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FIG. 2. Dependences of the level energies on the field intensi­
ty: a) for Z = 10; b) for Z = 30. The. numbers alongside the 
curves are the indices of the levels E, • 

ing the addition of momentum and parity conservation. 
If the levels do not combine, i. e., if the nondiagonal 
matrix elements of the operator of the external field 
between the corresponding states vanish, the theorem 
on the crossing of levels with identical quantum num­
bergC41 is inapplicable: the ll~vels "do not know" ofthe 
existence of one another and there can be no mutual re­
pulsion. 

Figure 2 shows dependences of a different kind: the 
level energies are plotted as a function of the field F for 

fixed values of Z. The maximum values of the field 
intensity in Fig. 2 are of the order of the internal atom­
ic field for the corresponding values of Z. The curves 
in Fig. 2 demonstrate also repulsion of the levels and 
the appearance of new crossings in an electric field. 

It should be noted that, in contrast to i; the field is 
a continuous parameter, i. e., we are dealing here with 
real intersections. In aU the graphs the level energies 
are divided, by convenience, by Z and represented in 
atomic units; the field intensity F is also given in atom­
ic units (1 at. unit = 5.14 x 109 V /cm). It is clear from 
Figs. 1b and 2 that the influence of an external field of 
fixed intensity F rises when Z is reduced. This is fair­
ly self-evident: the matrix element of the Coulomb in­
teraction of electrons is proportional to Z and the Stark 
matrix element is proportional to Z -1. 
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It is shown that the increase of density of a medium can result in a prohounced change in the 
nonresonant charge exchange cross section. even though the pairing condition for the process is satisfied 
with sufficient margin. At a large bare resonance defect the final result is determined by competition 
between an exponentially small cros& section corresponding to a nonadiabatic transition and a low 
probability of particle configurations in the mi!dium such that the effective defect is negligible. 

PACS numbers: 82.30.Fi 

When the density of a gas medium is increased, its 
influence on the inelastic collisions of atoms and mole­
cules begins to come into play even before triple colli­
sions become Significant. Indeed, this becomes a pair­
ing process if the criterion nor3/2 « 1 is satisfied, where 
n is the density of the gas and (J is the collision cross 
section. 1) However, the potential fields produced by 
the gas environment can lead to a shift of the terms of 
the colliding particles, which greatly influences the 
value of (J even in the region where the foregoing in­
equality is satisfied. The corresponding problem was 
considered earlier[1] with resonant charge exchar.ge as 
an example, while Lisitsa[2] investigated the crossing 
of the atomic terms under the influence of a random 
field of a gas medium. The present paper is devoted to 
nonresonant charge exchange in gases of finite density, 
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when the criterion for the pairing in the collisions is 
still satisfied. 

According to Massey's adiabatic criterion the cross 
section for nonresonant charge exchange is exponential­
ly small in comparison with the gas-kinetic cross sec­
tion if the resonance defect ~ greatly exceeds the quan­
tity'Yv, where v is the relative collision velocity and 'Y 
is of the order of the atomic momentum. The ion that 
takes part in the charge exchange polarizes the particles 
of the surrounding gas, and this leads to a shift of the 
terms of the quasi-molecule made up of the colliding 
atoms. Thus, an effective renormalization of ~ takes 
place and, in particular, particle configurations are 
possible in which the resonance defect is practically 
completely suppressed, that is, I ~eff I becomes less than 
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or of the order of yv. This corresponds to resonant 
charge exchange, which is characterized by large cross 
sections. The final result will obviously be deter­
mined by the competition between the low probability of 
the favorable configurations and the exponential small­
ness of the cross section corresponding to a nonadia­
batic transition at a large resonance defect. 

The difference between the terms of the quasimole­
cule in the presence of a gas environment is of the form 

(o;,-o;,)e' ErR. 
fI .. -fI,,=tl- + 2o;e' -.. 

2r' R.' 

Here A is the "bare" resonance defect; al> a 2 , and a 
are the polarizabilities of the colliding atoms and par­
ticles of the gas medium, respectively; we assume 
henceforth that the ion exchanges charge with one of 
the gas atoms, that is, a= a 2; r is the distance between 
the colliding atoms, R; is the coordinate of the i-th 
particle of the gas environment. In formula (1), ac­
count is taken of the fact that the distances that are es­
sential for charge exchange are r« R j (pair colli­
sions).2) 

The charge-exchange probability depends on the ef­
fective resonance defects At and A2 at the points ret and 
r e2 (respectively when the atoms come close together or 
move apart), where the off-diagonal matrix element of 
the interaction Ht2 becomes comparable with the differ­
ence of the diagonal elements I Hu - H22 1. In contrast to 
collision in vacuum, At is in general not equal to A2, so 
that the points ret and r e2 correspond to different con­
figurations of the quasi-molecule and the gas particles. 
The binary distribution function of the defects At and A2 
is of the form[t] 

1 +~ 

f(tl" tl,) = -SS exp{i(tl,t,+tl,t,) -nA (o;e')'/' 
4n' 

X[p'(t,+t,) '+x' (t,-t,)'],',,}dt, dt" 

5n (2) 3n A = -- r -- cos - '" 5.17 
3·2'" " 10 ' 

where P is the impact parameter of the collision and x 
= (r;- p2)1I2; we assume the atoms to move in straight 
lines. The quantities ret and r e2 are of respective or­
der of magnitude y-tln(y2/At.2Hn = 1, m= 1), and we shall 
assume with logarithmic accuracy ret = re2 = re' 

The Charge-exchange probability in the case of differ­
ent defects at two critical pOints was calculated earli­
er[l) 

W=~[1-th nltl,l h nltl'l] (3) 
2 21v (1-p'lr,,')," t 21V (1-p'lr,,')'" . 

Formula (3) corresponds to the result averaged over the 
fast oscillations of the transition probability, which take 
place at p$Po-y-tln(y/v). In the region P>Po, the 
probability W is practically equal to zero. 

The collision cross sections averaged over the con­
figurations are determined by the formula 
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(0)=2" S f(tl"tl"p)W(tl"tl,.p)pdpdtl,dtl" 

and the upper limit in the integration over the impact 
parameter Pmax depends itself on At and A2• Generally 
speaking, Pmax = min(po, ret' r e2 ). We, however, will 
consider the most interesting case A»yv, and there­
fore Po can be excluded from the number of competing 
values, since Po> rei and Po> r e2 in this case. 

As already indicated above, ret and re2 are equal with 
logarithmic accuracy, so that Pmax=re, where re is de­
termined by the values of the defects that are important 
in the integration in (4) with respect to At and A2• It is 
seen from (3) that the probability of the transition dif­
fers essentially from zero in that part of the (At, A2) 
plane which is shown in the figure. The width of the 
band is of the order of yv, and the center of the region 
is located at the point Al = A2 = A. Thus, Pmax"y-t 
X In( 1'2/ A). 

We present the result of the calculation of the cross 
section in two limiting cases: at A» yv» ae2r Jl5/3 

( )-4 21v {ntl }+B 2 n(o;e'r,)"'1v 
0' - rc Tel::p - "(v re /j.'/, ; (5a) 

(5b) 

where 

In formula (5a), the first term corresponds to colli­
sion of particles in vacuum, [3] and the second term 
gives the sought effect of the gas environment. 

We present some numerical estimates. At v-106 

cm/sec, 1'-1 a. u., a-10 a. u., and A- 0.5 eV the 
second term of (5a) becomes equal to the first at n 
= 3x 10t8 cm-3; for n = 1020 cm-3 we have u- 10-2 a. u. 
The condition for the collisions to be binary is still well 
satisfied in this case: r~n - 6 x 10-4• 

In the case of charge exchange in a dense strongly 
ionized plasma, the shifts of the terms of the quasi­
molecule are determined by the Coulomb field of the 
charged particles. It can be easily shown that the den­
sity-dependent part of the cross section, that is, the 
second term in (5a) and formula (5b), takes the form 
(at A» e2ren2/3) 

R. Z. Vitlina and A. V. Chaplik 281 



n- (e'r ) y,~v 
""235r" , , 

• C tl 5/ 2 
(6) 

where n, is the ion density. At the parameter values 
used above, the coefficient of n, in (6) is approximately 
two orders of magnitude larger than the coefficient of 
n in (5). A characteristic feature of the obtained for­
mulas is the linear increase of the cross section with 
increasing velocity. 

The foregOing calculations are based on the assump­
tion that the quantum-mechanical part of the problem, 
that is, the calculation of the charge-exchange proba­
bility, can be solved in the two-particle approximation. 
This means that the effective charge-exchange radius 
re is small in comparison with the Significant distances 
R, to the particles of the gas environment. In both con­
sidered cases (neutral gas and strongly ionized plasma) 
the resonance defect is assumed to be large in compar­
ison with the characteristic dimenSion of the function 
j(A j , A2). Therefore the significant R j can be estimated 
from the relations 

for the polarization and Coulomb interactions, respec­
tively. This leads to the following restrictions on A: 

I ~- (a,-a)e'/2ro' I «.2ae'/r,,, 

~«.e'/r,. 

(7a) 
(7b) 

The compatibility of the inequalities (7a) and (7b) with 
the conditions for the applicability of formulas (5a), 
(5b), and (6) is ensured by the criterion n~« 1 under 
which the collisions are binary. Numerical estimates, 
on the other hand, show that the condition (7b), which 
pertains to the Coulomb case, can be easily satisfied 
for many pairs of colliding atoms, whereas (7a) 
imposes more stringent limitations on the parameters 
of the collision partners. An example is charge ex­
change of the nitrogen ion in krypton 

~=0.54eY, aK,=16.8 a.u. , aN=8 a.u., r,=4 a.u., 
I ~- (aK;-aN) e'/2r,' I ",,2·10-' a.u., 2aK,e'/r,'''''0.13 a.ri. 

In many cases both sides of inequality (7a) are of the 
same order of magnitude, so that we are at the limit of 
the region of applicability of formulas (5). It is easily 
understood, however, that in this case the linear depen­
dence of (a) on the product nv is preserved here: the 
factor yv results from integration of the transition 
probability W, and the proportionality of the density is 
connected with the fact that (a) contains the asymptotic 
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form of the distribution function at large values of Aj or 
A2• This asymptotic form is determined by the proba­
bility that the nearest neighbor will fall in a specified 
layer, and this in fact governs the value of n. 

In the case A» e2/r~ we cannot use the_e:ltpansion in 
the ratio re/Rp Then the particles of the gas environ­
ment have practically no effect on the cross section of 
the process if the charge exchange is with one of them. 
However, the influence of the gas environment may turn 
out to be appreciable if the given pair is charge-ex­
changed in a buffer gas whose particles cannot take part 
in the charge exchange (for example the reaction A- + B 
- A + B- in an environment of inert-gas atoms which do 
not form negative ions). Then the transition probabil­
ity is determined as before by the two-particle formu­
la (3). The condition A» ae2 /r~ denotes that to sup­
press the defect the buffer-gas atom must come closer 
to one of the collison partners than the distance r e , that 
is, it suffices to take into account the interaction with 
just this particle. Then the density-dependent part of 
the cross section takes the form 

2'/,,, In 2-n(ae') "'lv 
<0> = 3~'/' ro'o (8) 

We note in conclusion one more situation wherein a 
sufficiently dense gas environment can qualitatively 
change the picture of a paired inelastic process. If the 
reaction proceeds with absorption of energy and the 
resonance defect exceeds the kinetic energy of the col­
liding particles, then for collisions in vacuum this pro­
cess is forbidden by the energy conservation law. The 
interaction with the atoms of the medium can change the 
magnitude and even the sign of the resonance defect, 
and consequently make such a process allowed. This 
problem, however, encounters a difficulty of its own 
because it is not clear whether it can be treated by the 
parametriC method, since the trajectory of the atoms is 
itself determined by transitions in the electron subsys­
tem. 

l)It is understood that the probability of the transition in the 
Significant region of the impact parameters is of the order of 
unity. . 

2)The limits of applicability of the result are discussed below. 
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