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A model quantum system with a very large number of decay channels is considered. The concept of 
diffusion in channel space is introduced and the conditions under which the concept can be valid are 
formulated. Expressions are obtained for the wave function of the considered system and for the S matrix. 
The S matrix is represented as a product of factors, one of which describes diffusion in channel space and 
the others are of a kinematic origin (penetrability in the entrance and exit channels). Quasistationary states 
of the system are investigated. It is shown that in addition to the well known types of resonance there exist 
states of a completely new type in which the system spends most of its time by wandering from one 
channel to another. 

PACS numbers: 03.65.Nk, 03.80.+r 

In a number of prQblems Qf nuclear physics, such as 
nuclear fissiQn and cQllisiQn Qf medium and heavy par­
ticles with Qne anQther, we encQunter the case Qf quan­
tum systems with a very large number Qf decay chan­
nels, many Qf which, to. be sure, may be clQsed at a 
given system energy. When such systems are analyzed, 
it turns Qut that under sufficiently general assumptiQns 
it is PQssible to. intrQduce the cQncept Qf "diffusiQn in 
channel space." It is then PQssible to. separate in the 
fundamental characteristic Qf such a system-the S 
matrix-factQrs, SQme Qf which are Qf purely kinematic 
Qrigins (penetrabilities), and Qthers can be calculated 
with the aid Qf a certain integral equatiQn, which in a 
number Qf cases can be reduced to. a differential equa­
tiQn Qf the diffusiQn type. We cQnsider belQw a mQdel 
prQblem the sQlutiQn Qf which, first, explains the exact 
meaning Qf what was called "diffusiQn in channel space" 
abQve, and secQnd, it spells Qut the sufficient cQnditiQns 
under which the diffusiQn cQncept can be used. 

EquatiQns (la) and (lb) Qf Qur mQdel are a simplified 
variant Qf the system Qf equatiQns describing a system 
Qf A nucleQns and Qbtained in[11 frQm an analysis Qf the 
many-nucleQn Schrodinger equatiQn. The mathematical 
fQrmalism that must be used, and certain general re­
sults Qf the wQrk, are unusual frQm the PQint Qf view 
Qf standard and (Qr) atQmic physics. We therefQre pre­
sent in this article Qnly a general treatment. The ap­
plicatiQn Qf the general results Qbtained belQw to. CQn­
crete prQblems, such as fissiQn Qr cQllisiQn Qf heavy 
nuclei, is the subject Qf a separate investigatiQn. 

1. EQUATIONS OF THE MODEL PROBLEM 

We cQnsider a system with a large number Qf bQund 
Qne-dimensiQnal equatiQns Qf the fQllQwing type: 

(la) 

(h.-B.)CP.(p) = 1: V .. ' (p)cp., (p) +D.(p)1jJ(p). 

.' (lb) 

The subscripts x and x' are used here to. number the 
channels, 

~ h' d' ~ h' d' 
ho==---. +vo(p), h'==-2m.dp' +v.(p). 

2mo dp- • 
(2) 
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The PQtential Vo(p) will be assumed to. be such that the 
hQmQgeneous equatiQn (la) has Qnly a discrete spectrum: 

(3) 

The PQtentials V".(p) will be assumed to. be Qf the fQrm 
shQwn in the figure: repulsiQn (CQulQmb and centrifu­
gal) at p ~ ax and mQre Qr less arbitrary behaviQr in the 
interval O";;p <: ax. It is presently assumed[21 that at 
p < a % the PQtential between the nuclei can have Qne Qf 
the fQrms marked by the numbers 1 and 2 in the figure. 
Then VAoe) = O. The quantities in (lb) are equal to. 

(4) 

where E z are certain cQnstants. This channel is Qpen 
if E" > 0, and clQsed if f%< O. The functiQns Dx(p) and 
V n'(P) are assumed to. be real, while the secQnd Qf 
them is assumed also. to. be symmetrical with respect 
to. the indices x and /. To. make the eXPQsitiQn that 
fQllQWS as lucid as PQssible, we assume that 

(5) 

where Po and P"", are cQnstants. 

We nQW fQrmulate the assumptiQns that will help us 
later Qn to. intrQduce the cQncept Qf diffusiQn in channel 
space: 

a) the channel indices x can be renumbered in such a 
way that all the quantities that depend Qn x, namely Ex, 
YAp), 1)%, a~, V"x" m% vary little Qn gQing vary little 
Qn gQing frQm x to. the neighbQring channel x ± 1 ; 

b) the quantities 1)" and v" x' which enter in (5) tend 
rapidly enQugh to. zero. with increasing x and I x - x'I, 
respectively. 

\.~ 
~i'\ 

i~ 
I 
I 
I 
I 
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The first of these assumptions enables us later on to 
regard the index }{ not as a discrete quantity but as a 
continuous one. The second assumption ensures 
"locality" of the entire problem in the space of the con­
tinuous variable }{. 

2. EXPRESSION FOR THE S MATRIX 

We shall assume that E > 0 and that a large number of 
channels is open at this energy. We solve the corre­
sponding problem of the continuous spectrum. We in­
troduce for this purpose the auxiliary functions Go(p, p') 
and G" (p, p'), which are the Green's functions of the 
homogeneous equations (la) and (lb): 

(h -E)G ( ')=b( - ') G ( ')=" ~),(p)Ij;,(p'). (6) 
, 0 p, p p p, 0 p, p ..:::.. E,.-E ' 

, 
(h~-eJG"(p, p')=6(p-p'), 

Here Xx(p) and cp~+)(p) are the regular and irregular 
solutions of the equation 

~ ( xx(p) ) 
(hx-ex) . '+1 () =0 

cp x p 

with asymptotic behavior 

Xx (p) - sin (k.p+/)x), cp~+)I(p) - exp [i (kxp+/)x) 1; 

k.= (2mx ex ) 'f'lh. 

Assuming that the entrance channel is j;( and using 
Eqs. (5)-(9) we obtain the solution of the system of 
equations (1): 

(8) 

(9) 

1jl'" (p) =Go (p, Po) L '1xcp~" (Po), (10) 

CPx") (p) =6x;<;('(p) + 1: {Gx(p,p~')vxx,cp~~1 (Pxx')+Gx(p,po)S .. 'CP~~) (po)}. 
x' 

(11) 

where ~)(X. = Go(Po, Po)1J,.,rI" •• 

To Simplify the formulas further, we assume that, 
by virtue of the rapid damping of v"l'.' with increasing 
I){ -}{' I, the constants PXX' in the first term in the 
curly brackets can be set equal to 

and this term is written in the forml) Gx(p, Px)v"x.cp~~) 
x (Px.). Since ~xx. also attentuates rapidly with in­
creasing}{ and x', it follows that the second term can 
be expressed as Gx(p, Px) ~"".cp~~)(pX'). Taking these 
simplifications into account, we can rewrite Eq. (10) 
in the form 

(10') 
x' 

where the matrix 

(12) 

is real and symmetrical in the indices x and }{'. 

Thus, the solution cp~)<)(p) is determined in a~l of 
space if we know the values of the functions cp~>;) at the 
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points p= Pk" To determine these values, we put p = p." 
in (10'). We then obtain for the determination of these 
functions the system of linear equations 

(10") 

Here and below 

'1';'" ""'f~'" (p,), x,""x.(p.), Gx""G. (p" po). (13) 

It follows from (10") that the solution should be of the 
form 

(14) 

where the symmetrical matrix Axx is a solution of the 
equation 

Ax.=Cllx.+ 1:: Cllxx,Gx·A,·- • (15) 
" 

Formulas (7)-(10) determine completely the asymp­
totic behavior of the functions cp~X)(p). Calculating the 
coefficients of the diverging waves in the different chan­
nels, we easily obtain an expression for the 5 matrix: 

S xx=exp[ i (6,+/);;) 1 {6,x +2;( G, (x» 'hA x;;(G 2 (x)) 'f'}. (16) 

The phases Ox are determined here by Eqs. (8) and (9), 
while G2(}{) = ImGx • The 5 matrix defined by (16) is 
symmetrical and unitary, so long as the matrix w"x' is 
symmetric and real. 

The structure of the formula for the 5 matrix is quite 
simple. The phase factors in front of the curly brackets 
and the Kronecker symbol 0l'.X inside the curly brackets 
need no explanation. As to the second term in the curly 
brackets the factors (G2(x))1/2 and (G2(j;())1/2 are of pure 
kinematic origin, and since 

2 {xx' G2 (x)=--
hvx 0 

if e.>O 

if £x<O' 

it follows that G2 (x) characterizes the penetrability of 
the potential Vx(p), and consequently describes the pro­
cess of motion of the particles of the x-th channel from 
the point p = p" to the outside (or from infinity to the 
point p = p",). 

The entire complicated dynamics of the processes 
that occur at short distances, i. e., the transitions from 
channel to channel, the possible capture of one of the 
bound states (i. e., the coupling of Eq. (lb) with Eq. 
(la)), etc., is described by the matrix Axx. It is 
precisely this matrix which describes the "wandering" 
in the channel space, and it is just for this matrix that 
we shall show below that, under the conditions formu­
lated in Sec. 1, it describes diffusion in channel space 
and can be obtained as a solution of the corresponding 
diffusion equation. 

3. TRANSITION TO CONTINUOUS CHANNEL SPACE 

Using the assumption (a) made in Sec. 1, we shall 
now regard the index x of the channel as a continuous 
quantity. All the formulas of the preceding section re­
main in force in this case. It is necessary only to re­
place all the sums over x by integrals J d){, and the 
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Kronecker symbol ox;; by the 0 function o(x- xL The 
indices x and x' are now arguments of functions and, as 
is customary, we shall write them in parentheses, for 
example A(x, xl instead of Ax':' 

The entire exposition that follows is devoted to the 
investigation of an S matrix that is a function of two 
points Y. and:;;: in the space of the channels: 

sex, x) =exp[i(6(x) +O(~)) ](6(x-x) 

+2; (G, (x)) 'I'A (x,~) (G, (;:;) )',,}, 

where A(x, x) satisfies the equation 

A (x, x) =w (x, x) + S dx' w (x, x') G (x')A (x', x), 

with 

w(x, x')=v(x, x')+Go1)\x)'l(x'), 

G = ~ 1jJ.'(po) 
o L.J E,-E . , 

(17) 

(18) 

(19) 

(20) 

It must be remembered that in (17) and (18) the phases 
o(x) and 0(:;;:) and the Green's function G(x) depend on 
the energy (see (7)-(9)). 

Equation (18) is transformed with the aid of the sub­
stitution 

Q(x, ;:;)=g(x)A(x, ;)g(x), K(x, x')=g(x)",(r., x')g(x'), 

g(x)",,(G(x))'h""g,(x)+ig2 (x), g" g2>O, 
(21) 

into an equation with a symmetrical complex kernel: 

(22) 

The S matrix is expressed in terms of Q in the obvious 
manner: 

sex, X")=eXP[i(O(X)+O(;'))]{ 6(x-x) 

+2i(G,(x) )';'Q(x x) (G2(;:;) )'i,} 
G(x) " G(x) . 

(17') 

Wherever it does not lead to misunderstanding, we 
shall use henceforth an abbreviated operator notation, 
in which Eq. (22), for example, takes the form 

Q=K+KQ. (22') 

The kernel K consists of two parts (see (12) and (21)): 

K(x, x')=K(x, x')+v(x)y(x'), K""g(x)v(x, x')g(x'); 

v (x) ""g(x) '1 (x) Go", (23) 

the first of which describes the direct coupling of the 
channels, and the second the coupling via the linking of 
Eqs. (lb) with Eq. (la), which describes the "internal" 
states 1/I).(p) which are bound if 1)x =0. 

We separate in explicit form the dependence of the 
function Q on the properties of the" internal" states 1/1).. 
We describe the separation method, since it will be 
systematically used below. We rewrite Eq. (22) in the 
form of a system of equations 

Q(x,;')- f dx' K(x,x')Q(x',x)=,(x,X"), 

K(x,;:;) +v(x) S dx' v(x')Q(x', ;) =,(x,~). 

(24a) 

(24b) 

We introduce further the resolvent Ii of the kernel K: 
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R=K+KR=K+RK. (25) 

We shall remember henceforth that the kernels K and 
K, just as Q and R, are symmetrical functions of their 
arguments. 

It follows from (24a) that 

(26) 

substitUting this expression for Q in (24b) and changing 
there the order of integration, we obtain for T an equa­
tion with a degenerate kernel: 

T(x,%")=K(x,;;)+v(x) S dx'V'(X')T(%',;'), 

(27) 

The solution of this equation is, obviously, 

( -) K( -)' vex) Sd' " ')K( ,-) 't x, X. = %, % --:- --- % \" ~% % ,% I 

1-(\"\") (28) 

where 

(vv')"" f dxv(x)v'(x). 

Returning now to (26), we obtain after simple trans­
formations, in which we use (25), 

- _ -, v' (%)v' (;.) 
Q(x, %)=R(%, x)..,- 1-(\'\") . (29) 

The first term describes here effects connected with 
the direct connection between the channels, and the 
second describes the effects connected with the connec­
tion via the internal states. All the functions that enter 
in (29) depend on the energy, since G(x) and g(x) are 
energy-dependent. At certain complex values of the 
energy the function Q, and consequently also the S ma­
trix, has poles corresponding to resonances in the 
cross sections of all the processes x-x. The causes 
of the resonances may be different. They may occur 
when the energy E approaches the energy E). of one of the 
internal states 1/1).; cases are also possible when the 
resonances are the result of direct interaction between 
channels, or else the result of the properties of only 
one preferred channel. All these cases will now be 
considered. 

Resonances are as a rule particularly clearly pro­
nounced when the energies Ex in all the open channels 
are not too large, so that all channels lie below the bar­
rier. If G1(x»0, we have 

(30) 

This is precisely the case of greatest interest, and will 
be investigated below. 2) In expressions for K and K we 
can then neglect the terms of second order in t:(x) and 
write 

K(x, x')=K,(x, x')+tK,(x, x'), 

where 

K,(x, x')=g,(x)u(%, x')g,(x'), 

K,(x, ;.:')=~(x)K,(x, x')+K,(x, x')~(x'). 

A. I. Baz' 
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4. RESONANCES CONNECTED· WITH THE INTERNAL 
INTERNAL STATES (RESONANCES OF THE FIRST 
TYPE) 

Let the energy E be close to one of the values E~ (see 
(3)). Then only one term predominates in Go, and taking 
only this term into account we obtain (see (6)) 

G,= ljJ.'Ie, e=E.-E, 

\' (x) v (x') =f.l (x) f.l (x') / e, f.l (x) "" g(x) 11 (x) ¢.; 

Q(x,x)=R(x,;Z)+ f.l'(x)f.l·:;;) . 
e-<f.lf.l > 

(32) 

(29') 

The function /J.* is connected here with /J. in the same 
manner as v* with v (see (27)). 

To calculate the denominator in (29'), we note that if 
we are not near some singularity of the resolvent R, 
then it follows from (25), (31), and (31') that in the first 
order in ~ we have 

R=R,+iR" R,=R,+K,R" (33) 

where ~ is the real (and symmetrical) resolvent of the 
kernel K 1, and the real and symmetrical function l4. is 
equal to 

R,(x, x') =~ (x)R, (x, x') +R,(x, x') ~(x') 

+2 S dx" R,(x,x")~(x")R,(x",x'). (33') 

With the aid of these formulas we can easily obtain 

e-<f.lf.l·>=e-~.-'/,ir" (34) 

where the shift .6.~ and the width r~ are given by 

~,= S dx f.l,'(x)+S dxdx' f.l,(x)R,(x, X'}fI,(X') , 

r,= Sdx9,'(x), 9,(x)""2~"'(X)f.l"(x), 

f.l,' (x) '" Re f.l' (x) =f.l, (x) + S dx' R, (x, x') f.l, (x'), 

f.l, (x) "'g, (x) 11 (x) ¢" 

(35) 

Taking (17), (21), (29), and (4) into account, we ob­
tain ultimately for the S matrix an expression that is 
valid near the resonance 

S(x,;Z)=exp[i(8(x)H(;J)] {8(x-iZ) 

. ["' - ( -) ",(-) 9,(x) 9,(;;) ]} +, 4~ (x)R, x, x ~ x - (E-E,+~,) +'/,ir, . 
(36) 

The first term in the square brackets describes the 
direct transitions: 2~1/2(){) is the amplitude at which 
the particles of the initial channel x reach the point p 
= p .. at which transitions to other channels become pos­
sible. The transition from the point x in channel space 
to the point }{ is described by the amplitude R1(}{,}t), 
and finally, 21;'1/2(}{) is the amplitude for the escape of 
particles of the x-th channel to the outside. 

The resonant term in (36) can be treated in the fol­
lowing manner: first, by a gradual transition from 
channel to channel, we ultimately reach the internal 
state (Y:-1jJ~), which then decays in the same manner 
(1jJ~ - }{). This is seen particularly clearly if the chan­
nels x and x are located "far" from 1jJ~, so that 1](:;;:) 
= 1](x) = 0 (there is no direct linking of the corresponding 
equations (lb) with Eq. (la); the functions 1](}{) differ 

208 Sov. Phys.-JETP, Vol. 43, No.2, February 1976 

from zero only at small x). In this case we have for 
e~(}{), for example (see (35)), 

9,(;)=2~"00 S dx' f.l,(x')R,(x',;Z)""2~"·(l0~R,(O,~. 

~ '" S dx' f.l, (x') . 

(37) 

The partial amplitude e~Ci{) factorizes into the amplitude 
2~1/2(x) at which the channel particles reach the point 
p = p", and the factor RI (O, x) that describes the motion 
in channel space from the point:;;: to the point }{ = 0 near 
which direct transitions, described by the factor {3, to 
the. internal state 1jJ~ become possible. 

5. RESONANCES DUE TO COUPLING BETWEEN 
CHANNELS (RESONANCES OF THE SECOND TYPE) 

If all the channels were closed (g2(}{) =0), then the 
system of equations (la) and (lb) could have, besides 
bound states close to 1jJ~, also bound states of a different 
type, close to the eigenfunctions of the system (lb), in 
which we put D" (p) = O. If at least some of the channels 
become open, then the bound states are transformed 
into quasi-stationary states. In this section we con­
sider S-matrix resonances that are precisely of this 
origin. The cluster (quasi-molecular) states are par­
ticular cases of such resonances. 

The kernel K of Eq. (22') is now written in the fol­
lowing manner, with the real and imaginary parts sep­
arated: 

K=K,+iK" 

K,(x, x')=~(X)K,(X, x')+K,(x, x'n(x'). 

The real symmetrical kernel Kl can be, as is well 
known, expanded in an eigenfunction series[31: 

K, (x, x') = E ~ Un (x) Un (x'); 
An 

Un(X)=AnS dx' K,(x,x')un(x'), 

S dx Un (x) Um (x) =8nm. 

(38) 

(39) 

The quantities An and unIx) are functions of the energy E, 
since the kernel Kl depends on the energy. Therefore 
we shall sometimes write, for example, \,(E). We 
shall soon see that resonance is the result of that term 
of the expansion in (39), for which Ap'" 1. We separate 
this term explicitly: 

KI(x,x')=~up(x)up(x')+ \" ""~up(x)up(x')+KI(x,x'), 
Ap "'" Ap n".p 

1 ~~ K(x, x') = - up(x)up(x')+K(x, x'), 
Ap 

K(x, x')=K,(x, x')+iK,(x, x'). 

Equation (22') for Q is solved by the same method as 
in Secs. 3 and 4, and we obtain 

(41) 

where R = Rl + iR2 is the resolvent of the kernel K (E. = K 
=KR), and 
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(42) 

Taking into account the smallness of K2 and the or­
thogonality of up to Kl and Rl , we can easily express 
the imaginary part of the resolvent R2 in terms of the 
real part (again confining ourselves to the first order 
in 1:): 

H,(x, x') =~ (x) R, (x, x') + H, (x, x')~ (x') 

+ 2 S dx" R, (x, x") ~ (x") R, (x", x') + L { ~ (x) IIp(X) IIp (x') 

+llp(X)Up(x')~(x')+ S dx"[R,(x, x")~(x")Up(X")llp(X') 

+up(x)up(x")~(x")R,(x", x') l}, 
- -Here Rl is the resolvent of the kernel K l , Calculating 

next the denominator in (41) and retaining in the numer­
ator only the terms that do not contain 1:, we obtain 

Q(x,;)=R,(X,;)+llp(X)Up(x) / [AP (E)-1+ :~ J dX~(X)ll;(X)]. 
(43) 

This formula shows that the pOSition Ep of the reso­
nance is determined by the condition ·>.)Ep) = 1, Ex­
panding Ap(E) in a series about this point 

f.p(E) -1 =-(1. (E-Ep) 

and using (17) and (21), we obtain a final expression for 
the S matrix, which is valid near resonance: 

S(x,;) = exp[i(c5 (x) H ("X» 1 { c5 (x-"X) 

(44) 

(44 /) 

6. RESONANCES CONNECTED WITH SOME SINGLE 
CHANNEL (RESONANCES OF THE THIRD TYPE) 

The quantities Gx in (15), regarded as functions of 
the energy E, can have poles corresponding to bound or 
quasistationary states of the homogeneous equation of 
the x-th channel: 

Oi.-e.):x.(p) =0, (45) 

Let, for example, the energy E be such that we are lo­
cated near a quasistationary state of the channel Xl (its 
energy is e"IO' its width is r Xl): 

(46) 

Then the Green's function G"l admits, in the vicinity of 
this point, of the parametrization 

<D (p,,) <D (p • .) 
G,,(E)= -E+E _'I T ' E"0""'8.,0+E,,. 

;.(,0 zl;.(1 
(47) 

Here <J?(p) is a regular solution of Eq. (45), normalized 
by the condition 

J dp <D'(p)=l, (48) 

where the integration is carried out over the entire in-
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ternal region from p = 0 to the point where the particles 
of the Xl channel go out from under the barrier. If we 
are dealing with a bound state, then we must put r Xl = 0 
in (46) and (47). 

In the transition from the system of algebraic equa­
tions (15) to the integral equation (18) it was assumed 
that the properties of all the quantities, including Gx, 

vary smoothly on going from one channel to the other. 
This condition is violated in the case of resonance in 
the channel Xl' and before we change over to a contin­
uous distribution with respect to X we must separate the 
channel )0(1 in explicit form: 

(49) 

In the last term Gx ' can be regarded already as a 
smooth function of y.,/, and we can change over to the in­
tegral 

Here G( x') must already be regarded as a smooth func­
tion that contains no Singularities at all at X ,= )0(1' Car­
rying this program through to conclusion, we obtain for 
A(x,):t) the equation 

A (><,;) =10 (x, ;;) + S dx' w (%. x') G(%')A (x',x), 

, ,w(z,z,)G"w(z"x') 
w(x, x )=w(x. x )+--;----;::---

1-w",,G,, 

(50) 

when (50) and (47) are taken into account, the kernel 
K in Eq. (22) for Q now turns out to be 

K( ') () ( ') (') o(z)o(x') 
z. x =g % W z, z g % + -E-'-E _'I T ' 

, :>(,0 ':!.L Xi 

(51) 

(52) 

Using further the same procedure as in the preceding 
sections, we obtain 

x X =Z x % __ O"(xLa" (x) 
Q ( ,) ( .,.) E-E +< '>+" T . Y.,o acr I ~t ;(, 

(53) 

where Z is the resolvent of the kernel g(x)w(y." x') g( x'), 
and 

O"(x)=o(x)+ S dx' Z(x,x')o(x'), (54) 

For the S matrix we obtain in the lowest order in t;: 

S (x, ;) =e«o,.)+6(X)) { c5 (x-;z) 

+'[4""( )Z ( -)""(-) i} (x) i}(X') ]} 
, , x ,x,X" x - (E-E,,0+d)+i(f+f..)/2 ' 

(55) 

i}(x)~2~"'(x)0,"(x), f= S dxi}'(x), 

d= S dxo,'(x)+ S dxdx' o,(x)Z.(x,x')o.(x'). 

The subscript 1 denotes here, as before, the real part 
of the corresponding quantity, for example, al = Rea, 
The phase shifts 15(",) in (55) are smooth functions of 
and do not contain the resonant term at x = xl" 
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7. "WANDERING" IN CHANNEL SPACE. 
DIFFUSION APPROXIMATION 

We proceed now to the main question. We examine 
first the nonresonant situation. It follows from (17') 
and (29) that in this case 

s (x,;;) =e'('(K)+'(;;» {6 (x-x) +4i~'" (x) [B (x,;;) + .... (x) ... • (x) ] ~". (;;)} 
i-(n') 

(56) 

where R is the resolvent of the kernel K (see (23» and 
11* is defined by (27). The first term in the squar: 
brackets describes direct transitions from the input 
channel x to the channel x, while the second describes 
transitions in which at first the system goes from chan­
nel x to the internal states zfiA' forming something like 
a compound nucleus, and then goes over to the output 
channel x. Such an interpretation becomes particular­
ly obvious if the channels x and x are far enough from 
the internal states (there is no direct linkage with Eq. 
(1a): 1j(x)=1j(X)=O). It then follows from (27) that 

... ,·(x)= S dx' B,(x,x')v,(x') "",,(B,(x,O), "(= S dx' ... ,(x'); (57) 

v,'(x)\,,'(X) "",,('B, (x, O)B, (0, x). (58) 

Thus, there is every reason for calling the resolvent R 
the propagation function in the channel space. 

In the case of small "penetrabilities" considered by 
us, 1:« 1, the resolvent R = RI + iR2 can be regarded as 
real, since its imaginary part R2 contains the small 
parameter 1:. The equation for RI is of the form (see 
(25) and (31» 

B,=K,+K,B" (59) 

where the kernel KI(x,x'), according to the assumption 
b) made in Sec. 1, tends sufficiently rapidly to zero 
with increasing Ix - ' I • 

Equations of this type can frequently be solved in the 
diffusion apprOXimation, assuming that iii is a smoother 
function of its arguments than KI • Let, for example 
K I(X, x,) depend only on the difference Ix -x' I between 
its arguments. Thus, following the usual procedure, 
we obtain 

(60) 

A"" S dx' K,(lx-x'I), B""+S dx' (x'-x)2K,(lx-x'l) 

and in place of the integral equation (59) we obtain the 
differential equation 

d' _ - - 1 i-A 
-d ,R,(x,x)-t'B,(x,x)=--K,(lx-x'I), 1'''''__ (61) 

x- B B 

It must be borne in mind that the channel index x has 
generally speaking several components: x ={X(I)' 

X(2l'" ., x(nJ and therefore it can be regarded as a vec­
tor x in n-dimensional space. 

This does not change the gist of the matter, but 
d 2 / d.,f in (61) should be replaced by the Laplacian 
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That is to say, in this approximation the wandering of 
our system in multidimensional space of channels is 
described by an equation of the type of the stationary­
diffusion equation with absorption or multiplication (de­
pending on the sign of t 2 ) and a source. In the general 
case the diffusion coefficient depends, of course, on x. 

We conSider now the case when the system energy is 
close to resonant. 

Resonances of the first type (Sec. 4). The nonreso­
nant part:..,of the S matrix (36) contains the propagation 
function RI considered above. The partial widths 8A(X) 
which enter in the resonant part of the S matrix were 
already discussed in Sec. 4 (see (37». The arguments 
~resented there confirm the possibility of interpreting 
RI as a propagation function in channel space. 

Resonances of the third type (Sec. 6). This case dif­
fers from the preceding one only in that the resonance 
is connected not with the internal state zfi A, but with the 
quaSistationary (or stationary) state in the channel "V'I' 

The nonresonant part of the S matrix (55) has the 
same form as (56), since the resolvent Z practically 
coincides with Q in formula (29). Therefore all the 
statements made at the beginning of this section con­
cerning the nonresonant case are applicable here. The 
motion of the system in channel space is described by 
the propagation function ZI'" RI • The partial widths 
1'l('tt) which enter in the resonant part of the S matrix 
(55) have properties analogous to the properties of the 
widths 8A(x). Thus, if the channel x is far enough from 
Xl> then (see (52)-(55» 

{}(X)""2~"'(X)CZ,(X,X,), c= S dx' o(x'), 

and it is seen that the reduced amplitude {J/21: 1/2 is a 
product of factors Zlc, the first of which describes mo­
tion in channel space from x to 'ttl' and the second a 
transition to a state of channel Xl, and this state leads 
in turn to resonance. The only complication in com­
parison with the preceding case is that ZI contains two 
terms (see (56», one of which describes a direct tran­
sition 'tt -XI, and the second a transition via the internal 
states zfi A: x_O_x l • 

Resonances of the second type. In this case, in con­
trast to all the cases considered above, one cannot in­
troduce the concept of "wandering" or diffusion in chan­
nel space. Formally this is connected with the fact that 
when a term with Ap'" 1 is separated from the kernel KI 
(see (40», then the remainder KI ()(, }(') is no longer 
"short-range," that is, it no longer tends to zero with 
increasing Ix - x' I. Therefore the integral equation 
for the resolvent R cannot be reduced to a differential 
one. Physically, on the other hand, the reason lies in 
the fact that in a case of resonance of the second type 
the system is in a definite quantum state up, which en­
compasses the entire aggregate of the channels. 

The arguments presented above show that within the 
framework of the assumptions (a) and (b) made in Sec. 1 
it is always possible to introduce the concept of a prop­
agation function ill in channel space. To find this func­
tion it is necessary to solve the integral equation 
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!ll=:J{+.J{'!ll with a short-range kernel.7t; equations of 
this type can frequently be solved in the diffusion ap­
proximation, and in this case .7l is determined from an 
equation describing stationary diffusion (with absorption 
or multiplication and a source) in the channel space. 
The only exception is the case of resonances of the sec­
ond type, when a long-range interaction of sorts enters 
into the channel space, due to the proximity to the sta­
tionary (or quasistationary) state of the aggregate of 
channels. 

8. CONCLUSION 

The analySiS presented in this paper is valid only for 
a system with a very large number of channels, open or 
closed. The approach indicated above is in essence 
statistical, although not in the usual sense employed. 
for example, in nuclear physics. The assumptions (a) 
and (b) formulated in Sec. 1 are sufficient to make the 
formulas derived in the preceding sections correct. A 
necessary condition here is (b), while the first condi­
tion can apparently be made much less stringent. 

The classification introduced by us for the reso­
nances is not formal but physical. For example, at a 
given input channel :X:, the cross sections a" >i of dif­
ferent reactions, which are proportional to I S( 'A,){) 1 2 , 

will have entirely different dependences on 'A. This 
can be easily seen by comparing formulas (36), (44), 
and (55). We shall not discuss this in detail at present. 

One final remark. In all real cases the channel index 
has several (n) components and can be regarded as vec­
tor in n-dimensional space. In particular, two com­
ponents of the index x describe the excitation energies 
of two particles of the channel. As the total excitation 
energy is gradually increased, we ultimately fall into 

the region of closed channels. On the other hand, the 
diffusion laws, as is well known, depend essentially on 
the dimensionality of the space in which the diffusion 
takes place. It would therefore be quite incorrect to 
confine oneself in the approach developed above, only 
to allowance for the open channels. All the channels, 
open and closed, must be taken into account in the 
scheme. 

To apply the procedure described in the preceding 
section to the calculation of concrete systems it is nec­
essary, first, to renumber the channels in correspon­
dence with the requirements of Sec. 1 and, second, to 
introduce an explicit expression for the kernel K or for 
the diffusion coefficient. The channels can be num­
bered by using physical considerations. The form of 
the kernel K or of the diffusion coefficient should, as 
a rule, be chosen by starting from the experimental 
data. Both questions are the subject of a separate in­
vestigation. 

j)This can be done accurately by expanding all the correspond­
ing quantities in powers of % - "', but the small corrections 
that result from this procedure are of no interest. 

2 )The case G I < ° when 1;» 1 is cons idered in a perfectly anal­
ogous manner, but the expansion must now be in powers of 
1;-1 and not 1;. The formulas of Secs. 4-7 are then slightly 
modified, but all the physical results remain the same. 
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Bound states of electron-positron pairs in a strong electric 
field 
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It is shown that taking account of the interaction leads to a splitting of electron-positron levels in the field 
of the nucleus. The levels differ by the number of pairs, each pair consisting of an electron in the K shell 
and a positron in a quasistationary state. A bound state arises in a small range of Z. The energy spectrum 
of the positrons, which are emitted upon critical approach of heavy nuclei, should contain several maxima 
which differ in energy by 10 to 30 keV. 

PACS numbers: 36.IO.Dr 

As is well known, the Dirac equation in the field of a 
point charge loses meaning at z> ~ = 137. In actual fact 
the ground state energy is of the form (Ii = m = c = 1) 

finite size of the nucleus[1-3J removes this difficulty. 
However, at a value Z"" 170 the energy of the lowest 
state reaches the value eo = - 1 and the total energy of a 
pair vanishes, that is, the vacuum becomes unstable 
with respect to the creation of electron-positron pairs. 
Thus, at Z = Z c the Dirac equation loses the meaning of 

eo~[1-(Ze2)2r' 

and becomes imaginary for Z> 137. Allowance for the 
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