
as before. The difference between the pulse-height 
spectra for N1 and N2 , normalized in the same way as 
before, is shown in Fig. 6. 

The shape of the curve shown in Figs. 5 and 6 indi
cates that, for equal intensities and bandwidths, the 
synchrotron-radiation spectrum is less correlated than 
the thermal spectrum, and the degree of correlation of 
the synchrotron-radiation photons increases with in
creasing number of radiating particles. 

6. CONCLUSIONS 

The foregOing results lead to the following conclu
sions: 

1. For equal mean intensities, thermal radiation has 
a higher degree of correlation than synchrotron radia
tion. 

2. The degree of correlation of synchrotron radia
tion increases with increasing number of radiating elec
trons. 

3" The efficiency of recording multiphoton pulses 
was found to be greater than predicted by the existing 
theory of photoelectric detection. 

4. Analysis of the photomultiplier pulse-height spec
tra can be used to detect correlations in low-intensity 
fluxes with characteristic times of -10-11 _10-12 sec. 

5. Analysis of the pulse-height spectra produced by 
a photomultiplier can be effectively used to determine 

the statistical properties of an unknown source of radia
tion by comparing the resulting signal with the Signal 
from a source with known statistical properties. 
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Nonlinear quenching of the fluorescence of high-density 
localized electroll excitations in molecular crystals 
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and P. G. Filippov 

Institute of Chemical Physics, USSR Academy of Sciences, Moscow 
(Submitted September 3, 1975) 
Zh. Eksp. Teor. Fiz. 70, 521-530 (February 1976) 

An investigation was made of the reduction in the quantum efficiency of the fluorescence of pyrene 
crystals (nonlinear quenching) observed when the optical pumping rate was increased in the range 
1025_1028 cm- 3'sec- 1 at thermostat temperatures 4.2-300"K and the concentration of excitations reached 
10-3_10-- 2 of the density of molecules in a crystal. At 300"K this nonlinear quenching could be described 
by a model of bimolecular diffusion-controlled recombination. The excimer-excimer annihilation constant 
was found to be (4± I)X 10- 11 cm3·sec- l • Below 77"K, when the diffusion of excitations was negligible, 
the nonlinear quenching was due the dipole-dipole interaction of localized excitations. A model was 
developed on the basis of averaging of the kinetic equations for the random distribution and it was found 
that the nonlinear quenching could be described by introducing average self-consistent population. A good 
agreement was obtained bt~tween the experimental and theoretical dependences of the nonlinear quenching 
on the pumping rate and the effective radius (15-20 A) was found for the dipole-dipole interaction 
between eximers. 

PACS numbers: 61.40.Km, 78.60.Dg 

INTRODUCTION and investigated in detail [2,3] in anthracene crystals. 
This quenching was attributed in [2,3] to the bimolecular 
interaction between excitons as a result of which one of 
the excitons is transferred to a higher vibronic state at 
the expense of the energy of a second exciton and this is 

Reduction in the quantum efficiency of the fluores
cence of molecular crystals with rising optical pumping 
rate, called the nonlinear quenching, was discovered[1] 
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followed by nonradiative decay of the higher vibronic 
state into a lower-band exciton and phonons. The non
linear quenching of excitons is described using the bi
molecular diffusion kinetics. However, this descrip
tion is inappropriate when there is no diffusion of 
excitations, which is true of impurity crystals or crys
tals with exciton traps at low temperatures. A suitable 
object for investigating the nonlinear quenching of 
localized excitations is a pyrene crystal in which optical 
transitions produce long-lived complexes formed from 
excited and unexcited molecules and known as ex
cimers. [4] Excimers are characterized by a low dif
fusion coefficient (at 77 oK this coefficient is D - 10-8 

cm 2 • sec- l [5 J), i. e., the lifetime of an excitation at 
rest is greater than its radiative lifetime. Moreover, 
the strong molecular absorption (~ 5 X 104 cm- l) in the 
near ultraviolet and the high quantum efficiency of the 
excimer fluorescence (0.64 and 1. 0 at 300 oK and be
low 77 cK, respectively[4J) make it relatively easy to 
establish high excimer concentrations (10-3_10- 2 of the 
density of molecules) in pyrene crystals (these con
centrations are needed for investigating the nonlinear 
quenching of localized excitations). Since the nature 
of the nonlinear quenching has not yet been studied 
theoretically, we shall report the experiments and then 
develop a suitable theory. 

EXPERIMENTAL METHOD 

Pyrene crystals were grown from the vapor phase by 
a method used earlier to grow perfect anthracene 
crystals. [3,7J Pyrene was first purified by multiple 
recrystallization and subsequent zone melting (60 
passes). The purity was deduced from the excimer 
fluorescence decay time, which was 1. 20 x 10-7 sec and 
1. 92x 10-7 sec at 300 OK and 4. 2 OK, respectively, in 
agreement with the results reported in[4 J for crystals 
of high degree of purity. Plane-parallel platelets, 
10-30 Il thick, were placed in paper envelopes for the 
excitation and observation of fluorescence from the 
rear face and mounted on a heat sink of a helium 
thermostat with a controlled bath temperature between 
4.2 OK and 300 OK. The crystals were excited with 
nitrogen laser (i\ = 3371 .A) pulses of 10 nsec duration 
(midamplitude), 3 kW power, and 25 Hz repetition fre
quency. The absolute value of the pulse energy was 

FIG. 1. a) Shape of fluorescence pulses emitted from pyrene 
crystals subjected to illumination of different intensities: 1) 
10=2x1020 cm-2 ·sec-\ 2)10=2X1023 cm-2 .sec-\ 3) shape of 
pump pulse. The bath temperature was 4.2 OK. b) Determina
tion of the effective decay time during the initial stage. 
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FIG. 2. Fluorescence spec
trum of a pyrene crystal at 
300 OK (curve 1), 77 OK (2), 
and 4.2 OK (3). The dashed 
curve represents the spectrum 
obtained for 10 = 2 X 10 23 

cm-2 • sec-! and bath tempera
ture of 4.2 OK. 

measured with a thermopile (with an error less than 
20%) and the intensity of light was determined from the 
shape of the laser pulses measured with a fast-response 
photocelL When the focusing spot diameter was 0.8 
mm, the maximum intensity of light (number of pho
tons) incident on a sample was 2x 1023 cm-2 • sec-l. A 
set of calibrated glass plates was used as attenuators 
by means of which the optical pumping rate could be 
varied within four orders of magnitude. The fluores
cence passed through a set of calibrated neutral filters 
in such a way that a FEU-36 photomultiplier (time res
olution 5 nsec at mid amplitude) operated as a linear 
detector. The photomultiplier pulses were applied to 
a S7-5 stroboscopic oscillator and were plotted by a 
x- Y recorder. The shape of the fluorescence pulses 
was determined at various pumping rates (Fig. 1). We 
measured the pulse amplitude (peak fluorescence in
tensity), the area under the pulses (light sum), and ef
fective decay time during the initial stage (Fig. 1). We 
investigated 15 crystals and obtained results which were 
reproducible from sample to sample. 

The absorption coefficient of a pyrene crystal at the 
excitation wavelength was determined from the depen
dence of the optical density of mirror-like evaporated 
films and their thickness at low pumping rates. This 
coefficient was 8 x 104 and 6 x 104 cm- l at 300 and 4.2 OK, 
respectively. The fluorescence spectrum of pyrene (Fig. 
2) consisted of a wide structure-free (right down to 
helium temperatures) band associated with the large 
number of the initial and final states of the optical 
transitions in excimers. [6] The position of this maxi
mum and the band width varied with temperature, which 
was used as an internal thermometer in the determina
tion of the temperature of the excited part of the crys
tal, in a manner similar to the width of the exciton 
bands and the Debye-Waller factor of impurity bands 
used for a similar purpose in the case of anthracene 
crystals. [3,7J When the illumination intensity was 2 
x 1023 cm-2 • sec-l, the adiabatic heating of the absorption 
layer in a crystal at room temperature (the specific 
heat of pyrene at 300 OK was 0.4 cal· g-l. deg- l), due to 
the conversion of the excitation energy into heat because 
of quenching and due to the difference between the pump 
and fluorescence photon energies, was about 30 OK. 
When the thermostat temperature was about 4. 2 OK, the 
position of the fluorescence band maximum at the same 
illumination intensity (dashed curve in Fig. 2) indicated 
that the temperature in the absorption layer did not 
exceed 60 OK (because the form of the spectrum changed 
only slightly below 60 OK, it was not posslble to esti-
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mate the temperature more exactly). This relatively 
weak heating was clearly associated with the high 
thermal diffusivity of perfect pyrene crystals at low 
temperatures, as found recently for anthracene crys
tals with a similar crystal structure. [7] Since at the 
rates of pumping used in our investigations the quantum 
efficiency and profiles of the fluorescence bands were 
practically constant between 4. 2 oK and 77 oK (i. e. , 
there was no thermal quenc:hing in this range, and the 
diffusion coefficient even at 77 oK was so small that 
excimers remained localized), the above change in 
temperature with pumping rate was ignored. 

EXPERIMENTAL RESUL TSI 

Figures 3 and 4 show a reduction in the peak value of 
the light sum and in the initial fluorescence decay time 
with riSing pumping rate. Since at 300 oK the diffusion 
coefficient of excimers (D'" 10-5 cm2 • sec- I [5]) was still 
sufficient to ensure their mixing during the excitation 
time (the diffusion length was greater than the average 
distance between excimers at pumping rates correspond
ing to quenching), we assumed that the nonlinear quench
ing at 300 oK could be described by the bimolecular 
diffusion-controlled recombination mechanism dis
cussed earlier. tl-3] In this case the density of excimers 
n is described by 

dn(x, t) n 
-d-t- = skI(t)e-'" -~ - K .. n', (1) 

where I(t) is the shape of the pump pulse; s is the quan
tum efficiency of the exciton formation process; To is 
the exciton lifetime in the absence of nonlinear quench
ing characterized by the rate constant Kee; k is the ab
sorption coefficient of the pump radiation. If the re
combination is diffusion-controlled, tl.2] we have 

K,,=8nDRo• (2) 

where Ro is the quenching radius, i. e., the distance 
between excitations for whieh the annihilation time is 
equal to the radiative lifetime TO' Numerical solution 
of Eq. (1) and the experimentally determined pulse 
shape I(t) can be used to find the shape and intensity of 
the fluorescence pulse: 

1 -
L(t)=-J n(x,t)dx 

T, 
o 

(3) 

FIG. 3. Dependences of the light sum ~ (curve 1) and peak 
intensity II> (curve 2) on the illwnination intensity, obtained 
by a numerical calculation based on Eq. (1). The pOints are 
the experimental values obtained at T= 300 oK. 
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FIG. 4. Dependences of the effective decay time T/TO on the 
illumination intensity, found by a numerical calculation based 
on Eq. (l)-curve 1-and on Eq. (21)-curve 2. The points 
are the experimental data: 0) obtained at T= 300 OK; A) ob
tained for a bath temperature of 4.2 OK. 

as a function of one dimensionless parameter 

(4) 

where 10 is the intensity of illumination corresponding to 
the maximum pumping rate. It is clear from Figs. 3 
and 4 that all three experimentally determined char
acteristics L(t) are in good agreement with calculations. 
Hence, it follows that at 300 OK the excimer-excimer 
annihilation process does indeed involve diffusion. Its 
rate constant, deduced from a comparison of the cal
culated and experimental results with the aid of Eq. (4), 
is (4 ± l)x 10-11 cm3 • sec-I, which-for D = 10-5 cm 2 • 

• sec-I-corresponds to a quenching radius Ro= 17±4 A. 
This value of Kee is over three orders of magnitude 

higher than the value published earlier. (8] The latter 
value is underestimated, probably because of incorrect 
determination of the illumination intensity (3X 1024 cm-2 

• sec-I) and absorption coefficient (> 2 x 105 cm-I), since 
for these values of k, 10 , and Kee the concentration of 
excimers would be almost an order of magnitude higher 
than the density of molecules in a crystal. 

Figures 4 and 5 give the low-temperature nonlinear 
quenching characteristics which are not in agreement 
with Eq. (1) for any value of Kee. This is further evi
dence of the unsuitability of the diffusion approach in 
this case. The localization of excitations alters the 
nature of the nonlinear quenching process and a dif
ferent model is not needed. 

THEORETICAL MODEL 

As pointed out earlier, two excimers annihilate due 
to the dipole-dipole interaction, whose Hamiltonian can 

0.5 

10 D lOll 10 
I, em" 'sec-1 

FIG. 5. Dependences of the light sum (curve 1) and peak 
fluorescence intensity (curve 2) on the illumination intensity 
found by a numerical calculation based on Eq. (21). The 
pOints are the experimental data obtained for a bath tempera
ture of 4. 2 OK. 
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be expressed in the form (averaging over the angles) 

where (d)lO and (,1)12 are the dipole moments of the 
transitions from the state II) to the states 10) and 12), 
respectively; the indices i and k label the individual ex
cimers; R I" is the distance between excimers. We 
shall assume that the bands due to the optical transi
tions (1- 0) and (1- 2) are sufficiently wide, or, more 
exactly, 

where Ii is the band width. In our case the above in
equality is satisfied by a large margin because of the 
considerable width (-103 cm- l ) of the bands due to 
transitions to vibrational sublevels of excimers. 

(6) 

We shall introduce population operators of an ex
cimer excited state at a site i, PI' at two (i and k) sites, 
PI p", and so on. Then, for the average values PI 
= TrPI p, where P is the density matrix of the system, 
we find that when Eq. (6) is satisfied, 

dp, ~ (R' )'- --=- 1 - PiP.-1Pi. 
dt . RiO 

'''' 
If each of the excimers interacts with a large number 
of neighbors, PI and p" are weakly correlated and we 
can write PI P" = PI p". This approximation is invalid 
for isolated pairs when the correlation between PI and 
p" is considerable. However, the probability w that a 
pair of excimers separated by a distance R is isolated 
is W'" exp(- 2not 7rR 3). Thus, pairs can be regarded as 
isolated only for R« tnOl/3, i. e., when their number 
is small. Therefore, in the case of PI (which we shall 
simply denote by PI), we have the following equations: 

(7) 

(8) 

where y is the rate of annihilation of excimers by radia
tive and nonradiative transitions. The summation is 
carried out over all the excimers created up to a mo
ment t and TI is the moment of creation of the i-th ex
cimer. The quantity which is observed is 

(9) 

which is interpreted as the average number of excita
tions in a system because the fluorescence intensity 
L (t) is proportional to this quantity. In the case of 
localized excitations we find that a closed equation can
not be obtained for n(t) in the presence of annihilation. 
Therefore, we have to solve the system (7) of nonlinear 
equations. Such situations can be analyzed by con
Sidering the kinetics which allows for the simultaneous 
interaction of many centers. In an approximate solu
tion of the problem one can use the method of self-
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consistent population, which to some extent is analogous 
to the average molecular field method in the theory of 
phase transitions, i. e., it is assumed that all excitations 
are in an approximately the same situation relative to 
one another. 

We shall consider the case in which at a moment 
t = 0 a Ii-like pump pulse generates all the excitations 
whose concentration is no. It is natural (and agrees 
with the experimental situation) to assume that excita
tions are distributed at random and are independent 
(- 10-2 of the total number of molecules per unit volume 
of a crystal is excited). For simplicity and compari
son with numerical calculations, we shall ignore also 
the spontaneous annihilation of excitations, represented 
by the second term on the right-hand side of Eq. (7). 
Allowance for this term causes no difficulty. Then, 
introducing the dimensionless time (t' = YR~~t) and dis
tance (r' = nJ/ 3r), we obtain 

tip, ~ 1 ( , 
d7= -po "-.J Ir • .'I' P. t), P.(O)=1. (10) 

.... , 
The essence of the average self-consistent population 
method is that all values of p,,(t') on the right-hand side 
of Eq. (10) are replaced by an average population p(t'), 
which can be found from self-consistency conditions. It 
follows from Eq. (10) that 

p.(t')= exp{ - ~ Ir'~'I' J P(T)dT}. (11) 
hopi 0 

After averaging over the random distribution, carried 
out in a manner similar to that used in the theory of 
inductive resonant transport, [9J we obtain the equation 
for p(t'). It is convenient to introduce 

t' 

'V (t') = S p(-r)dT, 

which obeys-in the averaging described above-the 
equation 

d'¥ {[ I6n. ' ] 'f,} d7= exp - -g-'¥ , 

and hence 

p=e-;t{t'J, 

(12) 

(13) 

(14) 

where x(t') is the solution of the transcendental equation 

(x-i) e·'='/,n't'-1. (15) 

A graph of p(t') found from Eqs. (14) and (15), is plotted 
in Fig. 6. 

The average self-consistent population method gives 
exact results if excitations are distributed in an or
dered manner. Then, Eq. (7) [and, consequently, Eq. 
(11)] is invalid for short time intervals when the close
ly spaced isolated excitation pairs manage to annihilate. 
The average self-consistent population mei.hod was 

V. A. Benderskii et al. 271 



P 
1.0 

0.5 

~ '" f 

" Z;>---~=--4._ 
0.1 D.Z 0.3 0.* D.U' 

r 
1.0 

FIG. 6. Decay curves of the ave:rage population p: 1) calcula
tion based on Eqs. (14) and (15); 2) calculation based on Eq. 
(19). The points represent the results of the numerical solu
tion of the system of equations (10) by the Monte Carlo method. 

checked by a numerical calculation of the system (10) for 
125 excitations distributed randomly in a cube with 
0< x', y', z' < 5. The boundary effects (excitations near 
a boundary have, on the average, fewer neighbors than 
in the bulk) were avoided by introducing periodicity con
ditions: excitations in neighboring cubes were assumed 
to be distributed exactly as in the cube in which the 
coordinates of the 125 excitations were selected using 
tables of random numbers. The size of the memory 
and the available computer time did not allow us to in
crease significantly the number of particles so that 
introduction of periodicity disturbed the randomness of 
the distribution. The results of this calculation are 
plotted in Fig. 6. We can see that there is a satis
factory agreement between the average self-consistent 
population method and numerical calculations. It should 
be pointed out that as the number of excitations in
creases [the calculation was also carried out for 27 
(in a cube with O<x', y', z' <3) and 64 (in a cube with 
O<x', y', z'<4) particles], the calculated curve ap
proached more and more closely the curve found by the 
average self-consistent population method. 

If the duration of a pump pulse creating excimers is 
comparable with the excimer annihilation time, the 
kinetic equation obtained by the average self-consis
tent population method becomes much more compli
cated because then the dependence of the population of 
an excited level on time t depends strongly on the mo
ment of creation T. The equation then becomes 

(16) 

where a=ti!/2y1/2ksR g. The number density of excita
tions is 

, 
n(t)=ks J l('t)p(t. 't)d't. (17) 

If the pulse is very short, Eq. (16) naturally reduces 
to Eq. (ll). In the steady-state case we have p(t, T) 
- p(t - T) and an analysiS of the transform ed equation 
(16) gives the following expression for the steady-state 
density of excitations under nonlinear quenching condi
tions: 
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(18) 

This result can also be obtained by dimensional analy
sis. The only parameters which govern the system are 
the optical pumping rate klof dimensions cm-3 • sec- l 

and the product yRg of dimensions cm 6 • sec-I. From 
them we can find unambiguously a quantity whose di
mensions are of concentration n ex: (yRg)-1/3(k[)1/3 ex: [1/3. 

It should be noted that this result is related to the di
pole-dipole nature of the interaction between excita
tions. 

It is not possible to solve analytically Eq. (16) and 
even a numerical solution is difficult to obtain. There
fore, we shall try to find a simpler expreSSion di
rectly for the annihilation part dnl dt so as to be able to 
solve a differential (and not a complex integral) kinetic 
equation. We note first that Eq. (18) is obtained from 
the steady-state solution of the equation 

dnldt=-~n3+1. (19) 

In fact, the rate of annihilation is 

and, if we assume that the number of nearest excited 
neighbors of any excitation is proportional to the den
sity of these neighbors, we find that l/r lk ex: n2 and, con
sequently, (dnldt)8Iln ex: n3 • A suitable selection of the 
coefficient (3 makes it possible to represent the annihila
tion term in such a way that in the case of pulse crea
tion of excitations we obtain n(t) which is close to the 
exact solution. It is clear from Fig. 6 that this can be 
done by selecting 

~=115'YRo6. (20) 

One should avoid attributing too deep a meaning to 
this approximation. It is of a form which implies some 
effective mixing of excitations in the system, although 
it follows from the conditions of the problem that this 
is not true. We shall show in the next section that some 
characteristic and unexpected features of the exact 
kinetics (which, unfortunately, cannot yet be checked 
experimentally) are not given by this approximation. 
Under the experimental conditions employed, the in
troduction of such "cubic" annihilation of excitations 
makes it possible to obtain the following simple dif
ferential equation: 

dnldt=skl (t) e-"-nl't-~n'. (21) 

We used Eq. (21) and [(t), which was the experimental 
shape of the pump pulse, to find numerically the de
pendences of the following quantities on the illumina
tion intensity: 1) quenching at the fluorescence pulse 
maximum; 2) the fluorescence light sum; 3) the shape 
of a fluorescence pulse. All three characteristics 
were found to be in good agreement with the experimen
tal results when only one parameter {3 was sUitablyad
justed and this, in our opinion, was evidence of ade-
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FIG. 7. Decay curves 
n(t) plotted for tlQ = 1 
(curve 1) and tlQ = 2 (curve 
2). 

quacy of the theoretical representations. The value of 
Ro found from Eq. (21) was 17 ± 3 A. 

DISCUSSION OF RESULTS 

We have shown above that in two limiting cases (fast 
diffusion of excitations and rigorously localized excita
tions) the nonlinear quenching of the fluorescence of 
molecular crystals is described by two different de
pendences of the fluorescence intensity and of its decay 
time on the optical pumping rate, as represented by 
Eqs. (1) and (21). The only quenching characteristic 
linking the two limiting cases is the quenching radius 
R o• 

We shall first consider the range of diffusion coeffi
cients and excitation densities in which Eq. (1) is valid. 
The time taken to diffuse a distance equal to the average 
separation between excitations should be less than the 
characteristic time of the dipole-dipole annihilation for 
the same excitation density: 

D/6r'<p/r', (22) 

where r = (t1Tnotl/3 and no is the density of excitations 
in the absence of quenching. For no= 1019 and 1020 cm-3, 

the diffusion coefficient D should be greater than 4 x 10-8 

and 10-6 cm 2 • sec-t, respectively, which is satisfied 
well at T= 300 oK but not at T<60 oK. Consequently, 
in an analysis of the experimental results we have to 
use two different theoretical models. Our low-tem
perature experimental data do not reveal interesting 
features of the kinetics of quenching of localized excita
tions because the pump pulses are too long. In the case 
of instantaneous creation of excitations the asymptotic 
solution (15) in the absence of monomolecular annihila
tion (y=O) is of the form po: 1/t', whereas experimental 
observations give n(t)=nop(t)z 1/not. 
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Thus, beginning from a certain moment, the value of 
n(t) decreases with rising no. This behavior of n(t) can 
readily be deduced from the form of curves 1 and 2 in Fig. 
7. This unusual kinetic result is associated with the 
memory effect in systems which exhibit multipole inter
action in the absence of excitation mixing. . The evolu
tion of such a system with time depends on the initial 
density of excitations throughout the lifetime of the sys
tem since a spatial distribution of excitations is ran
dom only initially. On the other hand, in the case of 
spatial mixing of excitations the kinetics of the decay 
is governed only by the instantaneous density of excita
tions and not by their distribution. 

These features are not revealed in the case of long 
pump pulses and monomolecular decay. The asymptote 
of the solution of Eq. (21), which is - l/ff for y = 0, 
does not agree with the true asymptote (-I/t), but if 
y * 0 this difference can be ignored in practice. For 
this reason only the initial part of the fluorescence de
cay is compared with the theory because in this case 
Eq. (21) is sufficiently rigorous. 

We are grateful to N. I. Peregudov and V. A. Volodin 
for a numerical solution of the system of equations (10) 
by the Monte Carlo method. 
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