
phase matching (dephasing) of waves. In the case of a 
fixed length of an optically inhomogeneous nonlinear 
crystal L, the doubler efficiency first rises with the 
incident power, reaches a certain maximum value (for 
a given length of the crystal), and then falls when the 
pump power is increased still further. For a given 
pump power and given properties of the crystal there is 
an optimal length of the crystal Lmu. for which the dou­
bler efficiency has its maximum (under these condi­
tions) value 11mu.. Under given conditions in the non­
linear crystal the maximum possible efficiency 11max 
rises with the pump power but this value of 11max can be 
obtained only by selecting the optimal length of the 
crystal Lmu. which varies with the pump power. The 
conclusion of the rise of 11max with increasing pump 
power ceases to be valid at powers such that the ther­
mal self-interaction effects and diffraction-induced loss 
of phase matching become important. 

The authors are deeply grateful to S. A. Akhmanov 
for valuable discussions of some of the problems. 
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Classical heteropolar molecule in the field of circularly 
polarized laser radiation 
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An approximate system of equations is obtained for the evolution of the state of a classical molecule. It is 
shown that the rotation of such a molecule has a strong influence on the buildup of radial vibrations: 
under certain conditions the rotation may compensate the radial vibration anharmonicity which disturbs 
the buildup. The dependence of the energy of this molecule on the radiation field intensity is considered; it 
is shown, in particular, that under certain conditions the rotation energy may be much greater than the 
vibration energy. 

PACS numbers: 32.20.Tg 

1. FORMULATION OF THE PROBLEM, DESCRIPTION 
OF THE MODEL, AND SOLUTION METHOD 

We shall consider a diatomic heteropolar isolated 
molecule subjected to the field of monochromatic cir­
cularly polarized laser radiation. The question is what 
energy is transferred from the field to the molecule 
and how is this energy distributed between vibrational 
and rotational motion. 

We shall consider this problem on the basis of the 
following model. We shall assume that the molecule 
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consists of two point charged atoms. The force ex­
erted on the atoms by the laser radiation is weak com­
pared with the intramolecular force. Radial vibrations 
(vibrations of the distance between the atoms) are gen­
erally anharmonic but the amplitude of these vibrations 
is small compared with the equilibrium distance. The 
action of the laser radiation, rotation, and vibration 
of the molecule will all be considered ignoring the quan­
tum effects. 

The approximate nature of this model is self-evident. 
However, this model should not be considered just as 
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the limiting case to which the results of a quantum in­
vestigation (not yet carried out) should reduce. The 
classical model can give a quantitative description of 
highly excited states of a molecule; moreover, it is 
much clearer than the quantum model and has a certain 
heuristic value. 

We shall use a system of exact equations of motion 
and the averaging method (see, for example, Ul) to go 
over from rapidly oscillating to slowly varying 
unknowns. We shall obtain an approximate closed system 
of equations for the slow unknowns (Sec. 2) and we 
shall consider its solution (Sec. 3). In Sec. 4 we shall 
discuss the results and give some numerical estimates. 

2. SYSTEM OF EQUATIONS OF MOTION 

2.1. Letr=r1-r2, m=m1m2/(m1+m2), e=m(et!m1 
- e2I m2), where r 1,2, m1,2, and e1,2 are, respectively, 
the radius vectors, masses, and charges of the first 
and second atoms. We shall introduce a coordinate 
system at rest (x, y, z) with z axis parallel to the wave 
vector of the radiation. Ignoring the spatial inhomo­
geneity, we shall describe the electric field of the laser 
radiation in the (x, y, z) coordinate system as follows: 

E(t) =E (cos 1jJI, sin I/J" 0), 

where 

is the phase of the laser field in the (x, y) plane; WI is 
the laser frequency. 

We shall consider only the case when the kinetic mo­
mentum of the molecule is parallel to the radiation 
wave vector. We shall introduce, for the vector r, the 
phase 1/Jr of the rotation in the (x, y) plane; then, 

r(t)=r (cos I/J"sin I/J"O). 

In the case of free rotation, we have 

1/J,=w,t+I/J, (0) , 

where wr is the rotation frequency. 

The equations of motion are as follows: 

mi'=- dU +FCOS(I/JI-I/J,)+mr(IjJ,)2'l 
dr 

mr¢~=F sin (I/J,-I/J,) -2mhjJ" 

(1 ) 

where U= U(r) is the potential energy of the radial mo­
tion and F=eE. 

2.2. The exact system (1) is difficult to investigate 
analytically. We have to invoke the following simplify­
ing conditions. 

The rotation frequency wr is much less than the char­
acteristic vibration frequency w..,: 

(2) 
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The amplitude of the radial vibration a is much less 
than the equilibrium distance between the atoms re: 

(3 ) 

We shall seek the solution of Eq. (1) in the form 

r=r,+acos (I/JI-I/J,+<P). (4) 

Let the external force F be so weak that the vibration 
amplitude a, phase shift CP, and rotation frequency wr 
be relatively unaffected during the characteristic vibra­
tion period. Thus, 

lal 
Icpl, (5) -, 

a 

Substituting Eq. (4) into Eq. (1) and averaging over the 
rapidly oscillating quantities (see[11), we obtained the 
following convenient closed system of equations for the 
slow unknowns: 

a=-F sin <p/2mw" 

. Fcos<p 
<p=w,(a)-WI+W,--_, 

. 2mw,a 
. aF sin <p 

ffi r=- 2mr«2 J 

(6) 

(7) 

(8) 

where wv(a) is the frequency of the radial vibrations 
which generally depends on the amplitude. If a = 0, then 
wv(a) = wve' It follows from Eq. (3) that 

I w,,-w,(a) I ~w". 

In the derivation of Eqs. (6)-(8) we have confined 
ourselves to the case when the laser frequency differs 
only a little from the characteristic vibration fre­
quency: 

and whenever possible we have replaced wv(a) and Wve 
with WI. Moreover, we shall not distinguish between 
Wve and WI in all those cases when this is allowed. The 
anharmonicity becomes important when 

Thus, the condition (3) does not free us of the need to 
allow for the dependence of Wv on a. 

The vibrational-rotational state of a classical di­
atomic molecule is described completely by the follow­
ing three quantities: a(t), cp(t), and wr(t). It follows 
from the condition (2) that the value of the rotation 
phase 1/Jr is unimportant. Equations (6) and (8) have the 
integral: 

a'(t) 
w, (t) -WI""2r:' = c, 

which makes it possible to reduce the order of the 
system of equations (6)-(8). 
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3. MOTION OF A MOLECULE UNDER BEAT AND 
STEADY· STATE CONDITIONS 

3.1. We shall substitute the value of wr(t) from Eq. 
(9) into Eq. (7) and we shall introduce 

(10) 

We can see that the whole influence of the rotation can 
be described by replacing the dependence wv(a) with 
some effective dependence w~(a). 

If follows from the condition (3) that the amplitude is 
a« r. so that we shall assume 

(11) 

where p is a numerical coefficient representing the 
radial vibration anharmonicity. According to Eqs. (10) 
and (11), the role of the rotation reduces the replace­
ment of p by p* = P - t and to a change in woo' 

In the quantum case, when the energy of a term is 
expressed in the form 

E""/iw,, (V+'/2) -x,/iw" (V+'/2) 2+B,K(K +1), 

where Be = /i2/2mr!, this numerical coefficient is 
p = xe 1fuJv.l2Be' 

Let us assume that initially the molecule is at rest: 
a=Oandwr=O[then c=OinEq. (9)]. Theradialvibra­
tions begin to build up in the laser radiation field. The 
radial vibration amplitude a exhibits beats from zero to 
amax' The value of ~ax can be found as follows. 

We shall introduce an action variable l=mw,a2 /2 and 
rewrite the system (6)-(7) in the Hamiltonian form 

oH Fsinq> - 1 1=--= ----YI 
oq> (2mw,) 'I, . 

. oH. F cos q> 
q> = aT = w, (1) -w, 2 (2mw,I)'/ 

(12) 

where 

Then, considering H as the integral of motion, we 
eliminate cp from Eq. (12). In this way we obtain the 
equation of motion for 1 in the potential form: 

1 

where 

dV(/; leO), <f(0» 

dl 

IF' 
V (/; I (0), q> (0)) =-"mw, 

(13) 

SI [SI' FCOSq>(O)YI(O)] 
+ dI,(w;(/,)-w,) dl2(w;(12)-WI)+ (2mw,)" . (14) 

o 0 

The oscillations of the quantity I, described by Eq. (13), 
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correspond to beats of the amplitude a. 

It is interesting to note that the potential V depends 
on the initial values of 1(0) and cp(O) [the condition a(t 
= 0) = 0 will not be used yet]; moreover, V depends on 
the external force F and on the frequency detuning 

If initially we have a(O) = 0, we then find that 1(0) = 0 
and i(O)=o. We shall substitute in Eq. (14) the value 

2p' 
w; (/) =w" --,I. 

mr •. -

The dependence of Von 1 is shown schematically in Fig. 
1. If p* *- 0 then, for sufficiently large values of Vw, 
the potential curve V(I) has a local maximum which is 
located above the abSCissa if ~w > ~wc. We can easily 
show that the value of ~wc at which the curve V(l) 
touches the abscissa from below is 

When the condition ~w = ~wc is satiSfied, the molecule 
at a beat maximum has a vibrational energy Ev equal to 

Since 

w, a' (I) 
w,(I)=T--;:Z-' 

(15) 

It follows that the buildup of the radial vibrations is 
accompanied by untwisting of the molecule. However, 
the rotational energy is 

i.e., it is much lower than the vibrational energy. 

3.2. The system (6)-(8) is derived ignoring the 
relaxation processes and it cannot describe motion for 
a fairly long time, particularly the attainment of steady­
state conditions when Ii = Cp = wr = O. We shall now intro­
duce into our system some terms which describe the 
damping of the motion. 

In a consistent development of the classical model we 
must allow for the force of radiation friction. Then, 
instead of Eq. (8), we obtain 

j 

FIG. 1. Potential V(l) describing beats of the amplitude a of 
radial vibrations; the action is l=mw,a 2/2 [compare with Eqs. 
(13) and (14)]. Two curves are shown and for these curves the 
frequency detuning is ~w 1 < ~w2 < ~w c· 
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FIG. 2. Dependence of the amplitude a of radial vibrations 
on the laser frequency W, under steady-state conditions. The 
continuous curve is the dependence a2(wl) obtained ignoring 
rotation for p> 0; the states shown shaded are not obtained be­
cause of their instability. The dashed curve is the dependence 
a2(wl) obtained allowing for rotation in the case of exact com­
pensation of the anharmonicity by rotation, e. e., in the case 
when p* = P -Yv/2Yr = O. 

. _ (, 3 ,a' ) Fa sin q> 
Wr--T (J),. + -2 WI -; CO,. - -2--'-' 

Te mre 

where T = 2if 13m2. The equation for Ii becomes 

1 F sin q> a=- - TW12a - --' 
2 2mw, • 

the equation for (P remains unchanged. 

Under steady-state conditions the relationship be­
tween wr and a is 

The effective frequency dependence becomes 

a' ( a' ) 'I' I a') 'h 
W; (a) =w.,-w"p -, + w, -2' '" w.,+w" \ -;;-; . 

Te re ... re 

We shall not consider this case in detail but simply note 
that under steady-state conditions a large fraction of 
the energy of a molecule is carried by the rotational 
motion: 

E, i (2r,') 'h 
-=- - ~1. 
E. 2 a' 

3.3. In a sufficiently dense medium the damping (re­
laxation) of motion can occur because of collisions. We 
shall allow for this possibility phenomenologically by 
introducing friction coefficients Yv and Yr' We shall 
write 

Fsinq; 1 a=-,.a---. 
2mw, 

Fa sin q> 
OJ,=-2"w, --2-'-' mre-, 

Under steady-state conditions we have 

where 

w; (a) =Wco (i-P' ~:). . ,. 
p =p - 2" . 
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(16) 

(17) 

The dependence of the steady-state vibration ampli­
tude on the frequency of the external force is given by 
the resonance curve a2(W,), In the case of molecules 
we usually have p> 0, i. e., the resonance curves 
plotted ignoring rotation are deflected to the left in the 
direction of lower frequencies. An example of such a 
curve is given in Fig. 2 (for details of the properties 
of the resonance curves the reader is directed to[1,2l). 

As shown above, allowance for the rotation under 
steady-state conditions reduces to the substitution p 
- p* [see Eq. (17)]. It should be noted that if Yv/2Yr 

= p, then p* = O. This means that if Yv/2Yr = p, the rota­
tion of a molecule compensates exactly its anhar­
monicity. 

3.4. We shall now consider the energy of a molecule 
under steady-state conditions. 

If p* - 1, the vibrational energy Ev is much higher 
than the rotational energy Er• The dependence of Ev 
on the frequency W, and the intensity 1= c / E /2 I 41T of the 
laser radiation field can be found by eliminating cp from 
Eqs. (7) and (16). This gives the equation 

(18) 

where 

mr,/w? 
Em =-2-' 

m2rc2Wt4c 

Im=---. 
.-re 2 

Em is the characteristic molecular energy and 1m is the 
characteristic intensity at whiCh the electric field in the 
laser wave becomes of the same order of magnitude as 
the internal molecular field. 

For a given value of I, the dependence of Evon W, is 
represented by curves such as those plotted in Fig. 2 
because Evcxa2. We shall consider the dependence of 
Evon I for a given laser radiation frequency. Using 
Eq. (18), we can show that the dependence Ev(I) is 
continuous if AW <..f3 Yv' If Aw > )3yv, the dependence 
Ev(I) may become discontinuous for p* * O. Let us as­
sume that the intensity I varies slowly with time. Then, 
at I = I c1 or 1= Ic2 the vibrations break down and the vibra­
tional energy changes abruptly (Fig, 3). The critical 
field IC1 (or Ic2 ) at which there is a downward (or upward) 
sudden change is 

8 c 

[ -
I 

[z '"""='!'=------o-------o 

FIG. 3. Dependence of the vibrational energy Evon the laser 
intensity I under steady-state conditions. When the intenSity 
I is increased from 0, the vibrational energy varies along the 
curve OABC with an abrupt upward jump at I =lc2' When I is 
reduced, the energy varies along CBAO with an abrupt down­
ward jump at l=lcl <lc2. 
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FIG. 4. Amplitude of radial vibrations a(t) and effective fre­
quency wa (t) ~ w, - wr(t). A molecule undergoes a transition 
from an initial state 1 with wr ~ 0 and wa ~ w, to a state 2 in 
which wr > 0 and wa ~ '" ,- wr ~ «2' State 3 is assumed by a 
molecule which cannot rotate and is excited by a frequency 
wl~U.:a~w2· 

where 

If, for example, (.:).W)2", 3Yv2 then EI ", E2 ~2.:).w/3p*wl 
and 

4. DISCUSSION 

(19) 

Why is the buildup of radial vibrations of a molecule 
in the field of laser radiation necessarily accompanied 
by untwisting? Why, in spite of the 'condition wr « Woo 

and lack of allowance for the centripetal force, does 
the rotation of a molecule have a strong influence on the 
buildup of radial vibrations? 

The answer to the first question is easiest to obtain 
on the basis of quantum considerations. Radiation-in­
duced untwisting appears because the absorption of cir­
cularly polarized photons results in an acquisition of an 
energy nw, and also of a torque If per each (dipole -) 
absorbed photon. Consequently, a molecule begins to 
rotate in the same direction as the vector of the radia­
tion electric (and magnetic) field. 

The answer to the second question is as follows. So 
far, we have described the influence of the rotation on 
the amplitude of the steady-state radial vibrations by the 
the substitution p- p*. However, in some cases it is 
more convenient to adopt a different description. It is 
clear from Eq. (1) that radial vibrations are eXl!ited by 
a force whose phase is ~, - ~r' The corresponding fre­
quency 

will be called the effective frequency. This effective 
frequency is the frequency of an external laser field 
"experienced" by an observer rotating together with the 
molecule. Let w, > Woo and let the frequency wr rise 
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so slowly that the amplitude of radial vibrations can 
follow the effective frequency wa(t) =W,- wr(t) which 
"creeps" slowly to the left. As wa decreases, the am­
plitude a can grow considerably. In other words, in the 
process of untwisting of a molecule the point in Fig. 4 
representing the state of the molecule may travel from 
position 1 to position 2. It should be noted that it is not 
possible to build up the molecular vibrations to the am­
plitude represented by point 2 if the frequency wa = w, 
- wr is independent of time, i. e., if the molecule is 
rigidly fixed and does not rotate. In the case we find 
that even if the laser frequency coincides with W2, the 
buildup from the state of rest gives a steady-state po­
sition 3 (Fig. 4). 

It should be noted that in fact the time for a change 
in wr and the time for a to attain its steady-state value 
are of the same order of magnitude. Therefore, Fig. 
4 is only illustrative. The buildup of vibrations should 
be described by the system of equations (6)-(8) or the 
system (7), (16). In particular, it follows from Eq. (16) 
that if p = Yv/2yr , and the laser frequency is w, =w.." the 
steady-state rotation frequency wr is such that the effec­
tive frequency wa = w, - Wr corresponds exactly to the 
resonance curve maximum. 

We shall now obtain some numerical estimates which 
are applicable to a typical heteropolar molecule HCl. 
The parameters of this molecule are!): 

e",,4.8·1O- 1O egs esu m=1.63·1O-" g; r,=1.29 A; 

n",,,=2886 em-I; B,=1O.3cm- 1; x,=O.0172. 

Then 

According to Eq. (15), the maximum energy of a mole­
cule under beat conditions is 

_ (256 I)'" _ (I W/cm 2 )';' 
Evrnax-Em 71:' - 84.4 ~ eV. 

The classical model can be used to describe vibrations 
only if Evma:x.» nwoo =0.36 eV, which is true if 1?:-101l 
wt/cm2• In principle, such intensity is attainable if 
only for a focused laser beam. 

In the case of molecules with smaller values of nw.., 
the classical theory becomes valid at much lower in­
tensities. 

In the model with friction we usually have Yv'" 10-5 Woo; 
however, even if we assume that Yv'" 10-4 Woo, it follows 
from Eq. (19) that 1cl ,c2;:; 105 W/cm2• Thus, the vibra­
tions may collapse at the intensities at which the clas­
sical theory is applicable. 

Let us consider whether the conditions (2), (3), and 
(5) are satisfied in real situations. The frequency Woo 

corresponds, in the quantum language, to the character­
istic frequency of transitions between vibrational levels; 
the frequency Wr corresponds to purely rotational tran­
sitions. If the temperature is not too high, we have w.., 
= (30-100) wr and the condition (2) is satisfied well. The 
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condition (3) is also satisfied well as long as the vibra­
tional energy does not approach the dissociation energy. 
It follows from the system (6)-(8) that the condition (5) 
can be reduced to 

If 1= 1012 W / cm2, then the condition (5) is satisifed even 
for a/re ~10-2. 

Clearly, the classical description of rotation is fully 
permissible under normal conditions since the rota­
tional quantum numbers of the molecules are j = 10-30. 
The only serious objection against the classical model 
is related to the requirement v» 1, where v is the vibra­
tional number (under normal conditions v=O, 1, or 2). 
Therefore, it would be interesting to determine how the 
above relationships are affected by allowance for the 
quantum effect. In this connection it is interesting to 
consider the results obtained in[3-15]; in particular, it 
is pointed out in[15] that the probability of excitation of a 
quantum oscillator is frequently governed by the work 
of the external field done on corresponding classical 
oscillator. 

The thermal rotation of a molecule governs the initial 
value of wr(O) in our model. If, in the process of 
buildup of radial vibrations and untwisting, the angular 
velocity changes only slightly compared with wr(O), the 
radiation-induced untwisting is negligible. However, 
under real conditions, the molecule may absorb 30-50 
quanta before dissociation so that its rotational quan­
tum number has a correction ~j, which is not less 
than2) 30-50, whereas the thermal value is j = 10-30. 
Thus, radiation-induced untwisting of a molecule cannot 
be ignored compared with its thermal rotation. 

In concluSion, we shall point out that in the model 
with relaxation there may be conditions under which the 
ratio Yv/Yr depends strongly on pressure. For ex­
ample, this may happen when the rotational relaxation 
is due to collisions, whereas the relaxation of radial 
vibrations is not only due to collisions but also due to 
an additionalfriction mechanism. Then, the reduction 
in pressure causes molecules to untwist to high angular 
velocities; the amplitude of the steady-state vibrations 
rises along the resonance curve (Fig. 4). Variation of 
the pressure alters p* =p - y/2Yr so that we can obtain 
p* = 0, i. e., we can compensate the radial vibration an­
harmonicity . 

In this connection it is interesting to point out that, 
according to U6], the yield of the dissociation reaction 
of the SF 6 molecules (and of some other molecules) in 
the field of CO2 laser radiation increases when the pres-
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sure is reduced. It is possible that also in the case of 
polyatomic molecules the rotation compensates (to a 
larger or smaller degree) the anharmonicity, as shown 
here for diatomic molecules. If this is correct, the 
probability of dissociation should have a maximum at 
some specific pressure. 

The authors are grateful to V. S. Letokhov for sug­
gesting the subject, G. A. Askar'yan for valuable critical 
comments, and to participants of a seminar headed by 
V. L. Ginzburg for discussions. 

I)The energy of a vibrational quantum Fiwve and the rotational 
constants are measured in units of cm-1• The dimensions of 
energy can be restored if we multiply by 21l"Fic=1.24 x 10-4 

eV·cm. 
2)Under certain conditions the correction Aj is much higher 

than the correction to the vibrational number v because in 
case of spontaneous emission of a quantum of frequency w 
"" U;ve the number v necessarily decreases by ·unity, whereas 
j is equally likely to decrease or increase. 
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