
!ll=:J{+.J{'!ll with a short-range kernel.7t; equations of 
this type can frequently be solved in the diffusion ap­
proximation, and in this case .7l is determined from an 
equation describing stationary diffusion (with absorption 
or multiplication and a source) in the channel space. 
The only exception is the case of resonances of the sec­
ond type, when a long-range interaction of sorts enters 
into the channel space, due to the proximity to the sta­
tionary (or quasistationary) state of the aggregate of 
channels. 

8. CONCLUSION 

The analySiS presented in this paper is valid only for 
a system with a very large number of channels, open or 
closed. The approach indicated above is in essence 
statistical, although not in the usual sense employed. 
for example, in nuclear physics. The assumptions (a) 
and (b) formulated in Sec. 1 are sufficient to make the 
formulas derived in the preceding sections correct. A 
necessary condition here is (b), while the first condi­
tion can apparently be made much less stringent. 

The classification introduced by us for the reso­
nances is not formal but physical. For example, at a 
given input channel :X:, the cross sections a" >i of dif­
ferent reactions, which are proportional to I S( 'A,){) 1 2 , 

will have entirely different dependences on 'A. This 
can be easily seen by comparing formulas (36), (44), 
and (55). We shall not discuss this in detail at present. 

One final remark. In all real cases the channel index 
has several (n) components and can be regarded as vec­
tor in n-dimensional space. In particular, two com­
ponents of the index x describe the excitation energies 
of two particles of the channel. As the total excitation 
energy is gradually increased, we ultimately fall into 

the region of closed channels. On the other hand, the 
diffusion laws, as is well known, depend essentially on 
the dimensionality of the space in which the diffusion 
takes place. It would therefore be quite incorrect to 
confine oneself in the approach developed above, only 
to allowance for the open channels. All the channels, 
open and closed, must be taken into account in the 
scheme. 

To apply the procedure described in the preceding 
section to the calculation of concrete systems it is nec­
essary, first, to renumber the channels in correspon­
dence with the requirements of Sec. 1 and, second, to 
introduce an explicit expression for the kernel K or for 
the diffusion coefficient. The channels can be num­
bered by using physical considerations. The form of 
the kernel K or of the diffusion coefficient should, as 
a rule, be chosen by starting from the experimental 
data. Both questions are the subject of a separate in­
vestigation. 

j)This can be done accurately by expanding all the correspond­
ing quantities in powers of % - "', but the small corrections 
that result from this procedure are of no interest. 

2 )The case G I < ° when 1;» 1 is cons idered in a perfectly anal­
ogous manner, but the expansion must now be in powers of 
1;-1 and not 1;. The formulas of Secs. 4-7 are then slightly 
modified, but all the physical results remain the same. 
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It is shown that taking account of the interaction leads to a splitting of electron-positron levels in the field 
of the nucleus. The levels differ by the number of pairs, each pair consisting of an electron in the K shell 
and a positron in a quasistationary state. A bound state arises in a small range of Z. The energy spectrum 
of the positrons, which are emitted upon critical approach of heavy nuclei, should contain several maxima 
which differ in energy by 10 to 30 keV. 

PACS numbers: 36.IO.Dr 

As is well known, the Dirac equation in the field of a 
point charge loses meaning at z> ~ = 137. In actual fact 
the ground state energy is of the form (Ii = m = c = 1) 

finite size of the nucleus[1-3J removes this difficulty. 
However, at a value Z"" 170 the energy of the lowest 
state reaches the value eo = - 1 and the total energy of a 
pair vanishes, that is, the vacuum becomes unstable 
with respect to the creation of electron-positron pairs. 
Thus, at Z = Z c the Dirac equation loses the meaning of 

eo~[1-(Ze2)2r' 

and becomes imaginary for Z> 137. Allowance for the 
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an equation for a single particle. If the K shell is not 
occupied, two pairs can be created; if there is one elec­
tron in the K shell, then according to the Pauli exclu­
sion principle only the creation of a single pair is pos­
sible; and, finally, in the case of a filled shell the 
vacuum remains stable in spite of the appearance of a 
level with to = - 1. Analogous phenomena for the Klein­
Gordon equation (a particle having spin zero) were in­
vestigated in detail earlier, [4] and it was shown that the 
difficulty is removed upon taking account of the inter­
action between the particles. 

In order to be definite we shall talk about 1" and rr­
mesons. A bound state of rr+ - rr- pairs appears for a 
potential well depth less than the critical depth, U < Uc' 

but for U = Uc the energy of the bound pair vanishes and 
the vacuum becomes unstable. It is necessary to solve 
not the single-particle problem, but rather the problem 
concerning the field of rr+, rr- mesons with their inter­
actions taken into consideration. In the "dangerous" 
states such a number of rr+ -rr- pairs is accumulated that 
further pair production becomes energetically unfavor­
able due to their interaction (it is assumed that the 
interaction is repulsive: H' ="Acp\ "A> 0). As a result 
the effective potential acting on a single pion, which 
consists of the potential of the external field and the 
potential of the remaining pions, does not pass through 
the critical value, which guarantees stability of the 
vacuum. 

In the case of Fermi particles the situation is quite 
different. As a consequence of the Pauli exclusion 
principle a large number of particles cannot be accu­
mulated, and their influence only slightly modifies the 
external field. As we shall see below, the interaction 
between the particles turns out to have a significant in­
fluence on the position of the levels only near the crit­
ical value of Z, since degeneracy exists for Z =Zc' In 
fact, in the case of an unoccupied K shell (a channel 
with charge Q = 0) the energy of the three possible 
states is the same without taking the interaction into 
account: 1) the bare nucleus, 2) the nucleus with a 
single pair, and 3) the nucleus with two pairs. 

For the case of a single electron in the K shell (the 
channel Q = - e), the energy of the two states is the 
same: 1) one electron and 2) electron + pair. The state 
with two electrons (Q = - 2e) is not degenerate. As 
Zel'dovich and Popov showed, [5] the vacuum becomes 
restructured at Z> Zc-the ground state corresponds to 
the state with charge - 2e. For Z - Zc« Zc this charge 
is distributed in space with a density similar to the 
charge distribution in the K shell for Z =Zc - 0, i. e., 
the charge is localized near the nucleus. The transition 
to this state is accomplished as the result of the crea­
tion of one or two electron-positron pairs, the positrons 
withdraw to infinity but the electrons are distributed 
near the nucleus, forming a new vacuum state. 

These results were obtained without taking the inter­
action between electrons and positrons into considera­
tion. The goal of the present article is an investigation 
of this problem in field theory with allowance for the 
interactions. The main simplification, permitting us to 
solve the problem, consists in the fact that it is suffi-
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cient to treat only the production of pairs consisting of 
an electron in the K shell and a low energy positron. 
All remaining states are separated in energy from the 
ground state by an amount - mc2 , and taking them into 
consideration gives small corrections (- 1/137). In 
addition, a simple form is utilized for the wave function 
of the slow positrons for Z>Zc, which allows us to re­
duce the integral equation for the determination of the 
system's energy to a simple algebraic equation. 

The physical significance of the results consists in 
the following. At Z> Zc a long-lived quasistationary 
state of the positron appears, described by a wave func­
tion which is 'similar to the \If function of a K electron. 
As a result of the interaction the degenerate states in­
dicated above are intermixed, where a pair corresponds 
to an electron in the K shell and a positron in the quasi­
stationary state. 

In the case of an unoccupied K shell, three levels 
arise having a splitting that does not depend on Z - Zc 
(to first order in e2 ). These levels describe the system 
consisting of 0, 1, and 2 pairs. In the case of a K shell 
containing a single electron, two levels appear having 
a splitting of the same order of magnitude-see the fig­
ure. As is clear from the figure, upon allowance for 
the interaction the ground state of the system up to 
Z~ - Zc "" O. 31 corresponds to zero charge, it corre­
sponds to charge -le in the interval Z~'> Z> Z~, and 
finally it corresponds to charge - 2e for Z> Z~' (Z" - Zc 
"" o. 87). All states become quasistationary for Z> Z~'. 
In accordance with these results, during the collision of 
two heavy nuclei there is an emission of positrons with 
an energy spectrum which has several sharp maxima 
corresponding to transitions between the indicated split 
states. 

It seems to us that problems of similar type may 
arise in connection with investigations of the levels of 
an impurity atom in a dielectric or semiconductor when 
the level sinks below the occupation level of the band. 
Possible generalizations are left to the reader-only the 
problem of bound pairs in the Coulomb field near the 
critical charge will be investigated below. 

THE ELECTRON·POSITRON INTERACTION 

In what follows we shall only be interested in the 
states of electrons and positrons in the absence of quan­
ta; therefore, one can use the Lagrangian of the system 
of electrons and quanta, averaged over the ground state 
of the electromagnetic field: 

IE' =+S i.(x)D •• (x-x')i.(x')dxdx'; (1) 
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here jv(x) denotes the current operator: 

j,(x) =N (q, (xh, >¥ (x», 

where N is the symbol for the normal producL 

To lowest order in e2 the propagator D"., satisfies the 
equation 

(2) 

For our purposes it is most convenient of all to deter­
mine D,.v(x) in the coordinate representation with re­
spect to r and in the Fourier representation with re­
spect to time: 

f'o.D.,(r, w)+,o'D.,(r, w)=4nli(r)Ii." 

hence 

(3) 

Evaluation of (3) in the momentum representation gives 

D., (k') = (4nl k') Ii.,., 

by which our choice of the gauge of D,.v is determined. 
The normalization of D,.v is taken such that for two slow 
electrons the interaction goes over into the Coulomb 
interaction: V=e2 /1 r-r'l. 

The Lagrangian (1) corresponds to the following term 
in the Hamiltonian: 

H' =- -} S j.(r)D,,(r-r', T) e-iH"j, (r') em"dr dr' dT. (4) 

The maximum element of the interaction operator be­
tween two arbitrary states s and s' has the form 

1 S. . exp(-iE""lr-r'l) , II'.., =2 (,,).,,(,,) ... , Ir-r'l drdr, (5) 

where summation over Sl is to be understood and E SSl 

=Es -Es1 ' 

The matrix elements of the operator jv correspond to 
the creation or the annihilation of a pair. We shall see 
below that in this problem only positron states with 
small momenta k« 1 are important, while the electron 
vanishes or is created in the K shell. For Z::: Zc the 
energy of such pairs is close to zero, E SS1 « 1. Mean­
while the distances I r - r'l are determined by the di­
mensions of the K shell and I r - r'I-1. Therefore, the 
factor exp(iEsS1 1 r - r'l ) can be omitted in expression 
(4). As a result the interaction H' takes the form 

where o!v =YoYv are the Dirac matrices. 

To find the matrix elements of H', in Eq. (6) one 
should substitute the wave functions of the initial and 
final states instead of the quantum operators ~ (see the 
analogous calculations inC6 ]). 

THE POSITRON WAVE FUNCTION 

The wave functions of low energy pOSitrons are need­
ed for the subsequent calculations. One can showC7 ] that 
for Z> Zc a quasistationary level appears for a positron 
energy eo = 1 + (3(!:; -l:c), l: = Ze; the level width y is deter-
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mined by penetration of the Coulomb barrier. Expres­
sions for (3 and y are given below. In this connection 
the wave function of a positron of small energy E - 1 
= ~ /2« 1 may be written in the form 

'1',(1') =~'/'(e) 'fro (1'), 1'« 11k. (7) 

where >Vo(r) is obtained from the wave function of a K 
electron (for Z = Zc) by the operation of charge conjuga­
tion, and ~(E) is a function of the energy having the 
form of a Breit-Wigner resonance: 

f'o. (e) =',1:1 [ (e ~e.) '+',' J. (8) 

Ti:J.e wave function (7) corresponds to j = 1/2. Thanks 
to the resonance factor (8) these states give a major 
contribution to the matrix elements evaluated below. 
Relations (7) and (8) correspond to normalization to a 
ii-function with respect to the energy: 

S 'F,(l")'l',,(r)dr=li(e-e'). 

In this connection 

~ 

S f'o. (e) de=1. 
1 

Let us cite certain relationships[6] in order to clarify 
these assertions and also for subsequent calculations. 
In a spherical field the solution of the Dirac equation 
may be represented in the form 

_ {f,(r)Q!u(n) } 
'l'iI.V. - ( ) , 

g, r Q'-'f(n) 
(9) 

where UJ1M is a spherical spinor; j and M denote the 
angular momentum and its component (j = 1 + 1/2), 1 is 
the orbital angular momentum, and I' + 1= 2j. The re­
lationship 

(10) 

where n=r/r, is valid for the angular functions UJIM 

and UJ1'M' We have the following equations for the radi­
al functions F =r!. and G =rgf corresponding to an ener­
gy 1::: 

dG x dF x 
J,:" + -;:-G- (e+1-VlF=O, a;:- - -;:- F+ (e-I- V)G=O, (11) 

where x='f (j + 1/2); the sign of x is chosen in accor­
dance with the sign in the relation j = 1 ± 1/2. The sign 
of x together with the quantities j, M, and £ is an inte­
gral of the motion. 

At Z SZc the wave function of a K electron corre­
sponds to the values 

where {3 coincides with the quantity introduced above for 
the description of the position of the positron quasista­
tionary level for Z> Z c' Upon the replacements F;::t G 
and x- - x (charge conjugation) the system (11) describes 
a positron with energy - f moving in the field - V. 
Thus, for Z = Zc the system (11) simultaneously de­
scribes an electron in the K shell with energye = - 1 
and a positron with energy e = 1. Upon an increase of 
Z, a formal solution of the system (11) exists for E = eo 
+ iy, where EO = - 1 - (3(l: -l:c), which also llldicates the 
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energence of a quasistationary level in the positron 
spectrum. 

We note that the wave function of a positron with en­
ergy € '" 1 (or of an electron with energy € '" - 1) is ex­
pressed in terms of the solution of the Schrodinger 
equation with energy (e2 -1)/2 and an effective potential 
U(r). (8l In the Coulomb case of interest to us, when 
U(r) =r,/r (for r> R, where R denotes the nuclear radi­
us), the effective potential has the form 

~ ~, '+'/ 
U(r)=~- ~ -x '. 

r 2r' (12) 

At r<R this expression is cut off by the influence of 
the nucleus, and the problem retains physical meaning 
in spite of the "collapse" to the center, the condition 
for which is given by r,2 - x2 > 0 (see, for example, (9 l). 
For Z> Zc(x2 = 1, r,~> 1) the effective potential corre­
sponds to an attraction at small distances (r~ 1), which 
changes into Coulomb repulsion for r» 1. 

The width y of the quasistationary level can be cal­
culated as the reciprocal lifetime of a positron in the 
potential barrier (12). The following estimate is ob­
tained(8l: 

'(k)='(,exp{-21t[~/k-(~'-1)'I']), ,(,-1. (13) 

A numerical calculation gives the following result(8l for 
the value of f3: 

(14) 

For what follows it is essential that y(k)« EO - 1 = k2/2 
Under this condition the width y does not appear in the 
final expressions. 

THE EQUATION FOR THE DETERMINATION OF 
THE SYSTEM ENERGY AT Z>Z c 

Let us obtain the equation for the energies and eigen­
states of the system with the interaction (6) taken into 
consideration. Let us start with the case when there is 
a single electron in the "K shell" in the absence of the 
interaction. The words "K shell" are enclosed in quo­
tation marks since there is no appropriate solution of 
the Dirac equation at Z> ZC' However, at Z - Zc« Zc 
the state in which the electron is found near the nucleus 
can, by virtue of continuity, be approximately described 
by the wave function of the K shell at Z = Z c - O. 

The equation describing the system has the form 

(E-E,')a= f h" b, de+hlla, 

(15) 
(E-E,') b,=h"a + f h,,·b.,de'. 

Here a is the state with a single electron in the UK 
shell", b, is the state with two electrons in the" K shell" 
and with a single positron of energy e, hll denotes the 
average value of the perturbation H' in the state a, and 
hiE and hu' denote the corresponding matrix elements of 
the operator H'. It is assumed that the part corre­
sponding to renormalization of the electron's mass and 
the radiative correction to the K-electron's energy has 
been subtracted from hll • It is not difficult to verify 
that allowance for the radiative corrections (the Lamb 
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shift and the correction to the Coulomb interaction) 
reduces to a small change of the critical charge. De­
noting the corresponding shift of the K-electron energy 
bye2v, we obtain 

Z,=z,+v/~. 

Using the estimate (v'" 0.8) obtained inClOl for the value 
of v, we find Zc - Zc - O. 8/8. 2'" 0.1. This small shift 
in the value of Zc does not seem to have any influence on 
the phenomena investigated below. 

The region of small energies E is essential in Eqs. 
(15), since only in this case can the smallness of the 
matrix elements (-~) in the expressions for bE be com­
pensated by the small difference E - E~. Transitions 
into states containing more than two pairs cannot be 
taken into consideration since the energy of these states 
differs markedly from the energy of the state a. Posi­
tron states with quantum numbers different from the 
values indicated above (j = 1/2, x = 1) also should not be 
taken into consideration since here the region of small 
energies is not amplified by the factor a(e) (formula (8)~ 
The quantities Er and E~ may be written in the following 
form: 

E,'=-1-~ (~-~,), E,'=-2-2~ (~-~,) +e, 

where f3 is given by expression (14). 

(16) 

One can easily obtain an expression for E in the form 
of a perturbation-theory series. Thus, by discarding 
the second term on the right hand side of the second 
equation in (15) and substituting into the first equation, 
we find 

(17) 

We shall obtain an integral equation for E without using 
the perturbation theory series. For this purpose we 
write the second equation of (15) in the form 

(15') 

From Eqs. (15') and (15) we obtain the following integral 
equation for the determination of the energy: 

(18) 

and also the following equation for the determination of 
A Ei : 

(19) 

Equations (18) and (19) reduce to simple algebraic equa­
tions if the properties of the positron functions are 
utilized. 

Writing down the positron functions, entering into the 
matrix elements, in the form (7) and using the narrow­
ness of the resonance, we obtain 

E=E,'+hll+h"A,,/ (E-E,') , (18') 

(19') 

Here the state 3 is the same state as if a third particle­
a positron with its spin component coinciding with the 
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spin component of one of the electrons-were found in 
the K shell in addition to the two electrons. The energy 
E~ corresponds to the maximum of the resonance curve 
~(e), i. e., it corresponds to f = 1 + /3(1; -te), As a re­
sult, according to Eq. (16) we find 

Determining A 13 from expression (19') and substitut­
ing into (18'), we obtain 

E~E,+lh"I'/(E-E,), (20) 

where El =E~ +hll and E3 =E~ +hs3' The new energy lev­
els, replacing El and E 3, are obtained as the roots of 
the quadratic equation (20): 

E" ~ E,+E, =F [ (E,-E,)' + Ih12 I']'{'. 
'2 4 

Let us introduce the notation 

(h,,-h,,) '/4+ I h12 I'~ho', (h,,+h,,) /2~Tt. 

Then from Eqs. (16) we find 

E",~-l-~ (~-~,) +Tt±ho. 

(21) 

Upon a reduction of Z to values smaller than Ze' the 
energy of a pair becomes positive, L e., E~ > E~, and 
from Eq. (21) it follows that the minus sign corresponds 
to the state without any pairs. Therefore, it is natural 
1;.0 denote the energy corresponding to the minu~ sign by 
E 1, and that corresponding to the plus sign by E 3 , 

Expression (21) can also be obtained directly from the 
the following considerations without integration over the 
positron energy. A long-lived positron state exists, 
which is described by the wave function ~o{r). This 
state is represented by a wave packet composed of the 
functions 1J1, (r): 

>¥o(r) = S e,'¥,(r)de, 

where C f = v'A(E). The probability of finding the state 
1J1o(r) during the time t is given by the square of the in­
tegral 

J (I) = S le,I'e-i " de=e-i"'e-T', t::t>1/eo• 

o 

For t» l/EO the quantity J(t) is determined by the pole 
of expression (8). 

Thus, the attenuation of the wave packet is determined 
by the quantity y, i. e., y is the width of the quasista­
tionary level. Since the important energy differences 
in (18') and (19') are of order h"m - e2 , the condition for 
neglect of attenuation is given by y« e2 for Z- Ze' This 
condition is satisfied with great accuracy. Thus, the 
positron state can be treated as stationary, and the 
system of equations is written in the form 

(E-E,) a~h"b, (E-E,) b~h"a, 

which also leads to expression (21). 

Using this consideration, it is not difficult to treat 
the case of an unoccupied K shelL In this case the sys­
tem of equations connects three states: ao-the nucleus 
without any pairs, bo-the nucleus with a single pair, 
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and Co-the nucleus with two pairs. 

The possible values of the energy are determined 
from the condition that the system determinant be equal 
to zero: 

li
E - Eo - h02 - h0411 

- h20 E - E, - h,. I ~ o. 
- hto - h" E - E, I 

(22) 

Here Eo = E~ + hoo denotes the energy of the state without 
any pairs, including the diagonal matrix element of the 
iueteraction; E2 =Eg + hz2 and E4 =E~ + h44 are the analo­
gous expressions for the states containing one and two 
pairs; E~, Eg, and E2 are the corresponding expres­
sions without taking the interaction into account, As 
has already been mentioned, the self-energy parts are 
excluded from the diagonal matrix elements h"n' The 
energies ElJ E3, Eo,E2 , and E4 , obtained as the result of a 
calculation of the matrix elements h"m = e2 fnm' are given 
below. The energy E~ is taken equal to zero. In addi­
tion we shall need the energy of the state containing two 
electrons: 

(23) 

CALCULATION OF THE MATRIX ELEMENTS 

It is not difficult to verify that all of the matrix ele­
ments h"m contain the wave functions of the initial and 
final states, which differ only by the sign of the spin 
component. In the intersection (6) the operator for the 
disappearance of an electron of a negative level having 
a wave function >lI~1 /2 corresponds to the positron state. 
The two electrons in the "K shell" also have the same 
kind of functions. One should not be confused by the 
fact that the momentum distribution in the wave packet, 
which describes the hole, coincides to a high degree of 
accuracy with the momentum distribution of the electron 
state. If the positron state exactly coincided with the 
electron state, the state containing such a pair would 
not differ from the vacuum. In the present case the 
electron state is stationary whereas the state of the pos­
itron is quasistationary (having a width y) and the cor­
responding wave packets differ by a quantity of order y. 
In measurements in which a positron is not emitted, 
the states of an electron and of an electron + a pair only 
differ by a quantity - y. 

Thus, all four functions of expression (6) in all ma­
trix elements h"m differ only by spin projections and co­
incide with the wave functions >lI+l/2 of a K electron for 
Z"" Ze' 

For the calculation of the matrix elements, we repre­
sent the operator H' in terms of the operators for the 
creation and annihilation of electrons and positrons in 
the states >lI1 =>lI~/2 and >lI2 =>lI~1/2' Let us write down 
the quantized operator ~ in the current operator in the 
form 

where al.2 and b1•2 are the electron and positron anni­
hilation operators. Since the positron function 1I1.2 
= >lit 1, we have 
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After substitution into H' we obtain a sum of terms, 
each of which contain four operators for the creation or 
annihilation of particles. As follows from Eq. (6), the 
coefficient associated with each of these terms may be 
written in the form 

(24) 

The first integral corresponds to the Coulomb interac­
tion. Separating the angle variables with the aid of 
Eq. (9) and summing over the spin variables, we ob­
tain the factors Bas and Bro' Only the spherical part 
remains in the expansion of 1/1 r - r'l in terms of 
spherical harmonics of the angle between rand r'. We 
obtain 

o (F'+G'); (F'+G'); , 
%.11'=8,,8,0 S drdr =8",6"lc' 

r> 
(25) 

where r) denotes the larger of the quantities rand r' . 

The calculation of the second term·is somewhat more 
complicated. The first factor in the numerator of the 
integrand takes the form 

where nand n' denote the spherical spinors corre­
sponding to the first and second components of \}I~. 
Having made use of the relationship (10), we obtain 

{ ... } =- {Q.·a;ooQ,-Q;oDO,Q,} 

The second factor of the numerator is written down in 
similar fashion. Thus, the numerator contains a factor 
of the form nkn~. Therefore, only the term 

is left in the expansion of 1/1 r - r'l in terms of har­
monic .functions, where r) is the larger and r< is the 
smaller of the quantities rand r'. Averaging over the 
angles between rand r' gives 

rr1l' =-'I ,e",eikm (01)., (am) ,0=-'19 (0)., (0) ". 

We have utilized the relationships nknr= (1/3) Bkr, 

eikleikm =2B1m , and also the form of na: 

Substituting the obtained result into ,7f'aSr6, we find 

",pi 8 S (FG) , (FG) ,'r <, , "".'1'=--9 ' drdr (0).,(0)1'=- /,/,(0).,(0)". 
r> 

(26) 

If O! = f3, then (JaS differs from zero only for (Je and, 
therefore, Y = 6; if Y = O! then (JaS(Jr6 = 1; however, if y* O! 

then (JaS(Jr6 = - 1. 

The value of X~Sr6 is analogously determined even for 
the case O!* f3. Thus, all matrix elements are ex­
pressed in terms of two integrals containing the radial 
functions of the K shell for Z=Ze. For r>R these func-
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tions are determined in terms of the Macdonald function 
of imaginary argument[3]: 

G(r) =a%" (Y8sr) , F(r) =as-' (rG'-G). (27) 

Here v = Nt2 -1; the normalization constant a is deter­
mined from the condition f(c2 +p2)dr=1; :JtiV is deter­
mined by the integral 

In the region r<R the solution is distorted by the in­
fluence of the nucleus. The condition for matching the 
solution (25) with the solution for r < R gives a tran­
cendental equation for the determination of te. The re­
sult weakly depends on the details of the charge density 
distribution inside the nucleus. The value Zc"" 170[2,3] 
cited above is obtained by exactly such a method. Eval­
uation of the integrals 10 and Ii on a computer gave 

. 10 =4.52 andI1 =0.560. 

In the determination of the matrix elements h.m the 
majority of the operator quartets vanish in the given 
facings, and h.m is expressed in terms of a few terms of 
the form (24). In order to clarify this point, let us con­
sider the matrix element (01 H'14) = h04. between the 
vacuum state and the state with two pairs: 

There are only four terms in H' which give nonvanishing 
contributions to h04.: 

Hence we obtain 

Using formulas (24)-(26) we find 

and the following answer is obtained for the matrix ele­
ment: 

(01 H' 14) =e'/o;=e' (10-'1,/,) ""3e'. 

All remaining matrix elements are calculated in 
similar fashion. In the case of the state containing a 
single pair there are several independent state, among 
which one should choose that one where the total spin of 
the pair and its projection are equal to zero. As one 
can easily verify, with the aid of creation operators this 
state is written in the following form: 

The states with spin 1 have the form 

{ 
a,+b,+IO) 

'V.,~1. "~',O,-' = 2-'[' (a,+b,+-a,+b,+) 10). 
a,+b,+IO) 

In all other cases there is only one independent state. 

Let us present the matrix elements calculated in such 
a manner. The number fee, determining the energy of 
the state with two electrons in the K shell (formula (23)), 
is given by 
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1.-:' 

In the case of charge --e in-the K shell, we have 

111=-133=-'/,(1,+'1,1,) ""'3,. 1"=/,, =1,-'1,1,"'3. 

The following result is obtained for an uncharged "K 
shell": 

100=-/,·,=1.+'/ ,1,""'6, /.,=/,,=/,,=/,,=0, 

j,,= / ,,=/,,=1 ,-'I ,1,,,,,,3. 

Substitution into Eq. (22) gives the following energy val­
ues of the corresponding three levels for the channel 
Q=O: 

E.=-6.7 e'=-6.7 mc'/137=-25 keY, 

E,=3.0 e'=ll keY, E\=6.7 e'=25 keY 

Here the system energy is chosen equal to zero for 
Z = Zc - O. Upon a transition through Zc the energy Eo 
of the state without pairs is decreased by an abrupt 
change to 25 keY. All three energies do not depend on 
Z. In the case of the channel Q = - e we have 

E,=-1-~(~-~,)-4.25 e', E,=-1-~(\;-~,)+4.25 e'. 

Finally, in the case of a filled K shell (formula (23)) we 
find 

These results are shown in the figure. As is clear 
from the figure, for Z - Zc <Z~ - Zc"" 0.31 the lowest 
state of the vacuum is the state with charge equal to 
zero; in the interval Z~/> Z> Z~ the lowest state of the 
vacuum has charge - e, and finally for Z> Z~/, Z~' - Z 
"" O. 87 the ground state corresponds to charge - 2e. 
We note that in the channel with charge Q = - e the lower 
of the two states is stationary over the entire interval 
from Zc to Z~/. 

For each value of Z, the distance between the various 
curves give the energies of the positrons which are 
emitted from the corresponding quasistationary states. 
As is clear from the figure, in the case Q = 0 there are 
six possible values for the energy of an emitted posi­
tron, starting with Z = Z~", Z~" - Zc"" 1. 33; these ener­
gies correspond to transitions from the three levels of 
the channel Q = 0 to the two levels of the channel Q = - e. 
In the case of the channel Q = - e, starting with Z~' there 
are two positron lines corresponding to transitions from 
the two states of the channel Q = - e to the single state of 
the channel Q = - 2e. From the figure one can easily 
determine the number of possible positron lines for all 
values of Z - Zc' 

POSITRONS PRODUCTION WHEN NUCLEI APPROACH 
EACH OTHER 

As was shown by Gershtein and Popov, [11] a state 
corresponding to the free K shell of the combined 
nucleus appears with high probability during the adia­
batic approach of heavy nuclei, when the incident nu­
cleus has no electrons in its K shell. At distances 
R « 1 the system can be regarded as a nucleus with 
charge Zl +Zz and having an effective radius - R. In 
this connection the system may turn out to be in a sub­
critical state, notwithstanding the fact that Zl +Zz> Zc' 

217 SOy. Phys.-JETP, Vol. 43, No.2, February 1976 

because the-{jistance R is much larger than the radius of 
the nucleus. The distance R plays the role of a critical 
parameter. The curves shown in the figure are given 
as functions of Z - Zc' but can easily be obtained as 
functions of Rc - R. At small distances (nc - R)/Rc« 1 
the conversion will be linear. The barrier penetration 
depends on Rc - R exponentially, and therefore pOSitrons 
will be emitted for values of R close to Rmin , and such 
positrons will have rather monochromatic energies 
which can be determined from the figure for the value 
of Z corresponding to Rmin • 

From what has been said above, it follows that three 
states appear in the initial stage of the approach, when 
the effective Z is close to Zc; the lowest of these states 
is stationary and the upper two states, which corre­
spond to one pair and to two pairs, are quasistationary. 
As the two nuclei come closer together, all three levels 
become quasistationary. The separation between the 
levels is of the order of A.E-10 to 20 keY. However, 
if the collision of the nuclei takes place sufficiently 
slowly, so that the condition for adiabaticity is satisfied, 
that is, v/Rc <A.E, where v is the velocity of the llU­

cleus, then only the lowest state of the channel Q = 0 
would be realized during the approach. The rate of 
approach is estimated in[U] for the case of two urani­
um nuclei having energies sufficient for an approach to 
the critical distance Rc: 

vo='/"YVR. 

Here t=Z/137=i. As is clear from the cited expres­
sion, adiabaticity is apparently not satisfied and in the 
collision process an intermixing of all three states 
takes place. In the case of strong nonadiabaticity, the 
weight of each state is equal to t 

Thus, the probability of positron production depends 
on the extent of the adiabaticity of the approach. For 
sufficient initial energy of the nuclei, six positron lines 
should be emitted which differ in energy and in intensity. 
If there is a single electron in the K shell in the initial 
state, two positron lines should be observed. The 
splitting of the lines is of the order of 10 to 30 keV. 

The author expresses gratitude to his colleagues D. 
N. Voskresenskii and A. I. Chernoutsan for numerous 
discussions, and also to V. M. Osadchiev for help in 
carrying out the numerical calculations. 
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Polarization of secondary protons in the y+ ~7TO+ p reaction at 
Ey = 536-640 MeV 
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Measurements are reported of the polarization of protons from the 'Y + p----+ 1TO + p reaction at photon energies 
of 540, 560, 585, 610, and 640 MeV at pion angle of emission of 90' in the center of mass system. The 
angular dependence of the proton polarization has been investigated for this reaction at a photon energy 
600 MeV. The data obtained are compared with the results of the phenomenological analysis reported by 
Metcalf and Walker (Preprint CALT-68-425, 1974). 

PACS numbers: 13.6O.Kd 

Studies of the photoproduction of pions on nucleons 
play an important role in the systematics of resonances. 
The energy behavior of resonance multipoles, their 
relative contribution to observed quantities, and the pa­
rametrization of small phonon amplitudes combine into 
one of the important problems in the theoretical analy­
sis of the photoproduction of pions on nucleons. 

Several theoretical papers[1-S] have been published in 
recent years, where different methods (resonance mod­
el, dispersion relations, energy-independent multipole 
analyses, and so on) were used to calculate the partial 
amplitudes and their contributions to the different ob­
served quantities. Comparison of experimental results 
with theoretical predictions may provide information on 
the degree of validity of any particular method. How­
ever, the amount of informaUon available on polariza­
tion, which is one of the main characteristics involved 
in the study of the photoproduction of pions on nucleons, 
is currently quite inadequate. Despite the fact that the 
polarization of protons, especially in region II of 71N 

resonances in the 'Y + P - 71° + p reaction was measured 
quite a long time ago, these measurements are neither 
systematic enough nor accurate enough to enable us to 
decide in favor of any particular theoretical approach. 

In this paper we report the results of measurements 
of the polarization of protons emitted in the 'Y + p- 71° + P 
reaction at 90 0 in the center of mass system in the re­
gion of the 71 resonances, and the angular dependence of 
the polarization at Er = 600 MeV. 

1. ENERGY DEPENDENCE OF POLARIZATION AT 
90° CM AT PHOTON ENERGIES BETWEEN 536 
AND 640 MeV 

The experiment was performed with the photon beam 
of the Khar'kov 2-GeV linear accelerator. The proton 
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polarization was measured by a telescope consisting of 
optical spark chambers mounted at the exit from a mag­
netic spectrometer. [10] The telescope contained three 
four-gap spark chambers with aluminum electrodes, 
0.15 mm thick (IK-4), and one 42-gap spark chamber 
with graphite electrodes (IK-42) of 350x 350x 7 mm. 
The set of graphite electrodes of the IK-42 chamber was 
used as the polarization analyzer. The spark chambers 
IK-4, which were located in front of the IK-42, were 
used to determine the proton track direction prior to 
scattering in the graphite electrodes. 

Since the focal line of the magnetic spectrometer 
passed through the first gap of the IK-42, this enabled 
us to determine the momentum of protons recorded on 
stereophotographs to an accuracy of better than 0.5%, 
and to assign it to the corresponding kinematic interval 
of the reaction under investigation. The total momen­
tum range in the experiment was 7%. 

The proton polarization was determined from the 
scattering asymmetry for a carbon target, using the 
maximum likelihood method. The analyzing power was 
taken from the paper of Peterson_ [11] The following re­
sults were obtained for the polarization of protons from 
the 'Y + P - 71° + p reaction at 90 0 in the center of mass 
system: 

E,±I!.Ey , MeV: 536±1O 560±11 585±12 610±13 640±28 
/'±I!./': -O.48±O.09 -O.54±O.1O -O.59±O.09 -O.72±O.08 -O.74±O.07 

The uncertainties are statistical. 

Figure 1 shows the experimental polarizations and 
the calculations of Metcalf and Walker[2] based on the 
resonance model. Satisfactory agreement is observed 
between the experimental energy dependence of polar­
ization at 90° and the dependence predicted theoretical­
ly[2] in region II of the 71N resonances. 
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