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A method is developed for obtaining steady-state solutions of reduced equations for the nonlinear 
interaction of waves in inhomogeneous media without recourse to the approximation of a given pump field. 
The method is used in an analysis of the efficiency of optical frequency doublers under conditions of 
regular or random loss of phase matching. It is shown that the 100% efficiency limit is unattainable if such 
loss of phase matching does occur and in this case the efficiency initially rises with pump power, reaches a 
certain maximum value for a crystal of length L, and then begins to fall. A full analytic treatment of the 
efficiency of a frequency doubler in the presence of accidental loss of phase matching makes it possible to 
calculate the optimal length of a crystal Lm.x as a function of the pump power for which the doubler 
efficiency is maximal 'Y/m,,' It is shown that the limiting efficiency 'Y/m" of a crystal with the optimal length 
Lm" (Lmax decreases with rising power) rises with the pump power until the thermal self-interaction and 
diffraction-caused loss of phase matching become important. 

PACS numbers: 42.65.-k, 42.20.-y 

1. INTRODUCTION 

In most cases of interest the nonlinear interaction of 
waves is accompanied by regular or random loss of 
phase matching of the waves because of various factors, 
such as the inhomogeneity of the medium, diffraction, 
thermal self-interaction, etc. This destroys the phase 
matching to which the resonant interactions of the 
waves are sensitive and the general picture of nonlinear 
wave processes is found to depend strongly on such fac­
tors. Resonant nonlinear interactions involving a 
small number of waves underlie the operation of para­
metric converters of the frequency of light. The re­
cent developments in the technology of stable single­
mode lasers and the possibility of overcoming aperture 
effect have raised in acute form the problem of achiev­
ing the maximum possible effiCiencies in optical fre­
quency doublers and optical parametric oscillators. [1-3] 

The most important factor which limits the effiCiency 
of parametric frequency converters is the loss of phase 
matching and the consequent weakening of the nonlinear 
interaction. [1.4] For example, computer calculations 
have shown that the theoretical effiCiency of 100% is 
unattainable in optical frequency doublers for finite 
beams because of the diffraction-induced loss of phase 
matching. [4.5] A consistent analytic discussion of the 
limiting effiCiencies of parametric frequency converters 
in the presence of regular or random loss of phase 
matching requires avoidance of the approximation of a 
given pump field, which is usually employed (see, for 
example, [6.7]) and reduces essentially the problem to 
a linear one. The difficulties encountered outside the 
framework of a given field approximation are the strong 
nonlinearity of the problem and the absence of general 
solution methods. 

We shall develop a method for obtaining steady- state 
(a/at= 0) solutions of one-dimensional (all quantities 
depend on just one coordinate) reduced equations for the 
nonlinear interaction of three waves in inhomogeneous 
media used earlierI 8 •9] in discussing the nonlinear in­
teraction of waves in a nonequilibrium inhomogeneous 
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plasma. The approximation of a given field is not in­
voked and the amplitudes of all three waves can be of 
the same order of magnitude. The small parameter 
used in the present paper is related to the smallness of 
the accumulated relative difference between the wave 
phases due to the inhomogeneity of the medium in a 
characteristic nonlinear interaction length 1. This 
parameter is perfectly natural in the problem of limit­
ing efficiencies of parametric converters because if the 
accumulated difference between the wave phases in a 
distance 1 is greater than, or of the order of, unity, 
the nonlinear interaction becomes much weaker and we 
cannot expect high efficiencies. 

The method will be used to analyze second harmonic 
generation in a medium with a regular or random loss 
of phase matching because of inhomogeneities. It will 
be shown that, for a fixed length of a nonlinear medium 
the efficiency of second harmonic generation does not 
saturate at the limit of 100% when the power is in­
creased, which could be expected in the absence of any 
change in the phase matching in a lossless medium, but 
it begins to fall from limiting value lower than 100% and 
the energy is then pumped back to the first harmonic. 
Similar behavior of the efficiency of an optical doubler, 
represented' by the dependence of the total power on the 
reduced length of a nonlinear crystal, is reported by 
Karamzin and Sukhorukov. [4] An analysis shows that 
the cause of this phenomenon is the spatial development 
of an instability of the second harmonic which decays 
into two waves of frequency (v and in this case the loss 
of phase matching acts as a perturbation nucleus. This 
instability of the maximum-frequency wave leading to 
a decay into two waves with lower frequencies has been 
studied thoroughly in the theory of plasma and is known 
as the decay instability. [10] 

The solution obtained will enable us to determine the 
theoretical efficiency limit of a frequency doubler in the 
presence of aCCidental loss of phase matching between 
the waves, and to find the optimal conditions for the 
operation of a doubler. Thus, if the parameters rep-
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resenting the accidental loss of phase matching are 
fixed, we find that-for a given length of a nonlinear 
crystal-there is an optimal pump power at which the 
efficiency reaches its maximum. 

2.. SOLUTION METHOD 

The steady- state (a fat = 0) process of second har­
monic generation in a weakly nonlinear (kl» 1) weakly 
inhomogeneous (kle » 1) dissipative medium is described 
by the following system of equations for the complex 
amplitudes of the first and second harmonics A l ,2(Z) 
(the z axis is perpendicular to the boundary of the non­
linear medium[7,U]: 

dA 
-. -' + b,A,=i~,A,A,'+iA, (z)A .. 
dz 

dA, ., . () --;I; + b,A,=I~,A, +11\, z A,. 

Here, le is the characteristic scale of inhomogeneities, 
bl ,2 are the damping decrements of the harmonics, f3l,2 
are the nonlinear constant interaction coefficients gov­
erned by the frequencies and wave vectors of the waves, 
and by the nonlinear susceptibility te'nsor of the medium 
(see, for example, [11]). 

The phase matching conditions are assumed to be 
satisfied by the waves at z = 0 and the loss of phase 
matching between the waves in the medium is related to 
the factors Al,2(Z) [Al ,2(0) = 0]. If the loss of phase 
matching is due to the inhomogeneity of the medium, 
we have 

\ (- _ ro' lie, (z) 
• 1 "') - c2k1el -E-, -, 

(2) 

where w is the frequency of the first harmonic, kl ,2 
are the projections of the wave vectors onto the z axis, 
El,2 and OE1,2(Z) are the constant and alternating parts 
of the permittivity. The factors Al,a(z) are clearly re­
lated as follows to that part of the phases <Pl,a(Z) of the 
complex wave amplitudes Al,a(z) which changes due to 
external factors (i. e., bl,a = f3l,2 = 0): 

A,(z)= d:~(Z) , i=1,2. (3) 

Let PI (z) and CfJi (z) be the moduli and phases of the 
complex amplitudes of the waves Ai (z) = p,(z) exp[iCfJ/ (z)]. 
Then, it is convenient to use the following real dimen­
sionless quantities: 

n,(z)= p,'(z2.. n(z)= p,'(z) L 
p.' (0) , p,' (0) ~,' 

x=zll, l-'=~, (~,) 'I,p, (0), 

8='1" (z) -2'1', (z). (4) 

We shall adopt the following boundary conditions: tZt(O) 
= 1, n( 0) = 0, 9 (0) = 1T /2. In terms of these variables 
and using the Manley-Rowe relationship nl (x) + n(x) = 1 
in a lossless medium (b l = ba = 0), the system (1) re­
duces to two equations for the normalized intensity of 
the second harmonic n(x) and the relative difference be­
tween the phases of the waves 9(x): 
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dn '1 ( dx =2n' 1-n)sinO, (5) 

dO (1-n-) -=x(x)+ -,--2l'n cosO, 
dx nl. 

(6) 

x (x) =l~k(lx), ~k(x) =A,(lx)-2A, (lx). 

The system (5) satisfies the following integral rela­
tionship: 

n'I'(1-n)coso+~f dx,x(x,)!!!!....=r. 
2 dx, 

(8) 
o 

The quantity r is governed by the boundary conditions. 
If x (x) = const, this integral relationship reduces to the 
well-known integral of motion of the system (5)-(6). [11] 

We shall express cos 9 in terms of n(x) using Eq. (8) 
and we shall substitute the resultant expression in Eq. 
(6). We shall then integrate formally the left- and 
right-hand sides ofEq. (6). Then, we shall substitute 
the expression for the phase 9 (x) into Eq. (5) and obtain 
finally one integro-differential equation for n(x) (a 
similar equation was used earlier in[8,9]): 

dn = 2n" (l-n) sin{ ~ + SX dx, x (x,) 
dx 2 

o 

x 1 1 x, d 

+ S dx, [ I-n(x.) - 2n(x,) ] S dx, x(x,) d;,}' 
o 0 

(9) 

In Eq. (9) the initial phase shift between the waves is 
9(0) = 1T/2 (r = 0). 

We shall introduce 

:.: x 1 1 XL d 
a{n(x)}==S dx, x(x,)+ S dx, [---) --(-] S dx,x(x,) _n_; 

1-n (x, 2n x,) dx, 
o 0 0 

(10) 

where a{n(x)} represents the accumulation of the phase 
shift (because of the inhomogeneity of the medium) in a 
distance 1. It follows qualitatively from Eq. (9) that if 
the accumulated phase shift is a{n(x)}~ 1, the sine in 
Eq. (9) begins to oscillate and the effective interaction 
between the waves weakens considerably. We shall 
therefore assume that the influence of the loss of phase 
matching on the nonlinear interaction of the waves is 
weak, so that the quantity a{n(x)} can be assumed to be 
small and the solution of Eq. (9) will be obtained as a 
series in perturbation theory. The final solution for 
the normalized intensity of the second harmonic n(x) 
including the first term of the perturbation series is 

1 • 
n(x)=tanh2 (x) [1--- Sdx, a'(x,)]. 

. 2 sh 2x 
o 

(11) 

Here, a(x) is given by Eq. (10), where n(x) should be 
replaced with the unperturbed solution no(x) =tanha(x). 
The criterion of the validity of the solution (11) is the 
closeness of the solution to the unperturbed form, i. e. , 
the smallness of the value 
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x 

? hi 2 J dx, ex' (x,) <1. 
_8 x 

FIG. 1. Dependence of the doubler 
efficiency on the reduced length of 
the nonlinear crystal. Curve 1 cor­
responds to AL = 0, curv.e 2 to AL 
=0.05, and curve 3 to AL=O.1. 

(Ha) 

The expression (11) describes the efficiency of a fre­
quency doubler for the wave intensities and also for the 
total power across the beam, because we are consider­
ing only beams with homogeneous transverse distribu­
tions and with transverse dimensions m)Jch greater than 
1. It is clear from Eq. (11) that if the loss of phase 
matching occurs, 1-I.(x) '* 0, the efficiency 17 = n(x) of a 
doubler is always less than unity. 

3. SECOND HARMONIC GENERATION IN A MEDIUM 
WITH RANDOM INHOMOGENEITIES 

We shall consider the case when the loss of phase 
matching is random and the properties of the quantity 
1-I.(x) are known (Bespalov[l2] solved the problem of fre­
quency doubling in the presence of random loss of phase 
matching but he used the approximation of a given pump 
field and somewhat different assumptions about the na­
ture of the random process). We shall assume that the 
nonlinear interaction coeffiCients are constant and that 
the refractive index of the medium is a fluctuating 
quality, which corresponds. to the case of optically in­
homogeneous nonlinear crystals. 

Let 1-I.(x) be a steady-state Gaussian random process 
with zero mean (1-1. (x» = 0 and pair correlation function 
B(Xl - XZ) = (1-1. (Xl), x(XZ». Then, the solution of the prob­
lem of the doubler efficiency 17 = (n(x» reduces to the 
averaging over the random process in Eq. (11) and sub­
sequent calculation of the integrals 

1 • 
<n(x»=tanh2 (x) [1---J dX,<ex'(x,»]. 

2sh2x 
o 

(12) 

We shall consider the case of short correlation lengths 
Ie (.,,-1;: lell» 1). In this case we can assume that in 
the averaging process we have 

B(x,-x,) =B{j(x,-x,). (13) 

This approximation corresponds to the retention of only 
the first terms in respect of the parameter ,,-1« 1. 
The higher terms of the expansion in ,,-1 can be found 
USing, for example, a correlation function of the type 

B(x,-x,) =<x') exp (-llx,-x,l). 

where (x2) = (ATI-)Z2 is the mean square of the phase 
shift accumulated in a distance 1. 
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(14) 

Retention of only the first term in ,,-1 corresponds 
formally to going to the following limit in Eq. (14): 

This establishes the meaning of the quantity B: 

(15) 

(16) 

The quantity A represents the properties of the medium. 
Averaging n(x) in Eq. (12) over the random process 
characterized by the correlation function (13) and cal­
culating the integrals, we obtain the following expres­
sion for the doubler frequency: 

.' [ Ch4X+16Ch2X-17] 
!'](x)==<n(x»=tanh2 (x) 1-B . 

120 8h 2x 
(17) 

We shall also give the formula for the doubler effi­
ciency which is more convenient in the case when the 
length L of a crystal is fixed and only the incident wave 
power, i. e., the length 1, is varied: 

. [AL (Ch 4%+16 ch 2z-f7 )] ( ) 
!'] (Z) ==<n (z) )=tanh2 (z) 1 - 120z sh 2Z . • 17a 

where z = L/Z is the reduced length of the nonlinear crys­
tal. The dependences 1/(z) calculated for different val­
ues of AL are plotted in Fig. 1. 

The pumping of the energy back to the first harmonic 
is described by 

(n, (x) )=I-<n(x». (18) 

The expressions (17) and (18) show that the pumping of 
the energy back to the first harmonic due to the phase 
shift occurs in a characteristic distance z.: 

(19) 

The physical cause of this rise of the first harmoniC 
intensity is the spatial growth of the decay instability 
of a wave frequency 2w into two waves of frequencies 
w, [10,11] which in this case is of fluctuation nature. The 
length Zs is also the distance in which the fluctuation 
component n(x) becomes comparable in order of mag­
nitude with (n(x» and we can no longer use the approxi­
mation described above [the small parameter e"(B 1120)1/2 
« 1 becomes strongly dependent on the length]. 

We can quote quantitative considerations to support 
that the characteristic length Zs of the process of pump­
ing the energy back to the first harmoniC is a logarith­
mic function of the perturbation, irrespective of its 
actual nature. In fact, let the ratio of the intensity of 
a perturbation at a frequency w to the intensity of the 
second harmoniC be of the order of B. Then, it is well 
known that the characteristic length of the decay of 
wave frequency 2w is (see, for example, [10] p. 22) 

(20) 

We shall conclude this paragraph by noting that the 
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problem of three-wave interaction in a randomly homo­
geneous medium with special boundary conditions, 
solved by one of the present authors by a different 
method, [13] gives similar results and a characteristic 
length of increase of fluctuations of the same type as 
Eq. (20). The approximation employed by Tamoikin 
and Fa1nshte1n[14] in an investigation of three-wave 
processes in random media corresponds to dropping of 
the second term from the formula (10) for a{n{x)}. 

4. OPTIMAL PARAMETERS OF A FREQUENCY 
DOUBLER IN THE CASE OF RANDOM LOSS OF 
PHASE MATCHING 

We shall now solve the problem of optimal param­
eters of a doubler in the case when the main efficiency­
limiting factor is a random inhomogeneity in the non­
linear crystal. For convenience, we shall assume that 
the properties of this crystal and the inCident power 
are constant, i. e., that B =AI is a fixed quantity, but 
the length of the crystal L can be varied. The final 
formulas are not affected if AL is regarded as fixed 
and 1 is varied. The solution (17) shows that, for a 
fixed value of B, there is an optimal dimensionless 
length of a nonlinear crystal Xm"" = L,;,,,,,/l in which the 
doubler efficiency reaches its maximum value 17m"", 

Further increase of x causes the doubler efficiency to 
fall. 

The dependence of Xm"" on the parameter B is governed 
by the following transcendental equation: 

dT)(x) I =0, 
dx x-x max 

(21) 

where 17{x) is given by Eq. (17). We shall solve this 
equation on the assumption of sufficiently low values of 
B, so that Xm"" ~ 2. Then, the hyperboliC functions in 
Eq. (21) can be replaced with exponential functions and 
Eq. (21) becomes 

Substituting Eq. (22) into Eq. (17). we obtain the depen­
dence of the maximum efficiency of second harmonic 
generation 17m"" on the parameter B in the presence of 
random loss of phase matching: 

l1m.x "" 1-2 (B/30) '/'''='1-0.4 (Al)'i'. (23) 

It should be pointed out that the validity of the above 
approximations in the region Xm"" corresponding to the 
efficiency maximum is subject to the inequality 0.4B1/ 2 

« 1. 

We shall now consider the results obtained, for ex­
ample those for the loss of phase matching due to a 
random inhomogeneity. Then, in Eq. (16) the expres­
sion for B = 2(ATl')lle should be modified for order-of­
magnitude estimates by replaCing (ATl') with [see Eq. (2)] 

<!!.k'>-k'<lie'>fe', (24) 

where (1le2) is the mean square of the spatial fluctuations 
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of the permittivity: B -Tl'lle{llc2)/e2. If Ie and {1l£2)/£2 
are fixed (A = const), an increase in the inCident power 
causes the maximum efficiency 17m"" to rise, in accord­
ance with Eq. (23), because 1 decreases. The optimal 
length of the nonlinear crystal 

I [ e' 1] Lm.x=-ln 480-.-- , 
4 <lie'> k1cl 

(25) 

in which the maximum efficiency is reached, decreases 
when the incident power is increased, whereas the di­
mensionless length Xm"" = Lm",,/l becomes greater. Nat­
urally, the above estimates cease to be valid when the 
power of the incident wave is so high that the thermal 
self-interaction effects become important. 

5. POSSIBLE GENERALIZATIONS 

It is interesting to consider simultaneously the in­
fluence of losses and of random dephasing on the limit­
ing effiCiency of optical doublers. We can consider 
analytically the case of equal damping decrements of 
the first and second harmoniCS: b 1 = b2 = b. The sub­
stitution of variables[l1] reduces the frequency doubling 
problem to that solved above subject to the factor that 
the correlation function is now of somewhat different 
form when expressed in terms of new variables. Next, 
considering the cases of low losses (bl« 1, bz« 1) we 
obtain the following expression for the doubler efficiency 
averaged over the random process and considered to 
be a function of the dimensionless length of the nonlinear 
crystal: 

lj(x}=<n(x»= tanh2 (x) [ 1-2blx( 1 + sh~X ) 
_ Al ch 4x~16 ch 2x-17 ] . 

120 sh 2x 
(26) 

This formula shows that when the dimensionless length 
of the nonlinear crystal is increased, the influence of 
a random inhomogeneity on the doubler efficiency rises 
exponentially and the relative influence of the losses on 
the effiCiency, compared with the d~phasing, decreases. 

The method developed in the present paper can be 
generalized to the case of interaction of three waves of 
different frequencies in inhomogeneous media. Once 
again use is made of one integrodifferential equation for 
the intensity of only one of the interacting waves and 
perturbation theory can be based on a small parameter 
representing the accumulation of the phase shift of the 
waves in a characteristic nonlinear interaction length, 
governed by the boundary conditions of the problem. 
In the general case of arbitrary boundary conditions 
the problem can be solved in the form of integrals of 
known functions for which analytic estimates can be 
obtained only in certain limiting cases. The method 
can be useful also in conSidering the nonlinear interac­
tion of waves in an inhomogeneous plasma. [6,15,16] 

6. CONCLUSIONS 

An analysis of the frequency doubler efficiency shows 
that the limiting efficiency of 100% for ideal crystals 
is unattainable in the case of regular or random loss of 
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phase matching (dephasing) of waves. In the case of a 
fixed length of an optically inhomogeneous nonlinear 
crystal L, the doubler efficiency first rises with the 
incident power, reaches a certain maximum value (for 
a given length of the crystal), and then falls when the 
pump power is increased still further. For a given 
pump power and given properties of the crystal there is 
an optimal length of the crystal Lmu. for which the dou­
bler efficiency has its maximum (under these condi­
tions) value 11mu.. Under given conditions in the non­
linear crystal the maximum possible efficiency 11max 
rises with the pump power but this value of 11max can be 
obtained only by selecting the optimal length of the 
crystal Lmu. which varies with the pump power. The 
conclusion of the rise of 11max with increasing pump 
power ceases to be valid at powers such that the ther­
mal self-interaction effects and diffraction-induced loss 
of phase matching become important. 

The authors are deeply grateful to S. A. Akhmanov 
for valuable discussions of some of the problems. 
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Classical heteropolar molecule in the field of circularly 
polarized laser radiation 

V. I. Gorchakov and V. N. Sazonov 

P. N. Lebedev Physics Institute. USSR Academy of Sciences, Moscow 
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An approximate system of equations is obtained for the evolution of the state of a classical molecule. It is 
shown that the rotation of such a molecule has a strong influence on the buildup of radial vibrations: 
under certain conditions the rotation may compensate the radial vibration anharmonicity which disturbs 
the buildup. The dependence of the energy of this molecule on the radiation field intensity is considered; it 
is shown, in particular, that under certain conditions the rotation energy may be much greater than the 
vibration energy. 

PACS numbers: 32.20.Tg 

1. FORMULATION OF THE PROBLEM, DESCRIPTION 
OF THE MODEL, AND SOLUTION METHOD 

We shall consider a diatomic heteropolar isolated 
molecule subjected to the field of monochromatic cir­
cularly polarized laser radiation. The question is what 
energy is transferred from the field to the molecule 
and how is this energy distributed between vibrational 
and rotational motion. 

We shall consider this problem on the basis of the 
following model. We shall assume that the molecule 
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consists of two point charged atoms. The force ex­
erted on the atoms by the laser radiation is weak com­
pared with the intramolecular force. Radial vibrations 
(vibrations of the distance between the atoms) are gen­
erally anharmonic but the amplitude of these vibrations 
is small compared with the equilibrium distance. The 
action of the laser radiation, rotation, and vibration 
of the molecule will all be considered ignoring the quan­
tum effects. 

The approximate nature of this model is self-evident. 
However, this model should not be considered just as 
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