
the constant external field: 

, 8Z'e' du (X )'( 86 5U') IL 
do =------ - -+-- In-

m' u(1+u)' u 15 1+u u' 

e 
X = m'l' - (F.,p')', u>X· (19) 

We note that this result follows also from formula (18), 
which was obtained for ~«1 in the limit u» x, if we 
put ~x/2 = X. This is explained by the fact that the time 
'T - E/m2u of formation of the hard end of the spectrum 
(see[9]) is small in comparison with the period l/w of 
the external wave. 

The authors are deeply grateful to A. A. Sokolov for 
constant interest in the work. 

1)We use the metric (+ - --) and the system of units Ii= c= 1, 
C\! =e2= 1/137. 
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Two-photon processes in a Coulomb field in the dipole 
approximation 
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An expression for the amplitude of two· photon processes in a Coulomb field is derived. The expression is 
an analytic function of not only the photon energy, but also of the quantum numbers of the initial and 
final electron states. The formulas obtained are used to calculate the cross section for light scattering for 
both bound-bound and bound-free electron transitions. 

PACS numbers: 32.IO.Vc 

1. INTRODUCTION 

In recent years two-photon processes in a Coulomb 
field have been the subject of a number of papers. 
Apart from the fact that these processes describe many 
physical phenomena, they are also of great interest as 
a model for investigating more complex systems. 

The probability for the two-photon decay of the meta
stable 2s level of the hydrogen atom was computed in [1] 
by the method of approximate numerical summation of 
series. In [2] an approximate (semiquantitative) formula 
was derived for coherent light scattering from the 
ground state of the hydrogen atom. The cross sections 
for coherent (Is -Is) (3] and Raman (Is - 2s) (4] light 
scattering and for the two-photon ionization of the 2s 
levelC5] have been computed with the aid of the Schwartz
Tiemann method. 

250 SOy. Phys.-JETP, Vol. 43, No.2, February 1976 

Only comparatively recently were analytic expressions 
for the amplitude of two-photon transitions between cer
tain low-lying excited states of the hydrogen atom ob
tained with the aid of one or another integral represen
tation of the Green function for a charged particle in 
the Coulomb field. (6-8] In 1967 Gavrila(9] expressed 
the amplitude for coherent light scattering from the Is 
state in terms of the hyper geometric functions. The 
same result was independently obtained together with 
expressions for the two-photon Is = 2s transition ampli
tudes by Vetchinkin and Khristenko(10] and Granov-
skiT. (11] Further, Zon, Manakov, and Rappoport[12] 
have shown that the bound-bound and bound-free tran
sition amplitudes can be expressed in terms of linear 
combinations of the hypergeometric functions. A simi
lar result was obtained in (13] by Gorshkov and Polika
nov, who used the momentum representation of the 
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Coulomb Green function, (8] which allowed them not to 
use the dipole approximation. Subsequently, Polika
nov(14] expressed the cross section (J"ls~n for Raman 
light scattering in terms of the Appell functionso Ana
lytic expressions and numerical results for the cross 
sections for the Compton scattering of light and the two
photon ionization of the 18 state have been obtained re
spectively by GavrilaUS ] and Klarsfeld. (16] The Green 
function method has also been used by MaquetW ] to cal
culate the light-shifts of the hydrogen atom p states with 
2 <;;n <;; 10. 

In the present paper, in contrast to the above-enu
merated papers, where the expressions obtained for the 
amplitude were analytic functions of only the incident
photon frequency, we obtain an expression that is ana
lytic also in the quantum numbers of the initial and final 
states. This allows us to compute different processes 
involving transitions between arbitrary states of the 
hydrogen atom with the aid of a single formula, and not 
derive for each transition its own formula, as has been 
suggested in previously proposed methods. U2,13] Fur
thermore, the obtained formulas are of interest in that 
they describe the contribution of second-order pertur
bation theory in the perturbing dipole operator in the 
Coulomb field. It is shown that in certain cases the di
pole approximation is more accurate than might have 
been expected, estimating the dimensions of the atom 
in the initial and final states. The asymptotic form of 
the cross section for two-photon transitions into high
lying excited states is obtainedo The cross sections for 
several processes are computed, using the obtained 
formulas. In the paper we use a system of units in 
which Ii = c = 1. 

2. THE AMPLITUDE OF TWO·PHOTON 
PROCESSES 

In the nonrelativistic limit the amplitude of a two
photon process involving an electron in an external field 
is given by the well-known formula: 

Ut~,=4tta~-t(21A"At-~-t(pA,')G(Et±(j)t) (pAt) 
-~-t(pA.)G(Et±(j),) (pA;) 11>, (1) 

where A = e(2w)"1/2e",/t'r is the potential of the electro
magnetic field corresponding to the given photon, iJ. is 
the electron mass, and G(E) is the electron Green func
tion in the external field. 

If the dimensions of the system are small compared 
to the wavelengths of the two photons, then we can re
strict ourselves in (1) to the dipole approximation. For 
the Coulomb field, the conditions for the validity of the 
dipole approximation will be 

k,n;a«:t, i, j=t, 2. (2) 

Here n is the principal quantum number and a is the 
Bohr radius. It follows from (2) that the dipole approxi
mation will be inapplicable in the case of high-lying ex
cited levels, when n» 1. However, as will be shown 
below, the conditions (2) can be considerably relaxed. 

Let us use the series expansion of the Coulomb Green 
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function in terms of the spherical harmonics 

00 

G,(E)= .EG,(E), 
'_0 , 

(r,IG,(E) Irt)=g,(Elr" rt) .E ¥'m (;: ) ¥'m' (;~ ). 
m __ C -

To compute (1) in the dipole approximation, it is suffi
cient to know the following quantities: 

(3) 

Separating the angle variables in (3), we easily obtain 

_ [(1,+1) (1,+1)],,' 00 

Q,(l"l,l,)= S S (r,r,)'drtdr, 
~ 0 (4) 

where 

~ { d/dr-Ur, j=Hl 
P,,= d/dr+(Hl)/r, j=I-I' 

R n , is the radial wave function of the electron. 

Below we shall write the formulas for only the case 
of bound-bound transitions. To describe the transitions 
to the continuous spectrum, it is sufficient to make the 
substitution n - ilk (k is the electron momentum) and 
change the normalization factor. Then, using the well
known expressions for R n , in the Coulomb field, we can 
obtain 

~ :2 [ f(n+I+1) ] 'I, ( 2r) H P (r)R ,- e-,/n 
;' n - n'(2j+1)! f(n-l) --;; 

x.E Cn"p ,Ft (-n+j+1+p, 2j+2, ~), 
p=±l (5) 

{ I, j=l-t 
CIt / jp = . 

(np-I-1) (np-I-2), j=Hl 

It can be seen from (4) and (5) that the reduced ma
trix elements Q (Z2' l, 11) are each expressible as a linear 
combination of integrals of the type 

x S S drt dr,(rt r,) ,+t exp (- 2 - 2) g, (E,I r" r t ) (6) 
o n 1 n z 

( 2rt ) ( 2r,) 
X tFt l+p+ l-n" 2H2, -;:;:- tF, Hq+l-n" 2H2, -;;:; , 

where 1 = II ± 1 is the "orbital angular momentum" of the 
electron in the virtual state; p, q =± 1; i = 1,2. Substi
tuting (5) and (6) into (4), we find: 

( _ [f(nt+l,+1)f(n,+12+1) (1,+1) (1,+1)]';' 
Q, 1,,1,1,)-

f(nt-It) f(n,-I,) 

x 1: pqCn""pCn"",M,(l, p, q). 
p,q=±1 

Thus, the computation of the amplitude (1) in the di-
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pole approximation has been reduced to the evaluation 
of sixteen integrals of the type (6). Actually, their 
number can be considerably less, since nonzero con
tributions are made by only those for which 1 ~ 0, 
nl - P -l ~ 1, and n2 - q -1 ~ 1. If the initial or final 
state of the electron belongs to the discrete spectrum, 
then the double integral in (6) can be reduced to a sin
gle integral. For this purpose, let us, following Gra-

k · ':' [11] th . t· t novs 11, use e convemen lIT egral representation 
of gl(EI r2, rl) obtained by Hostlerl7l: 

" 2/-ti f~ dt ( t+1 ) , g,(Elr"r,)=(-1) + -_ - ___ _ 
(r,r,)," ,(t'-1)'" t-1 (8) 

Xexp{ikt(r,+r,) } 121+, (2k[r,r, (t'-1) J"'). 

Here k = (2 j.l.E)1 12, V = - ij.l.a.Z/k, and I n is a Bessel func
tion. Then the integral over rl in (6) reduces to a table 
integral (see, for example, £18]), and has the following 
form: 

=(-1) P2/-tvr' f~ dt (~) '(t'-1)' (~+ t) -2/-' ( nt-v) P (9) 
, . t-1 n. nt+v 

( r t+nlv) ( 2rn(t'-1) ) X exp - --- ,F, -p,21+2, . 
n t+vln n't'-v' 

If we do not assume that the condition (2) for the ap
plicability of the dipole approximation is satisfied in (1) 
for n2, then we should consider the forbidden transi
tions as well. It can, however, be seen from (9) that 
the smallness of the matrix elements of the transitions 
forbidden in the dipole approximation is determined not 
by the ratio of the dimension of the system in the state 
I 2) to the photon wavelength, but by the quantity 

[ 1
1 1 t+n,/v I ]-' 6=k,a min - + ---' 

",;;;t<oo nz nl t+vlnl 

Taking into account the fact that the condition (2) is as
sumed to be fulfilled for nh we can easily see that the 
smallness of 5 is equivalent to the inequalities 

11/n,+1/v 1-'ak,<:1, (10) 

which replace the condition (2) for n2' PhYSically, this 
is explainable by the fact that the extent to which the 
electron is smeared out in the virtual state is deter
mined, on the one hand, by the dimensions of the sys
tem in the initial state (i. e., in the nl state) and, on 
the other, by v, the "principal quantum number" of the 
electron in the intermediate state. 

For dipole transitions the integral over r2 in (6) also 
reduces to a table integral if we use (9), and, after 
making a change of integration variable, we obtain 

1 v-x ml v-I_-x mz 

XSdxx'-'(a.-) (~ __ ) (U-X)-21-' 
u-x ' u-x 

o 

(11) 

( u,x ) 
x,F, -m" -m" 21+2, (v-x) (v '-x) • 

where we have introduced the following notation: 
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n,+v 
~=--, 

nz-v 

a. 
v=-T' u=~a.~, 

The hypergeometric function in the integrand of (11) 
is essentially a polynomial, since either - nl + 1 + P or 
- n2 + 1 +q is a negative integer. For integral v ~ 1 the 
function M(l, p, q) has, as was to be expected, simple 
poles. If one of the states (for definiteness, the I 2) 
state) lies in the continuous spectrum, then the inte
grand has a bifurcation, and we should choose that 
branch that remains finite for n2=i/k-iOO • 

3. COHERENT AND RAMAN LIGHT SCATTERING 
CROSS SECTIONS 

In the case of bound-bound transitions the light-scat
tering cross section, summed over the final, and aver
aged over the initial, magnetic quantum numbers of the 
electron, has the following form: 

(il, { [~ 2 Re A" ] da=ro'-;;; 6n ... 6",,(e,e,), 1-~ (61 +3)'" 
i 1=lt±1 1 

(12) 

where 

Co='/,(e" e,l', C,='/,[ 1- (e" e,)'], C,='/,,[3+ (e" e,)'], 

ro is the classical electron radius. It follows from (12) 
that if 12 = 11 ± 2, then the angular distribution of the out
going photon does not depend on its frequency. This is 
connected with the fact that in the intermediate state 
the electron may have only one, totally defined angular 
momentum 1 = II ± 1, and then under the summation sign 
in (12) will remain only the term with j = 2. 

A characteristic feature of the behavior of the cross 
section (12) is the presence of poles at photon energies 
corresponding to the poles of the electron Green func
tion. These poles have a point of accumulation at 
W = wo, where Wo is the photoelectric threshold frequen
cy for the initial state. At certain frequency values ly
ing between the poles and lower than wo, the scattering 
cross section vanishes. If the initial state is not the 
ground state, then the cross section may have poles 
also at w> wo, but in this case it will no longer vanish 
between the poles. The vanishing of the cross section 
is connected with the reality of the amplitude for w < wo, 
and will not occur if we take the level widths into ac
count. In this case the poles of the cross section will 
also disappear. In the case of coherent scattering the 
cross section tends to the Thomson limit as w- 00. If, 
on the other hand, the initial and final states of the 
electron do not coincide, then the cross section falls 
off like w-4• To illustrate the behavior of the cross 
section, we present the plot (Fig. 1) of the cross sec
tion for coherent scattering of light from the 3s level 
as a function of the incident-photon energy. In con-
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FIG. 1. Coherent scattering of light from the 3s level. The 
photoelectric threshold frequency Wo in this case is equal to 
i Ry. 

trast to the previously published calculations for the 
1s - 1s and 1s;: 2s transitions, [tZ] in the present case 
the cross section exhibits a pole at w> WOo 

Let us further consider the asymptotic forms of the 
amplitude and the cross section for nz- 00. Let nl -I vi 
« nz. Then we can go over in (11) to the asymptotic 
form directly under the integration sign. Then, since 
the dominant term in the asymptotic form of M(Z,p,q) 
does not depend on q (and is therefore partially can
celed out in the expression for Q), we should take into 
account terms of higher order in q/nz, whose contribu
tions to (7) will be of the same order of magnitude. 
Thus, for large nz we should substitute for M(l,p,q) in 
(7) the following quantity: 

S~ I (1-ctx)m. ( 2vx ) 
X dxx-V ex --(ct+x)n.t I-p+1 p ct+x 

o 

(13) 

{ ( q 2VX) q ] X 1 +--- ,F,(-m,,21+2,z)+-,F,(1-m.,2l+3,z) , 
n2 a+x n2 

where 

Substituting (13) into (7), we see that the cross section 

f do R -. 

~f' y 

IOJr 

10' 

10 

I 
I 
I 
I 

1U-'l--'--'-.-l--'--'---:!-,---'---l_-'--~ o 0.5 1.0 
E,Ry 

FIG. 2. Cross section for light scattering with electron ion
ization from the 2s and 2p states. The energy of the incident 
photon is equal to 1. 25 Ry. The upper curve corresponds to 
the detachment of an electron from the 2p level; the lower 
curve, to electron detachment from the 2s level. 
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0.5 
EIEe", 

FIG. 3. Cross section for light scattering with electron ioniza
tion from the ground state for three values of the incident-pho
ton frequency W = 2, 11, and 101 Ry, to which correspond the 
following values of the electron energy in the photoelectric ef
fect: Emu. = 1, 10, and 100 Ry. 

is proportional to n;.3, which is in agreement with Po
likanov's result. [14] 

4. THE CROSS SECTION FOR LIGHT SCATTERING 
WITH IONIZATION OF THE HYDROGEN ATOM 

When the final state of the electron belongs to the con
tinuous spectrum, we can, as before, use the formula 
(7) for the quantity Q if we make the substitution nz - ilk 
and introduce the additional factor 

k-'[2ni/(1-e-"") )"'. 

Here we assume that the radial wave function is real 
and normalized" according to the scale kI2rr." Then, 
averaging over the initial magnetic quantum numbers, 
we can represent the cross section for light scattering 
with ionization in the following form: 

00, ro' d'Q. d'k 
do =-----_-' - ~ ~ ~ ~t (-1)I'(2Hl) (2(+1) (21+1) 

00, 21,+1 .., n k' k.; k.; k.; l..J 
/ 2,1 1 ' 1,1' i,j',J jlj~) (14) 

x{ 1
1
" j (} {j, j, j,} { j 3 I I} • 1,1, 

1 J 1 1 J I, I, I,' BI.I;BI,'I·;'Pj,J.h(e.,e"n). 

Here 

BI.IJ=exp (i6 I.) {i I; ~} [Q, (I" I, I,) + (-l)'Q,(I" I, I,) ], 

pI.h·(e e n) =iJ.+h+;. (4. I,' j,) (1 1 j,) (1 1 j,) 
J.'b " ~' 0 0 0 0 0 0 0 0 0 

n=klk, and o,=argr(Z+1-ilk) is the Coulomb phase of 
the scattering. 

For a fixed Wi the cross section as a function of the 
energy of the outgoing electron has a pole at E = Emu, 
where Emu is the energy that the electron would have in 
a photoelectric-effect process with the same initial con
ditions. Such a behavior of the cross section is a di
rect consequence of the infrared catastrophe, and does 
not by itself make sense. If the initial electron state is 
an excited state, so that dipole transitions to less ex
cited levels are allowed, then the cross s~ction will 
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FIG. 4. The angular distribution 
of the outgoing photon for the same 
processes to which the curves in 
Fig. 3 correspond. Along the or
dinate axis is plotted the quantity 
CJI, which is determined from the 
expression da/dEd 2r1.1l ~1-CJl(ele2)2 
(E is the electron ene;gy). 

have poles at electron energies corresponding to the' 
photoelectric effect from these less excited levels. 
These poles will naturally disappear if we take the level 
widths into account. 

Figure 2 shows the plots of the dependence of the 
cross section for light scattering with electron ioniza
tion from the 2s and 2p states on the energy of the out
going electron. As can be seen from this figure, the 
cross section has a pole only when the ionization is 
from the 2p level. 

Figures 3 and 4 show the cross sections for electron 
emission and the angular distributions of the outgoing 
photon for three values of the incident-photon frequen
cy; initially, the electron is in the ground state. At 
constant W2 the cross section monotonically decreases 
with increasing WI. If, on the other hand, we fix the 
outgoing-electron energy E, then the monotonic de
crease of the cross section may not occur, since E may 
approach a pole singularity of the cross section as the 
inCident-photon frequency increases. 

The asymptotic form, (13), of the amplitude is also 
applicable in the case when n2 - 00. From it we easily 
obtain that da/dE- const as E- O. 

In conclusion, I take the opportunity to thank V. S. 
Polikanov and L. A. Sliv for a discussion of the pres
ent paper and for a number of useful comments. 
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potential barrier and the quasi-energy spectrum 
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The passage of a particle through a narrow potential barrier with a periodically varying depth is 
investigated. A set of wave functions with a definite quasi-energy are constructed and the concept of 
scattering eigenphases and eigenamplitudes is used. It is shown that the quasi-energy spectrum is a 
continuous spectrum with an infinite degree of degeneracy. Examples are presented of cases when there 
exist a discrete (nondecaying) quasi-energy state superimposed on the continuous-spectrum background. 
The effect of total reflection of particles from a nonstationary potential barrier is discovered and found to 
be of a resonance nature. 

PACS numbers: 03.65.Nk 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

odically varying depth is explained by its connection 
with the theory of the interaction of laser radiation 
with matter-in particular, with the theory of many
photon ionization (see, for example, the monograph by 
Baz', Zel'dovich, and Perelmov[l] and the references 

The interest in the problem of the passage of a quan
tum particle through a potential barrier with a peri-
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