
that the principal directions of the matrix s{ coincide 
with the "Kasner axes," and the Kasner exponents Pi 
are determined by the equations 

where s1I S2, S3 are the eigenvalues of the matrix s~. 
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Properties of second vacuum pole pi in the theory of 
the pomeron as a Goldstone particle 
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It is proposed that the pomeron is a Goldstone particle that appears upon spontaneous symmetry breaking 
of the system of vacuum poles and P and P. The properties of the pomeron are barely affected by the 
interaction and are determined by its bare (unrenormalized) characteristics. The properties of P depend 
strongly on the interaction with the pomerons. The contribution of P at low energies s contains terms 
that decrease in power·law fashion (and can, generally speaking, also oscillate as functions of In s, 
depending on the choice of the model). At high energies this contribution goes over into an expression 
analogous to the usual negative contribution of non-enhanced reggeon branch cuts, but those containing a 
small cutoff radius and therefore strongly dependent on In s. This can result in a rather rapid growth of 
the total cross section even in the experimental energy region. At a momentum transfer 10#0, a mixed state 
is produced in the system of two pomerons and its contribution to the angular distribution leads to the 
appearance of a second maximum at to#O. The existence of such a state can therefore explain the known 
anomalies in the angular distributions of pp scattering at high energies. 

PACS numbers: 11.60. +c 

INTRODUCTION 

In the theory of complex angular momenta, the w = j 
= 1 Pomeranchuk pole P is the analog of a nonrelativis­
tic massless excitation. An illustrative confirmation 
of this property is the fact that the positions w = 0 of 
all the singularities corresponding to exchange of an 
arbitrary number of pomerons coincide (at reggeon 
momenta k = 0). [I, 2] 

For most nonrelativistic physical systems, the ap­
pearance of a massless Goldstone excitation is evidence 
of spontaneous breaking of the continuous symmetry ex­
isting in the system. [3] This phenomenon is well known 
in solid state physics, [4] namely, the onset of zero-gap ex­
citations in a phase transition. It is therefore natural to 
assume that the existence of a pomeron is also due to 
an analogous cause, namely spontaneous breaking, at 
momentum transfers t< 0, of the symmetry of a certain 
continuous group characterizing hadron interactions in 
a vacuum channel of positive signature (t = - k 2). 
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A phenomenological identification of the type of group 
that can be responsible for the appearance of a pomeron 
as a Goldstone particle is afforded by the character of 
the excitations with the aid of which it is customary to 
describe the vacuum channel. At t < 0 this channel con­
tains a second vacuum trajectory pI besides the pomer~ 
on. It was therefore proposed in [5], henceforth re­
ferred to as I, that the Pomeranchuk pole is produced 
as a Goldstone boson following spontaneous breaking of 
the symmetry of a system of two interacting reggeons 
P and p'. This hypothesis, as shown in I, leads to 
hindrances and constraints on the constants of the reg­
geon interactions, and makes it possible to find their 
possible forms when the interactions are expanded in 
powers of the reggeon momenta k j • 

The traditional representations (see[6]) call for the 
contribution of pI to the cross sections of the processes 
to be small and to decrease in power-law fashion with 
increasing energy s: 
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s-'Mp''''g'r' (1';";;'/2). (1) 

It is customary to try to assume the slope a~. of the 
trajectory pI to be equal to the slope of the w - p tra­
jectory (exchange-degeneracy hypothesis), In the scat­
tering region (t<O), however, not much is known con­
cerning this slope, [6,7] 

This article considers the properties of pI in the 
theory where the pomeron is regarded as Goldstone 
particle in the simplest among the models described in 
I (Sec, 1). Principal attention is paid to those qualita­
tive features which do not depend on the model and are 
peculiar to the theory with the Goldstone pomeron. In 
models of this type, the pomeron is a pole that is ei­
ther completely stable, or stable at I t I = k2 = 0 (quasi­
stable). The interactions affect its trajectory little, 
and its bare (nonrenormalized) characteristics should 
be identified with the experimental ones (a~ '" 0,3 
Gey-2). The situation is different with the other vacu­
um pole pI, The bare singularity is a pole at the point 
w = - A (A> 0), and is strongly distorted by the interac­
tion. The Green's function of pI has poles and a cut in 
the complex w plane (Secs. 2, 3, and 4). At relatively 
low energies ~A $1 (formula (26» (~= Ins) the contribu­
tion of pI actually contains terms of the type (1) that 
decrease in power-law fashion with increasing energy. 
However, both the rate of decrease and the concrete 
form of these terms depend on the choice of the model, 

Under these conditions, the characteristics of the 
bare pole-the shift A and the slope a~.-become sim­
ply parameters of the model, having no direct bearing 
on those experimental characteristics of pI which de­
scribe that part of the contribution of the second vacu­
um singularity which decreases in power-law fashion. 
Within the framework of the model of Sec. 1 it is natu­
ral to assume that 

(2) 

i,e., a~."'0,3 Gey-2 , Relation (2) is not a mandatory 
condition: the analysis in I covers also models in which 
a~. is not equal to tCi P ' From the point of view of com­
paring our model with experiment, however, it is more 
likely that (2) (a~. '" a p ) is a good choice, The shift A 
remains purely a fitting parameter. 

Of fundamental Significance for the properties of pI 
at high energies ~A» 1 is its instability-the possibility 
of decay into a two-pomeron channel (Fig. 1a). The 
existence of the P' - 2P transition does not depend on 
the model or even on the Goldstone character of the 
pomeron: the second vacuum pole lies on the two-pom­
eron cut. Therefore those properties of p' that pertain 
to high energies (Secs. 3 and 4) can be described also 
purely phenomenologically. The theory of the Gold­
stone pomeron merely creates automatically the condi­
tions necessary for the realization of these properties. 
Owing to the instability of P', the asymptotic form of 

P / 
~ 

pI / 
~p 

a 
' .... 

'-

FIG. 1. 
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FIG. 2. 

the scattering amplitude 
of the type of Fig. lb. 
bution to the asymptotic 
equal to 

contains enhanced diagrams 
The corresponding contri­
form at k 2 = 0 and ~ - 00 is 

(3) 

Formula (3) is formally completely analogous to the 
usually considered contribution of the non-enhanced 
branch cuts (Fig. 2), but contains the cutoff radius RL 
that arises in the reggeon-interaction vertex (Fig, 1a), 
In eontrast to the large cutoff radius of reggeon-hadron 
vertices, which is determined by the slope of the dif­
fraction peak (R~/ a~ -12 for pp scattering and -7 for 
rrp scattering), [6,7] the radius R L , insofar as can be 
judged from the experimental data, [81 is relatively 
small: 

(4) 

1, eo, the cutoff momenta are kL ~ 1-2 GeY, Therefore 
(3) depends strongly on ~ already at experimental val­
ues of the energy, Since the residue of the second vac­
uum pole ,rl,. is large, [6] this strong dependence leads 
to a rather rapid increase of the total cross sections 
(oA2P <0). The effect due to the instability of p' can be 
an appreciable fraction of the growth of a tot observed at 
high energies. [9] 

The second qualitative consequence of the instability 
of P' (Sec. 4) consists in the appearance, at k 2* 0, of a 
bound state of the two interacting pomerons, The ap­
pearance of this pole in the two-dimensional (with re­
spect to k) problem is ensured by the effective attrac­
tion between the pomerons, which is present in the 
Goldstone-pomeron theory (see Sec, 1), A "bound 
state" appears at k2 = 0 from under the two-pomeron cut 
(Fig. 3) and at fixed k 2 it is located at an exponentially 
small distance Xo from the edge of the cut (w = - (1/2) 
x a~k2): 

x,=a exp{-l]/k'}, l]=2!1/Aa/. (5) 

The contribution of the pole Xo to the elastic-scattering 
amplitude is also exponentially small realtive to 1/k2: 

r'bA =-b( l]/k') 2 exp {-l]/k'-a/k'£/2+xo~}. (6) 

Expression (6) has a maximum at 

(7) 

(Xo« 1), If we choose the parameters A and A such that 
expression (3) determines approximately the experimen­
tal growth of the cross section (Sec. 4), then the maxi­
mum of (7) is located in the region I t I - 2 Gey2, 1. e" 
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FlG. 3. Poles (x) and cut 
of the Green's function of 
p' (31) in the complex w 
plane. 
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near the known maximum of the angular distribution of 
the pp scattering: I tmaxl -1.8 - 1.9 Gey2, [l0] This cir­
cumstance allows us to assume that the pole (5) can 
play an important role in the formation of the minimum 
and the maximum of the angular distributions. Expres­
sion (6) is, as it were, specially intended for this pur­
pose. The choice of the model parameters and of the 
hadron form factors makes it possible to attain a quali­
tative agreement with the experimental picture. [10] 

At large momentum transfers, I t I -1.5 - 3 Gey2, the 
corrections to the considered model are not small, but 
the very existence of the pole (5) does not depend on the 
model, being a property of the Goldstone-pomeron the­
ory. 

In the picture under consideration, the angular dis­
tributions of the scattering of different hadrons at high 
energies should be similar to the pp-scattering angular 
distributions. The differences can appear only via the 
hadron form factors of P and pI (and the contributions 
of the non-enhanced diagrams), 

In Sec. 5, an expression is derived for the three-reg­
geon limit of the total cross sections. [11) It is unusual 
in that there is no three-pomeron vertex at k2 = 0 in the 
Goldstone-pomeron theory. 

Other ("relativistic") variants of the approach to the 
pomeronas a Goldstone particle are proposed in[l2,13]. 
From our point of view, the consequences of these vari­
ants are much farther from the real world of hadrons 
than in the model described here. 

1. MODEL LAGRANGIAN OF THE INTERACTION 
OF p AND pi 

The interaction of a massless particle cannot be per­
fectly arbitrary. It must satisfy a certain system of 
conditions that are called upon to cancel out the infra­
red singularities and do not allow the interaction to 
cause an increase in the mass. [3) 

For interacting reggeons P and pI, where P is analo­
gous to a nonrelativistic zero-gap excitation and pi to 
excitation with a gap A, the simplest Lagrangian satis­
fying the necessary conditions (see I) is 

1 ( o1jJ ii1jJ+ ) L=-- ",+-' -_·_,b. -a'V ,,,.+1,7 ," 2 ,. iii; 0; 'to ,'t. P't' 

(8) 

Here I/!i(~' p) and I/!;(~, p) (i= 1,2) are the operators of 
the creation and annihilation of the reggeons pI (i = 1) 
and P (i = 2). They depend on the imaginary time ~, 
which is canonically conjugate to the angular momentum 
w = j - 1, and on the two-dimensional vector p of the im-. 
pact parameters. 

Formula (8) appears when the symmetry of the La­
grangian that is invariant to the rotation of the axes 

p 

a 

FIG. 4. 
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i = 1,2 is spontaneously broken. This formula does not 
contain interaction that might displace the pomeron 
from the point w = 0, and leaves it absolutely stable, 
The connection of A and A with the coefficient of the 
non-Hermitian three-reggeon vertex in (8) leads to can­
cellation of the infrared divergences (see I). 

It must be noted that the signs of A and A in (8) are 
fixed: if A > 0 (unitary pole satisfying the Froissart 
formula), then also A> 0 (see I). This is the essential 
difference between the Goldstone-pomeron theory and 
the usual Regge theory. [2) The fact that the constants 
in (8) have definite signs leads to an effective attraction 
in a system of two pomerons, and to formation of their 
"bound state" (Sec. 4). 

More general forms of the Goldstone pomeron inter­
action (see I) have similar properties. These forms 
include many-particle vertices (n > 4) and vertices that 
contain VI/! and vzp+. 1 ) The principal difference from (8) 
is that the interactions with the gradients make the 
pomeron quasi-stable with a small width proportional 
to a power of its momentum (k2 or k4). This circum­
stance has little effect on the qualitative properties of 
the theory, and the latter can be investigated with the 
Lagrangian (8) as an example. 

The Feynman diagrams for the interactions (8) make 
it possible to calculate the partial waves f(w, k2), which 
determine the asymptotic form of the imaginary part of 

. the amplitudes of the processes: 

A ( .) ·+'~+I. d 
1 s,t J '" ·'/( k') ---= --,e 00, • 

S . 2ni 
-1:>:+1 0 

(9) 

2. THE GREEN'S FUNCTION OF p' 

The vertex (Fig. 1a) of the Lagrangian (8) leads to 
instability of the state p'. If P and pI were particles, 
then pI could not appear inthe asymptotic states of the 
theory and the s-matrix would describe only processes 
with P. [3] The Regge theory is a theory with external 
sources (scattered hadrons) that can emit both stable 
reggeons p and unstable ones P'. Therefore in the 
Regge theory pI not only organizes the pomeron inter­
action, but also plays an independent role. Since the 
Goldstone pomeron is stable (or almost stable), its 
properties are determined entirely by the bare trajec­
tory and the residues. The interaction between the reg­
geons appears in fact only in the properties of pI, and 
this leads to the appearance of a number of qualitative 
effects described in the Introduction. 

The exact Green's function of the reggeon pI is 

(10) 

Here and below a ' k 2 - i/. The irreducible self-energy 
part of ~ is a sum of the contributions of all the possi­
ble diagrams of the type of Figs. 4 and 5. In the model 
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(8) it is then possible to sum not only diagrams with ex­
change of pomerons, but also with exchange of many pI 
(Fig. 5). It is obvious that allowance for these contri­
bUtions, which correspond to rapidly decreasing terms 
of the amplitudes, depends on the character of the 
model, and is therefore useful only for estimates, 
Summing all the diagrams, we obtain only a model rep­
resentation of the power-law contributions to the dia­
grams and of the possible effect of the contributions on 
the principal terms of the asymptotic form. The solv­
able model (8) offers a useful opportunity for this pur­
pose. 

We denote by .1(w, k2) that part of the pI self-energy 
which does not include diagrams with two-pomeron ex­
change and is not divided into two parts by the four­
reggeon vertex A (Fig, 4e), The total self-energy part 
of ~ is then 

~( k')=tl 3(fiJ,k')+J(fiJ,k') 
6), '1-3(fiJ,k')-J(fiJ,k')' 

Here J(w, k2) is the contribution of the two-pomeron 
loop: 

(11) 

d'k'dfiJ' ,).. L 
J(fiJ,k')=2).. S (2n)'2ni Gp(fiJ',k')Gp(fiJ-fiJ',k-k')= 4n In fiJ+k'/2 ' 

(12) 

The quantity L is connected with the cutoff momentum 
kmu. of the integral in (12): 

L=2k~ax 

i, e., with the radius of the form factor of the vertex 
of Fig, la, In accord with the statements made in the 
Introduction, k~u.-1{(}'~k~u.-1), and therefore L-2, 
The quantity .1(w, k2) contains contributions of the dia­
grams of Fig, 5 and is a singular function of w with 
Singularities I w I - a corresponding to asymptotic am­
plitudes that decrease in power-law fashion, It in­
cludes also contributions of many-pomeron (n ~ 4) ex­
change diagrams (Fig. 5) that are Singular at small w 
and k2: 

Substituting (11) in (10), we obtain an exact Green's 
function for pI: 

tl 
G-' (fiJ, k') =fiJ+k'+ 1-3 (fiJ, k') -J(fiJ, k') . 

(13) 

(14) 

Formula (14) can also be derived by successively 
summing all the diagrams Green's function G itself, 
This derivation is of interest because it is easy to trace 
in it those cancellations of the infrared divergences at 
small wand k 2 which are characteristic of the theory 
with a Goldstone particle (see I), In the diagrams for 
G, the cancellations take place in all the higher orders 
in w, except for the diagram of Fig. 1b, This property 
of G can be easily traced in formula (14), 

3. CONTRIBUTION OF p' TO THE TOTAL CROSS 
SECTIONS 

We consider in this section the function (14) at k 2 = O. 
In addition to the branch point w = 0, the function G{w) 
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has in the complex w plane poles corresponding to am­
plitude contributions that decrease in power-law fashion. 
When calculating the exact positions of these poles, 
which lie far from the point w = 0, the dependence of the 
function .1(w) on w is appreciable. However, only the 
very fact of their existence is of qualitative (non-model) 
character, and this property can be traced by assuming 
.? (w) to be constant, a procedure that is in fact valid at 
small w (see (13)), 

The principal role assumed by .7{w) in that case is 
the renormalization of the bare constants of the theory: 

;l-+;l/(1-.'I) 1.-+/./(1-.'1). (15) 

We can therefore consider for SimpliCity a simplified 
equation for the poles of (14): 

fiJ+;l/[l-J(fiJ)]=O. 

Substituting in (16) 

fiJ=p exp{±i(n-<p)}, 

(16) 

(17) 

we obtain for the pOSitions of the poles the following 
system of equations for p and cp: 

;l' I' I (,,-<p) i., 
p' = , , SlIl<p = --,-p, 

.2'p'+(n-q;)'/.,' -' 

where 

The second equation of (18) has the obvious solution 
cp = rr{w > 0), If the first equation, which reduces at 
positive IJ) to 

(18) 

(19) 

were also to have a solution, then the Green's function 
G{w') would have an anti-unitary pole. Equation (19) has 
no solution if the following condition is satisfied: 

;l (1+1, 0 ) -. -exp -- >1. 
l.oL 1'0 (20) 

We shall therefore assume that the parameters of the 
problem satisfy the condition that forbids anti-Froissart 
poles (see also Sec, 4), Since the cutoff L is a finite 
quantity in the reggeon problem, the condition (20) is 
easy to satisfy (Ao< 1), 

Even when the condition (20) is satisfied, the system 
(18) has two complex-conjugate roots, which correspond 
to contributions to the amplitude (9) that decrease in 
power-law fashion, It is easiest to trace these solu­
tions by perturbation theory. At Ao« 1 the system has 
the solution 

(21) 

At larger values of Xo the roots are always in the left­
hand (unitary) w half-plane and reach its boundary 
(cp = rr/2) only outside the region (20), when 

~exp(l+)"o) = ~ <1. 
1.0L Ao ~e (22) 

Their position depends strongly on the chosen model, 
and therefore an exact determination of the roots (18) is 
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of no particular meaning. The very fact of the exis­
tence of such necessarily unitary poles is of interest. 

At sufficiently small A, the contributions made by them 
to the amplitude are positive and equal to 

(23) 

The total contribution of the Green's function of pI in­
cludes also the branch-point w = O. At small w, with 
(15) taken into account, the discontinuity on the two­
pomeron cut from (14) is 

nl.o [( ::'P-w)' n'Ao'::" ]-' 
nG(Ol)=-n, '2 Ol+ ,," +. , ,.,/ 

P -w +n Ao P_.~ T:I I., [P -w +" 1.0 J 
(24) 

The integral (9) of ~G(w) 
o 

r'6,pA, (8) =gp" S dOl eW'::'G(Ol) (25) 

is a complicated function of~. Its qualitative behavior 
is determined by the quantity 

;nlPw,1 
x = P w;+"".o' ' (26) 

where Wo is an effective parameter, wo-l/~, At X» 1, 
the integral of (25) goes over into the usual formula for 
the contribution of a branch cut: 

(27) 

At X -1, the integral of (25) depends essentially on the 
energy, including also the power-law dependences. Let 
us consider again AO« 1, just as in (21). The main 
contribution to (25) comes at X < 1 from the reggeon 
"resonance" of formula (24). The resonant contribution 
is negative and is equal to half the contribution of the 
poles (23): 

(28) 

At AO« 1 the nonresonant part of (25) is smaller than 
(28) if X < 1, but at AO:S; 1 it becomes large and practical­
ly independent of energy in this region. 

As already mentioned several times, the concrete 
forms of all these quantities, which describe the behav­
ior of the amplitudes' at relatively low energies, depend 
essentially on the model. At the same time, the ap­
pearance of the relation (27) in the contribution of pI at 
high energies does not depend on the model (see the In­
troduction). The qualitative effect, which determines 
(27), of the instability of pI can be responsible to a con­
siderable degree for the observed growth of the total 
cross sections. [9] For X» 1 we have 

(29) 

It is not particularly difficult to select the param­
eters in such a way that formula (29) describes the 
growth of the total cross sections of pp scattering in the 
observed energy interval (upp(oe):::: 50 mb). The "pole" 
character of the contribution (27) (Fig. Ib) ensures a 
large value of the second term in (29) and a strong de­
pendence on ~ 2) even at energy values used in experi­
ments. It is precisely this property which distinguishes 
(29) from the usually considered contribution of non­
enhanced branch cuts. [141 
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4. POMERON BOUND STATE. ANGULAR 
DISTRIBUTIONS OF HADRON SCATTERING 

We consider now formula (14) at k2 * O. We are in­
terested in the region 

x=Ol+k'J2¢:1. (30) 

The function :J(w, k 2 ) can be considered, as before, 
constant, since by virtue of (13) it depends little on k 2 

at small k 2 < 1. Then Eq. (14) can be rewritten in a 
simpler form 

G-' (Ol. k') =x+k'/2+MP, (P,==l-l.o In (L/x) ). (31) 

The equations for the roots of (31) are now (x=pe i "') 

k' nP, 
-+pcos m + =0 
2 't' P o'+cp'l.o' ' 

~A'P 
p sincp + =0. 

Po'+'P'l.o' 
(32) 

In the vicinity of x = 0, the system (32) has a solution 
(xi>« 1) 

. 1 2~ 
'1'=0 p""'xo=Lexp{----} , 1.0 I.ok' . 

(33) 

It is easy to show (e. g., at k 2 « 1) that (33) is the only 
solution of (32) at small x on the first sheet of Inx in 
(31). At large I x I - ~ + k2/2 the equations in (32) have 
two complex-conjugate roots that are continuations of 
(21) to the value k 2* O. 

The contribution to the amplitude (9) from the pole xo 
is given by 

gp" (k') {k'; } r'6",A,(s,t)=-,-(-exp --+x06 , 
III xo) 2 

(34) 

where 

!!. I.k" {2!!. 1} 1Il'(xo)=1-_(_0_) exp -, +- . 
LAo 2!!. I.ok 1.0 

(35) 

We now find the condition under which the pole xo re­
mains in the left-hand w half-plane at all values of k 2, 

i. e" it remains a unitary pole. From (32) at cp = 0 it 
is obvious that the pole xo reaches the point w = 0 (xo 
= k2/2) if the equation 

k'[ 1-1.0 In(2L/k') J +!!.=O (36) 

can have a solution. Equation (36) is perfectly analo­
gous to (19), and the condition under which there are no 
solutions of (36) is 

!!. (1+1. 0 ) -exp -- >1. 
2AoL Ao 

(37) 

Just as in (20), the condition (37) is easily satisfied in 
the region AO < 1, 

The pole (33) arises in a two-dimensional (in terms 
of k) system of two pomerons as the consequence of the 
effective attraction between them, described by the La­
grangian (8) for the Goldstone pomeron. A non-analyt­
ic spectrum connected with the instability of the excita­
tions, of the form exp(- a/k2 ), is known in solid-state 
theory problems. [15] In the considered relativistic 
problem, such a non-analytic spectrum and the contri­
butions (34) and (35) to the amplitude do not contradict 
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the analytic properties of the amplitudes with respect 
to the momentum transfer, inasmuch as on going over 
to the complex k 2 plane the singularity of Xo as k 2 - ° 
vanishes on the infinitely remote sheets of the logarith­
mic cut in (31). 

We consider now the contribution of this cut to the 
scattering amplitude at k2* 0. The discontinuity of the 
Green's function on the cut is 

dG(Ol,k) dA., [ k' d5Z -z ' :rt'A.o'tl.' -, x+-+---- + 
5Z -x'+:rt'A." ( 2 5Z -x'+:rt'A.") (5Z -x'+:rt'I.,'), ] . 

(38) 
Expression (38) makes two types of contribution to the 
amplitude (9) at ~»1, First, the usual contribution of 
the simple two-pomeron branch cut, which can be rep­
resented approximately in the form 

-lOA - '(k') I. {k'6} s u 'P--gp' -exp -- . 
tl.s 2 

(39) 

Second, the contribution from the quasi-resonant region 
near x=o (Ixl -xo), which is equal to (34) in order of 
magnitude and in sign. 

We can choose the parameters of (34) and (35) such 
that the pole Xo makes an appreciable contribution to the 
scattering amplitude at momenta k2 - (2A/AO), becoming 
comparable with the contribution of the pomeron and of 
the branch cut (39). At the energies at which this takes 
place (the contribution of the pomeron is larger at small 
0, anomalies can arise in the angular distributions. 
Parameter values such as g~.(k2)o::g~(k2), Aoo::Ao::O.4 
- 0. 5, and L = 2k~axO:: 2 also reconcile quite well formula 
(29) with the total pp-interaction cross section, starting 
with energies E 1ab-100 GeV. 

Taking into account the contributions of P and pI at 
high energies (neglecting the non-enhanced diagrams), 
the imaginary part of the scattering amplitude can be 
approximated by the formula 

(40) 

cD'(Xo) <0. 

For simplicity we have set in (40) the form factors of 
P and pI equal to each other. The factor 2 in the last 
term of (40) takes into account the contribution of the 
quasi-resonant region in (38). 

The real part of the amplitude can be estimated in the 
usual manner (see, e. g., (7.14]): 

:rt a 
s-' ReA(s,t) "" --[s-' ImA(s,t) J. 

2 as (41) 

The angular distributions described by formulas (40) 
and (41) agree qualitatively with the experimental pic­
ture. [10] The presence of a pole contribution in (34) 
makes a quantitative reconciliation much more feasible. 
The maximum and minimum fall in the experimental 
region (0.4$k2=cy~k2$0.6). 

This can raise the question of whether it is possible 
to have in the considered theory an analogous mecha-
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nism that leads to formation of a second maximum at 
k2*0, etc. It would be natural to relate this mechanism 
with the appearance of poles that are connected with 
many-pomeron interactions and cuts. It is perfectly 
clear that the appearance of such many-pomeron bound 
states is an extremely unlikely event. The infrared 
divergences are cancelled out in the higher order of 
the theory with a Goldstone particle, and therefore the 
ma~ny-pomeron amplitudes cannot be large. For the 
mOidel (8), the influence of the many-pomeron exchanges 
on the Green's function of pI is via the quantity 3(W, k2) 
(13). Typical diagrams for them are shown in Fig, 5. 
The value of their Singular part is estimated in formu­
la (13) and turns out to be small and insufficient for the 
production of a new pole. A similar situation obtains 
also for the more complicated models of 1. It is pre­
cisely because of the smallness of the many-pomeron 
exchanges that the pole Xo (33), which is a "resonance" 
with respect to the many-pomeron cuts with n? 3, has 
a small imaginary part and can be regarded as a real 
pole, 

The up-to-date theoretical explanation of the appear­
ance of maxima and minima in the angular distributions 
of hadron scattering is based in the interference of the 
Pomeranchuk pole with non-enhanced-branch-cut con­
tributions that decrease slowly and have alternating 
signs, The appearance of the anomalies x in this ex­
planation are not the result of a qualitative phenomenon, 
as is the case in the presence of the pole Xo (33), but to 
a considerable degree of a fortuitous combination of the 
numerical factors, 

For different hadrons, the angular-distribution pic­
ture corresponding to this hypothesis can differ greatly 
from the case of pp scattering, On the other hand, if 
the prinCipal role is played by the pole xo, then the an­
gular distributions of the hadrons differ only in the form 
factors of P and p'. The appearance of maxima and 
minima at approximately the same points relative to t 
becomes practically inevitable for all hadron scatter­
ings. 

In concluding this section, we note that the more com­
plicated forms of the interaction energies from I, while 
affecting the quantitative characteristics of the pole (33) 
and its contribution to the amplitude (especially at large 
k 2), do not change the fact of its existence and its quali­
tative properties. 

5. THE THREE-REGGEON LIMIT 

In view of the absence of a three pomeron vertex 
(identically at k 2 = 0, see I), the three-reggeon limit[ll] 
of the cross sections is ensured in the theory of the 
Goldstone pomeron mainly by the properties of the 
Green's function of pl. If we disregard the non-en­
hanced reggeon diagrams, which can be much smaller 
than the "enhanced" ones connected with pI, then the 
asymptotic form of the cross sections in the three-reg­
geon limit is determined by the diagrams of Fig. 6. 

The partial wave corresponding to the sum of the dia­
grams of Fig. 6 is equal to 
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f=-gp'O,01),j,{C(Ul,k)+ l(w,k) C(Ul,k)}. 

I-J(Ul, k) 
(42) 

Substituting (14) in (42), we obtain at k 2 = 0 

(1.01 )" 
f = - g 1" -;--:--0-:--:--'----

Ul[I-J({J») ]+1 
(43) 

The asymptotic form of the total cross section for the 
interaction of the pomeron with a particle is 

(44) 

Formula (44) shows that the total cross section (J tot de­
creases in the three-reggeon limit with increasing s 

S' dM' (j (In M') 
10 - ------

tot M' In(sIM')' 
m' 

(45) 

At lower energies it is necessary to add to the integral 
of (44) the contribution of the poles (21), which de­
creases in power-law fashion with energy. If their con­
tribution to the total cross section is positive, then the 
contribution to the cross section (44) has a negative 
Sign (gp. > 0). Since fj must remain positive at all en­
ergies, in realistic models this condition can impose 
constraints on the parameters of the theory (e. g., an 
upper bound for the value of i\). 

In conclusion, I wish to thank V. N. Gribov, A. B. 
Kaidalov, E. M. Levin, N. N. Nikolaev, M. G. Ryskin, 
and V. A. Khoze for very useful discussion and clarifi­
cations. 
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I)The nonlocal character of the reggeon interaction, viz., the 
dependence of the vertices on the reggeon momenta, leads to 
the appearance of a natural cutoff in the reggeon theory, just 
as in solid-state theory. Therefore the renormalizability 
property is not of the same fundamental Significance for the 
Regge theory as for modern relativistic field theories. 

2)~ = In(s/so) , with So unknown. We choose Cipso-1, and then 
the vacuum reggeons have only one dimensional parameter 
Cip. 
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