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The density of vibrational states is studied in a crystal with impurities that result in the appearance of 
localized states near the edge of the unperturbed spectrum W m • A group expansion of the one-particle 
Green's function and the density of states with respect to complexes of interacting impurity centers is 
obtained. In the case of small impurity concentrations c< Co (co is a characteristic concentration), the 
group expansions converge in a broad region in the vicinity of W m , excluding the region of concentration 
broadening of the local oscillations. The density of states is found through the region of convergence of the 
group expansions, including the transition region between states which can be described approximately by 
plane waves and fluctuation states caused by pairs of impurity atoms located at distances which are smaller 
than the mean distance. The density of states is also considered in the case of sufficiently high 
concentrations c> Co (but c< 1). The results are compared with those of the coherent-potential technique. 

PACS numbers: 63.20.Pw 

Localized vibrational states of a crystalline lattice 
which contains isolated impurity atoms have by now 
been well studied. Cl,21 It is of interest to consider the 
behavior of the vibrational spectrum of a crystal for 
sufficiently high impurity concentrations c, when the 
effects of interaction between them begin to playa part 
(however, c« 1, so that the interaction is essentially 
via exchange of virtual phonons and we can neglect the 
direct interaction between the impurities). Qualitative 
and, in certain cases, quantitative consideration of such 
effects has been carried out by a number of authors, [3-61 
An extensive range of problems devoted to the structure 
of the energy spectrum has been studied by I. Lifshitz[31 
(broadening of the local level, shift of the band edge, 
structure of the spectrum near its actual boundary, 
and so on). An equivalent approach has been developed 
by Pokrovskii and co-workers[S1 for the electron spec­
trum in the presence of localized states near the bottom 
of the band. 

In the present research, we have obtained a group ex­
pansion of the one-particle Green's function of the os­
cillations of a crystal with respect to complexes of in­
teracting impurity atoms (similar to the way in which 
the group expansion of the sum over states is obtained 
in the Maier theory of a nonideal gas). Such an ap­
proach, in contrast to the previous cases, allows us to 
calculate, in a unique systematic way, the density of 
states over the entire range of frequencies conSidered, 
including the transition region between the fluctuation 
states and the states that are described approximately 
by plane waves. 

Impurity centers are considered which lead to the 
appearance of localized states near the edge of the un­
perturbed spectrum, so that the characteristic concen­
tration 

I Olo'-Olm' I ~. 
Co = -g-2-- <: 1 

(Wo is the frequency of the localized excitation of the 
isolated defect; the dispersion law near the edge of the 
spectrum is of the form ~ = u'.. - n2 (ak)2, a is the lat-
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tice constant, and the wave vector k is measured from 
the extremal points of the spectrum). 

At low concentrations (c« co), the obtained spectral 
density describes successively states having the char­
acter of plane waves, then states intermediate between 
plane waves and fluctuations and, finally, states due to 
pairs of neighboring impurities. The state of relatively 
high concentrations, c» Co (but c« 1), is also consid­
ered. 

In the present work, we have, for simplicity, con­
sidered a single-atom cubic crystal, containing iso­
topic substitution impurities. To be able to consider 
independently all three branches of the vibrational 
spectrum, a model of the crystal is used with equal 
central and non-central interaction forces between near­
est neighbors. However, the results remain in force 
also for more realistic models, and after corresponding 
transformations they can also be used to describe im­
purities in electron, exciton and other spectra of ele­
mentary excitations of nonideal crystals. 

THE GREEN'S FUNCTION AND THE DENSITY OF 
VIBRATIONAL STATES IN A CRYSTAL WITH 
IMPURITIES 

In the harmonic approximation, the density of vibra­
tional states of a crystal can be represented in the form 

(1) 

where MI =M, M' is the mass of the matrix atom and 
the impurity atom, u'a is the displacement of the I-th 
atom in the direction O!, N is the number of sites in the 
crystal, and the normalization condition is 

Sg(0l2)d0l2=1. 

The advanced Green's function is defined as usual: 
o 

«AIB»o-"=i S <[A(t),B(O)]>e;o'+"dt 

(the index w - i(j will be omitted below). 
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We expand the displacements in normal vibrations of 
unperturbed crystal: 

U",= L, e.ql exp (iqR,)B ql , 

.., 

here wqJ and eqJ are the frequency and the polarization 
vector of the phonon of the j-th branch with the wave 
vector q, and RI is the radius vector of the l-th site. 
The density of states is then divided into two parts: 

g( 00') =g, (00') +g,( 00'), 

g, (00') = ~: 1m L, «BqIIB_oI», (2) 
q,J 

g,(OO')= 3:: 1m L, «u.,.lu.,.»; 
',a 

t = (M - M')/M, and the index s runs only over the sites 
occupied by the impurity. 

The Hamiltonian of the crystal has in the harmonic 
approximation the form 

X=X,+X" X, = L, OOqla!jaOI, 

ql 

X, = e~1 4~ L, L, eoojeo'o';' exp[i(q+q')R.l 
qjq'j",a,a.' 

(3) 

Writing down the chain of equations for the function 
«BqjIB_qJ», and expanding the polarization operator in 
the groups of interacting impurities, similar to what 
was done in[7], we get 

(4) 

where 

ero' 
D=l-- \"'1 (ro2-00~'-R.,)-' 

3N ~ '" 
k ... _q)' 

(5) 

c is the impurity concentration, and the summation in 
the expressions AOIAIO is taken over the non-coinciding 
wave vectors. It should be noted that the diagonal of 
the Green's function «Bqj I B_qJ» and the polarization op­
erator RqJ are self-averaging quantities; therefore, we 
can average directly the quantity RqJ over the random 
distribution of impurities. The second term in the 
brackets in the first of Eqso (5) determines the contri­
bution from aU possible pairs of interacting impurities 
and the omitted components correspond to groups of 
three and more impurities. As is seen from (4) and (5), 
the expressions for D and AOI contain the polarization 
operator RqJ, and therefore the completely renormal­
ized representation (4), (5) forms a self-consistent set 
of equations for the determination of R qJ • 

By modifying the procedure of obtaining the equations 
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for tl).e Green's functions «BqJ I B_q!» , we can obtain its 
other representation: 

«Bol I B_ ql» = (MN) -, (ro'-ooo;') -, (1+ Rql(oo'-ro o;') -'), 

where 

eoo' A" = -- \"'1 elkR, (00'-00.', ,) _I. 
3ND,~ " 

k,j' 

(6) 

(7) 

the expressions for Do, ..401 , and Aol ..4 lo do not contain 
limitations in the summation over k. The first two 
terms of the renormalized representation obtained here 
for RqJ (7) are identical in form with the corresponding 
expression (5) for R q/; however, the next terms will be 
different. In the derivation of expressions (4)-(7) it 
was taken into account that, within the framework of the 
chosen model wherein forces of the central and non­
central interaction are equal, three branches of the vi­
brational spectrum of the nonideal crystal remain in­
dependent and are not entangled with one another. One 
representation or the other will be used in what follows, 
depending on the considered branch of frequencies. In 
similar fashion, we can find the expression for gz(wZ); 
however, it turns out that for c« 1 and co« 1 the con­
tribution gz(w2 ) can be neglected everywhere in compari­
son withg1(W2) • 

DENSITY OF STATES FOR LOW IMPURITY 
CONCENTRATIONS 

1. Let the frequency Wo of the local oscillation (LO) 
of the impurity center, which is determined by the 
equation 

Re D,(ro,') =0, (8) 

lie outside the continuous spectrum, close to its edge, 
so that the characteristic concentration co« 1, 

It is assumed here that the dispersion law, close to 
the band edge, is of the form 

OOk;'=OOk'=OOm'-Q'(ak) , 

(9) 

(10) 

for all three branches of the unperturbed spectrum. We 
shall call small such concentrations for which c« co. 
Here the mean distance between the nearest impurity 
centers r =ac-1/3 is much greater than the radius 
ro- ac'Ol/3 of the spatial distribution of the LO. 

Local oscillations arise in the system when the so­
lution of Eq. (8) lies outside the continuous spectrum of 
the unperturbed crystal (ufo >w~). Here, one or another 
of the group expansions (4) and (6) for the Green's 
function is convergent throughout the entire range of 
frequencies with the exception of an immediate vicinity 
of the LO frequency wo, of width ~0/2wo (~o- tfo/3nZ 
xexp[ - 8(co/C)1/3], 8-1), and also the region of the 
actual boundary of the spectrum of the considered crys­
tal. In the region ~o of concentration broadening of the 
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LO frequency, the density of states is determined by a 
large group of impurity centers located at distances 
that are greater than or of the order of r, and near the 
actual boundary it is necessary to take into account the 
fluctuations of the cluster of impurity centers; this 
question was studied in detail in(31. 

Outside of the region ~o, but still very close to wo, 
the renormalized representation (6) and (7) converges 
better (in terms of the parameter clco). Substituting 
(6) and (7) in (2), transforming in R tJ, from summation 
over 1 to integration, and recognizing that in the region 

2 2 n2 I 2 21 0< W - Wm « •• , W - Wo »~o, we have 

_ EW' [( W'-Wrn' )"',] 
Do- 4nQ' ~ -co , 

Ew'a (R' ) (w'-wrn' )'" .dOl = ., exp -x- , x = --.- , 
4nQ-DoR, a Q-

we obtain the following expression for the density of 
states in the given range of frequencies: 

(11) 

( ') (') nc'Rw'[!+sign(w'-wo')exp(-xR.la)] (12) 
g w- =g, w = Q'a'x I x-c,'I'1 (1+xR.la) . 

The principal contribution to the density of states for 
the given frequency is due here to the pairs of impuri­
ties found at such a distance R I ",R", that 1.40/1 '" 1: 

R.=alx-co"'I-' exp(-xR.la). (13) 

Since a« R", « ac·1 13 here and, in addition, it is as­
sumed that the broadening of the discrete levels cor­
responding to different 1 is larger than the distances 
between the neighboring levels, one can actually re­
place summation over 1 by integration. 

Near the boundary of the continuous spectrum (for 
x« cA / 3), as is seen from (13), R",'" aciil/3 , and 

g(ro') =nc'/c,"'Q'. (14) 

As x- 0, the unrenormalized representation (6) and (7) 
ceases to converge, while the completely renormalized 
representation converges in the range w2< w~ 
- c1l2cA/sn2. We note that when w~< w2< w~- cl/2c~Sn2, 
both employed representations converge and lead to 
identical expressions for the denSity of states. 

As has already been noted, when finding the density of 
states gl(w2) with the help of the renormalized group 
expansion it is necessary to solve the self-consistent 
set of equations (4) and (5). For this purpose, we use 
the following method: We represent gl (w2) in the form 

g,(ro') =g.(w')+g,(w'), 

g, (w') = _1_ 1m ~ «(J}'-w.'-Rk _ O)-" 

nN ~ • 

(15) 

(16) 

(17) 

In the polarization operator Rt. we separate the part 
that depends on k: 

R.=R,+R" k, R,=cew'jD, 

(18) 
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It is not difficult to see that R2,t differs appreciably 
from R2,t=0 for k ~ R:; - cA 12 and just such k gives the 
basic contribution to g4(W2). Taking it into account that 
here also W 2 - ~ - Rl »R2,t, we get 

( ') - 1 I 1: R"k-R"k~O g, W -- m . 
nN • (w'-w.'-Rd' 

(19) 

Apart from insignificant corrections, the calculation 
of g4 (w2) leads to the expression (12) in the region of 
convergence, if we substitute 

Wm2-+-Wm2J;;;;;;ffim2+ ReRl=Wm2-4:ncco-I/'Q2 

everywhere in it. 

Using the dispersion law (10) for the calculation of 
the integral in (16), we transform the self-consistent 
equation (16) for g3(W2) into the following algebraic equa­
tion: 

g,'-C,Lg,'-'j,C,'M'=O, (20) 

cew' ReD 
Q' (ReD)'+[nero'(g,+g,)]' 

M = _n_c.:..,(e_w...:')_' g,+g, + ImR"._o 
Q' (ReD)'+[new'(g,+g,)]' Q' 

C,=(4n'Q') -'. 

In the entire range of frequencies, only one of the roots 
of Eq. (20) is real and positive. Far from the renor­
malized .. edge" of the spectrum Wm, when the condition 

is satisfied, g3(W2) has the order of magnitude c31 C~3:;" , 
where :;"2", (w2 _ ~)/n2, and in this region, the principal 
contribution to g(w2) is made by g4(w2). As the transi­
tion region I w2 - w:l- ~is approached, the density of , 
states begins to increase sharply, and in the limits of 
this region, as well as wherever w2 < w:, one must use, 
generally speaking, the expression (15), where g3(w2) 
is determined from Eq. (20). The general form of the 
density of states in the case of LO is represented in 
Fig. 1. 

If c« co/2~, then, at w2 < ~ + ~ 1, we c an neglect the 
quantity g4(W2) in (15), and then 

1 [wrn'-w'+Ll, 
g(w') ""g,(w')= 4n'Q' Q' (21) 

We have discarded here terms that make a contribution 
proportional to c3 to g3(w2). 

As we move away from the transition region, the ex­
pression (21) approaches the density of states of the un­
perturbed crystal asymptotically. In the case in which 
w~ - w2 »~1> the vibrational states can be described 
approximately by the plane waves(3,5] with frequency 

and with a damping 

ImR. 8n'd2'g, (w.') 
"(k =~= (J}ktc:"+(wm'-wk')/Q'] 

It is seen from (22), (23) that when w~ - ~ »~l' the 
condition 

k dw(k) 
---;Jk::i> y. 
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FIG. 1. Density of states in the case of the development of 
local oscillations near the edge of the unperturbed spectrum 
for cleo = 1/1011'. The dashed curves give the density of states 
of the unperturbed crystal, and the dot-dash curve the region 
of the concentration broadening of the LO. 

is also satisfied, i. e., the lifetime of such excitations 
is large in comparison with the time of their propaga­
tion over a distance of the order of a wavelength. 

g,{ro') =cI2nc;" Q' when wm'-ro'=O. 

At the same time, the expressions (19) and (20) remain 
valid and enable us to describe in continuous fashion the 
transition from a state of plane-wave type to fluctuation 
states that are due to pairs of impurities. 

2. We now proceed to the consideration of such im­
purity centers which lead to the generation of resonance 
states close to the edge of the unrenormalized spectrum. 
The expression for Do can be represented in this case in 
the form 

ero' 
Do =4---;-[C,'h+lxl (9 (ro'-rom') +iB(rom'-ro')) J. 

nQ 
(25) 

Here, as before, we can assume that the characteristic 
concentration is co« 1 and c« co. The shift in the 
"boundary" of the spectrum turns out to be equal to 
w~ -~ = 41TCCOl/30Z and differs only in sign from the 
case of LO. In the region w~ - WZ »a1, the expression 
for the density of states, and also the frequencies and 
damping of the excitations, are obtained from the cor­
responding formulas (21)-(23), if we reverse the sign 
of the second term under the radical in (21) and (22). 
Near the transition frequency, when ~z« ~/S, the quan­
tity ImRz,t due to pairs of impurities is determined by 
the expression 

2n'c'r 3 [ sin kr ) 
ImR, .• = IDla: 1+sign(ro'-roo')~' 

_1/, 
rw~aco . (26) 

It is seen from (26) that ImRz, keO = 0 in the transition re­
gion for the LO, and for the resonance states, ImRz,t=o 
= 161TSC3c~/30Z and plays an important role in Eq. (20). 
As a result, the resonance states g(wZ) in the region 
I wZ - ~I« COZ/30Z can be described with the help of a 
standard function that does not depend on the param­
eters of the problem: 
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4n'c' 
AIJ=:~-Q2, 

o 
{27) 

where f(x) is determined by the solution of the problem 

f'-xf-(f+2n)'=O (28) 

and its plot is shown in Fig. 2. When x» 1, the func­
tionj(x)= rx, the expression (27) here is identical with 
the earlier determination of the density of states in the 
region w! - wZ »at" When - x» 1 we have f(x)= 211'/ 
(iIXf -1), and gs(wZ) is equal to 

2nc' 
g,(ro')= _ , (29) 
. c~'Q' (x-2nc!c';') 

If I wZ - w~l« c~/SOZ, then g4(wZ)« gs(wz). As wZ in­
creases, the function gs(wZ) falls off, and for wZ - ~ 
+ ~/30Z, it is equal to g4(WZ). In the region WZ 'i? ~ 
+ ~/SOZ, the density of states is determined by the ex­
pression (12). It must be noted that whereas for the LO 
we have near Wo a region a o where the group expansion 
ceases to converge, for the resonance states the group 
expansion enables us to calculate the denSity of states 
everywhere up to the region in which the fine structure 
of the spectrum, due to the discreteness of the spatial 
distribution of the impurity centers begins to appear. 

HIGH IMPURITY CONCENTRATIONS 

We shall define as "high" such impurity concentra­
tions for which the condition co« c« 1 is satisfied 
(where, as before, Co is defined in (9». The region 
where the group expansions (4), (5), and (6), (7) cease 
to converge broadens in this case to 

(30) 

In the present work, we shall consider the range 'of fre­
quencies I wZ - wZml »az. Since a z » I ~ - w~1 =c~/30Z, 
the qualitative results for the LO in the resonance 
states are identical for c» Co. 

We first consider the density of states inside the un­
perturbed spectrum: w~ - wZaz• Taking into account in 
this region the corrections to the density of states that 
are linear and quadratic in the impurity concentration, 
we obtain 

S-x' cos x cos 3x+x' sin 2x+x cos' x dx 1 0 178 
~= --"" .. 

x'+2x' cos 2x+1 4 
o 

x'= (ro'-rom') /Q'. (31) 

The minus and plus signs correspond to LO and reso­
nance states, respectively. In the vicinity of the "for­
bidden" region a z, the principal correction to the den­
sity of states is negative and is determined by the last 
component in (31). When - x Z »41Ttkco1IS »az/oz, the 
principal correction is determined by the second com­
ponent in (31) and, if we recognize that ~ - wZ» col/SOZ, 
this correction is identical here with the corresponding 
correction to the density of states at small impurity 
concentrations in (21). 

In the region of frequencies ~ - WZ »az that we have 
conSidered, the condition (24) is satisfied, and the 
states can be decribed approximately by plane waves. 
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FIG. 2. Universal functionj(x) for the density of states in the 
case of resonance states. The dashed curves give the asymp­
totes I-..fX, x» 1 and II-27f/( !x!1/2-1), -x»1. 

The principal term in the damping is determined by the 
same formula (23) as for small concentrations. It fol­
lows from (24) that at high concentrations, the achieved 
values of the wave vector is k>(21TC)1/3 a-i, i.e., the 
wavelength should be less than the mean distance be­
tween the impurities. Longer-wavelength excitations 
are already damped out at distances of the order of the 
wavelength. At low concentrations, it follows from the 
conditions uf., - uI- »A i and (24) that the region of achiev­
able values of the wave vector is much wider: k> 41TC/ 
ac~/3. The latter circumstance can be understood by 
assuming the scattering cross section for one impurity 
to be equal to aZcoZ/3. Then the mean free path of the 
excitation turns out to be ac~/3/41TC, which is much 
greater than the mean distance between the impurities 
-ac-i / 3• 

We find also the density of states for high concentra­
tions in the range 1» (wz - w~)/Oz »Az/Oz, where the 
pair fluctuations of the impurity atoms are decisive: 

g( Ul') ~1tC2S3/Q'x', (32) 
and ~ is determined from the condition ~ = e l, ~ z O. 57. 

At still higher concentrations, when c-1, it is nec­
essary to take into account the direct interaction be­
tween the impurities, since this interaction becomes 
more important than the exchange of virtual phonons. 
Moreover, in this case it is no longer possible to re­
strict oneself to consideration of only the first terms 
in the group expansions (4), (5) and (6), (7). 

CONCLUSION 

The group expansions obtained in the present work 
and the estimates of their region of convergence enables 
us not only to obtain the specific results discussed 
above, but also to estimate the region of applicability 
of the different approximation methods in the theory of 
nonideal crystals, for example, the coherent-potential 
method. [8,9] 

In the polarization operator R t of (5), we keep only 
the first term in the brackets. As a result, we discard 
all terms that describe the interaction between the im­
purities; however, R t is determined as usual in self­
consistent fashion, since this same polarization oper­
ator enters in the definition of the denominator D. Such 
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an approximation corresponds just to the coherent-po­
tential method for not too high concentrations of the im­
purities. If we carry out such a calculation systemat­
ically for the case of LO at c« co, then an impurity 
band arises near the frequency [w~-A, ~+A] with a 
high denSity of states. The width of this band, 2A 
=4v2c i / ZcOOZ, is much less than the distance from w~ 
to the edge of the fundamental band w~, and the density 
of states in the interval between the bands is equal to 
zero. Moreover, it turns out that in the interval [~, 
W~+81TCOZ/C~/3J the states have the character of plane 
waves. All these results do not coincide with those of 
the present research, the reason being that such an 
approximation is inapplicable in the given regions, 
since the discarded terms of the group expansion turn 
out to be of the sa·re order as those retained. At the 
same time, for ~ - WZ »Ai> the method of coherent 
potential correctly describes the density of states and 
the shift of the band edge. 

For c» co, the width of the region of dispersion of 
the impurity band is of the order of A2; therefore in 
this case we cannot speak of a dispersion law for the 
impurity band. A different situation can arise if a new 
small parameter appears, of the type eul-/41T02 « 1. 

It should also be pointed out that the group expansions 
obtained here can be applicable also to the spectra of 
elementary excitations of other types in the presence of 
nearby localized states, in particular, for impurities 
in the electronic subsystem. If we replace uI- by E and 
w~ by ~'B' C~/3 by aa and 0 2 by 1/2m~, then in the 
region wm - uI- »Ai> the expressions obtained here in 
the linear approximation in the concentration agree 
with the results of[S]. Inside the fluctuation region, but 
far from the transition region not considered in[S], 
the expressions (12), (29), (32) have qualitatively the 
same form as the corresponding results obtained in[S] 
with the use of certain qualitative considerations from[4], 
but differ by a constant factor, equal to ~. 
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