 0 h ,a (~lf1i)' 

(11) 

and the coordinates of the magnetization vector x are 
described by 

!!-. W = ~ <tim>' ~ ~ a'w 
at 2 <m>' Noh ~ax" ' 

(12) 
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where (m) is the average uncompensated magnetic mo­
ment of a particle per paramagnetic ion. In this way 
we obtain the diffusion coefficient for Eq. (5): 

(13) 

According to Eq. (13), the diffusion coefficient is 
governed by general properties of the thermal fluctua­
tions. However, the relaxation time of the magnetic 
moment depends on the specific form of the drift co­
efficients (7). The diffusion equation (13) is of the same 
form as that obtained int1sl for the determination of the 
relaxation time of the magnetic moment of particles in 
some specific cases. However, the solution method 
used int1sl is fairly time-consuming since it involves 
solution of Eq. (5). On the other hand, methods of the 
theory of random processes have been used to show 
that the average time taken to reach the boundaries 
T(x) from a point x satisfies 

(14) 

subject to the condition that T(x) = 0 on the boundary. 
This equation is much simpler than Eq. (5) and in the 
case of a single variable, a general solution can be ob­
tained for the uniaxial anisotropy. In the cubic anisot­
ropy case we can vary the boundary conditions in Eq. 
(14) and find the times of transitions between two dif­
ferent pairs of easy magnetization axes as a function of 
their mutual orientation. In contrast, the solution 
method employed in[18l gives only a certain average 
quantity. 

Thus, the results obtained allow us to obtain full in­
formation on the kinetics of magnetization which is 
needed for the determination of the form of Mossbauer 
spectra. It is interesting also to generalize the results 
of the stochastic theory to the case of an arbitrary re­
lationship between FV and kT, and to analyze the pos­
sibility of simplification of the exact formulas of 
Blumet12l by averaging over stochastic states in the 
initial expressions. 

3. FORM OF MOSSBAUER SPECTRA IN STOCHASTIC 
RELAXATION MODEL 

The determination of the form of the Mossbauer 
spectra in relaxation processes involves generally quan­
tum-statistical averaging over the variables of a ther­
mostat (crystal). In the stochastic model of relaxation 
this averaging is replaced with the calculation of the 
corresponding mathematical expectations. This can be 
done most simply in the case when FV» kT, i. e., when 
only a finite number of states of the magnetization vec­
tor, associated with a specific system of easy magneti­
zation axes, can be realized in a system. In this case 
the whole kinetics of changes in the direction of the 
magnetization vector is described by the matrix of 
kinetic coefficients (probabilities of transitions per 
unit time between different easy magnetization axes). 
The methods of the thoery of random processes allow 
us to generalize these expressions appropriately for an 
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arbitrary relationship between FV and kT. Moreover, 
we can suggest a general method of averaging over 
stochastic states in expressions for the form of a 
MBssbauer spectrum, which allows us to eliminate from 
the final expressions the stochastic variables for some 
easy magnetization axes (in the FV» kT case). 

The general expression for the form of an absorption 
spectrum (in the case of a thin absorber) is given by the 
formula 

cP (Ill) =Re J e-P' Tr(pU+(t} U(O} }dt, (15) 
o 

where p = iw + r /2, p is the density matrix ofthe investi­
gated system (in our case a nucleus) and of the thermo­
stat (a crystal), and U(t) is the operator of the interac­
tion of a nucleus with an electromagnetic field, corre­
sponding to the absorption of a photon of frequency w 
and wave vector k in the Heisenberg representation: 

U(t} =ei:1£'U (O}e-iJ£'=e'L'U (O). (16) 

Here, :J6 is the Hamiltonian of the system and thermo­
stat, and L is the Liouville operator whose action on 
any operator B is defined by 

LB=[H, BJ. (17) 

If the characteristic energy of hyperfine interactions 
is much less than the thermal energy, the density ma­
trix can be divided into a product of density matrices 
corresponding to the investigated system and the ther­
mostat: 

(18) 

If we introduce an operator g>, projecting the state of 
the system and thermostat onto the variables of the in­
vestigated system: 

9"=Tr(PT, .. ' ), (19) 

we find that Eq. (15) becomes 

cp(Ill}=Re Tr (PAU+(O}G(p}U(O}), (20) 

where 

1 
G (p) =9" --:-L 9". 

P-L 
(21) 

The expression (21) implies quantum-statistical averag­
ing. However, if the Hamiltonian of the hyperfine in­
teractions is represented in the form (3) the average 
over the thermostat states in Eq. (15), subject to Eq. 
(18), can be replaced with the mathematical expectation: 

Here, LA is understood to be the Liouville superopera-
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tor, defined by Eq. (17), with the Hamiltonian corre­
sponding to the sum of the Hamiltonians of the ground 
and excited levels of the nucleus (3). In this case the 
problem reduces to the calculation of 

G = < exp (i i LA dt ) > . 
o 

(23) 

The solution can be obtained by the theory of random 
processes. In this case C is the solution of the follow­
ing differential equation (the problem is assumed to be 
of the steady-state type): 

(24) 

subject to the initial conditions C(O, x) = 1. The solu­
tion (24) describes the function C(t, x) introduced in ac­
cordance with Eq. (23) on condition that at t = 0 the 
orientation of the effective magnetic field at the nucleus 
corresponds to the vector x. In the case of Eq. (22), 
it is necessary to average over possible initial states 
in accordance with the formula 

t 

< exp (i f LA dt) > = f Wo(x)G(x, t)dx. (25) 
o x 

Thus, Eq. (24) gives the solution of the problem in 
its general form, i. e., for any relationship between 
FV and kT. However, under experimental conditions 
(for FV» kT) the magnetization states are frequently 
realized in a finite number (N) of possible states. Then, 
Eq. (24) transforms to 

(26) 

and Eq. (25) to 

(27) 

The matrix M can be obtained by solving Eq. (14) with 
appropriate boundary conditions, i. e., by determining 
the transition time between various pairs of easy mag­
netization axes. 

The solution of Eq. (27) is of the form 

G(t}=exp (iLAt+Mt). (28) 

We now find the form of a MBssbauer spectrum 

(29) 

The expression (29) was obtained in[15l within the sto­
chastic theory framework. Direct calculations based 
on Eq. (29) meet with considerable mathematical dif­
ficulties because it is necessary to invert high-rank 
matrices. However, we shall show that Eq. (28) can 
be simplified by averaging Eq. (26) over stochastic 
variables, i. e., it is possible to reduce the matrix 
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rank from (2Ie + 1) (21g + 1)N to (21e + 1) (21g + 1). 

The expression for the form of a Mossbauer spec­
trum of a poly crystalline sample becomesC19J 

'(jl(Cll) =Re .Eq,(k, al (p-iLrM)-'lj,~) Wo(x~), (30) , 

where 1 k, a);;; 1 me, a) (mg, ai, k;;; (me, mg) and qk is the 
probability of a k-th Mossbauer transition. We shall go 
over from the basis Ik, a) to the basis Ik(a), a): 

where me(a) and mg(a) represent the excited and ground 
states of a nucleus with a definite projection onto the 
z axis parallel to the direction a. If all the stochastic 
states are equiprobable, we find that 

(jl(Cll)=Re ~.E,.E q,(k(a),aIG(p)lj(~U) (j(~)lk(a», 
k,i a.~ . 

(k(a), aIMlj(~), ~)=(k(a) lj(p»M." 

(k(a), aILAIj(~), ~)=Cll,Il'jll •• , 

(32) 

where wk is the frequency of a k-th Mossbauer transi­
tion in the case when M = O. 

We shall analyze the case when averaging over sto­
chastic indices can be carried out in Eq. (26) term by 
term. We shall separate formally the stochastic in­
dices in the matrices M and G and we shall find when 
the following relationship applies: 

SfJJ(MG)"" .EM'TG,,= ~ SfJJ(M)SfJJ(G). 
<1,I\T 

(33) 

This is possible if the matrix M can be expanded as a 
system of matrices es , all of whose elements vanish, 
except N terms which are equal to unity. Then, each 
column and row does not contain more than one unity. 
A set of these matrices is closed in respect of multipli­
cation so that we have the following obvious equality 

1 
SfJJ(e,e,) = Ii SfJJ(e,)SfJJ(e,). (34) 

Multiplication of es by any matrix G results in a trans­
position of rows G s' so that 

1 
SfJJ(e,G) =SfJJ(G) = Ii SfJJ (e,) SfJJ (G) . (35) 

If, for a given system of easy magnetization axes, the 
set of rotations resulting in coincidence of a system of 
coordinates of anyone of them with all others (the z 
axis is directed along an easy magnetization axis) forms 
a group, there are N different rotation operators be­
tween the various pairs of axes. The matrix of these 
operators for a system of easy magnetization axis gives, 
by its coincidence terms, the required expansion of the 
matrix M in Eq. (32). It follows from symmetry of 
these pairs of axes that the elements of the matrix M 

are all the same. Then, Eq. (26) becomes 
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dGldt=MG+iEAG, 

so that 

(36) 

(jl(Cll)=Re ~.Eq,(kIG(p) Ij) (jlDlk), (37) 
'.1 

where 

~kIJllj)= ~ .E (k(a) Ij(M)M." .. ' 
(kIEAIj) = Cll,Il'j, (jlDlk)=~.E (j(a) Ik(p». .. ' 

Thus, we have been able to reduce by a factor of N 

the rank of the matrix G. However, in special cases 
the problem can be simplified still further, as demon­
strated inC14J when an analytic expression can be ob­
tained by applying the symmetry of the problem to easy 
magnetization axes of the [100] type. 

We shall simplify the estimates in Eq. (37) by re­
placing (k( a) Ij(m) with 1 (k( a) 1 j(m 12. If we compare 
the results obtained in this way with the exact results 
calculated in accordance withC14l , we find that the dif­
ferences are slight and they amount to about 5%. 

The authors are grateful to A. M. Afanas' ev for help­
ful discussions. 
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