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The singular points and their separatrices are investigated (in the sense of the qualitative theory of 
differential equations) for the Einstein equations in the homogeneous type IX cosmological model with 
moving matter. A new power asymptotic behavior of the metric in the presence of moving matter, which 
generalizes the well-known Taub asymptotic behavior, is found. The typical states of the metric during the 
early stage of expansion are studied; it is shown that the typical states depend on the value of an integral 
M which is related to the velocity of the matter. 
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INTRODUCTION 

The homogeneous cosmological model of type IX in 
the Bianchi classification with moving matter was first 
considered by Belinskii, Lifshitz, and Khalatnikov, [lJ 

who showed that the oscillatory mode which they had 
previously discovered[2J is accompanied in the presence 
of moving matter by rotations of the "Kasner axes." 
Subsequently, Grishchuk, Doroshkevich, and Lukash[3J 
investigated the oscillatory mode in a coordinate sys­
tem in which the metric is diagonal and showed that 
mixing does not occur. 

The present paper is a continuation of the joint work 
of S. P. Novikov and the author[4J and uses the methods 
of the qualitative theory of differential equations em­
ployed in[4J. These methods enable one to obtain a com­
plete picture of all the modes of the metric in this mod­
el in the neighborhood of the cosmological singularity. 

When the space contracts, almost any metric (i. e. , 
all metrics except those with a power asymptotic be­
havior) enters the Belinskii-Lifshitz-Khalatnikov 
(BLKh) oscillatory mode. Therefore, this oscillatory 
mode is a typical state of the metric when space con­
tracts. When the space expands from the cosmological 
singularity, the BLKh OSCillatory mode terminates at 
a certain time. In[4J, the problem was posed of the 
typical states of the metric during the early stage in 
the expansion of space that are realized near the cos­
mological Singularity and follow directly after the BLKh 
oscillatory mode. These typical states for the diagonal 
type IX model are three power regimes of the metric­
the quasi-isotropic regime which generalizes the 
Friedmann solutions, the regime found by S. P. Novi­
kov, and the Taub regime (in this connection, see al­
SO[5J). In this paper, we study the typical states during 
the early stage of expansion in the type IX model with 
moving matter and we investigate the dependence of the 
typical states on the velocity of the matter. 

1. EINSTEIN'S EQUATIONS IN THE PHASE SPACE 

We write the metric giJ of the homogeneous type IX 
cosmological model in the standard form (see[l,2J): 

ds'=goo (T) dT'-g" (T) e,'e,'dx'dx', (1. 1) 
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where goo(r) will be determined below by the choice of 
the time scale. We suppose that the space is filled with 
matter with hydrodynamic energy-momentum tensor: 

(1. 2) 

and that the components of the four-velocity Ui in the 
standard basis e ~ depend only on the time, e( r) is the 
energy density, p(r) is the pressure, and the equation 
of state is p = k e, 0 ~ k < 1. 

In studying the Einstein equations 

(1. 3) 

for the type IX model we use the well-known variational 
principle (see [6]): 

The expression Ti~ogik for the metric (1. 1) has the 
form 

(1. 4) 

Tikog;.=Eoln I~oloh +(l+k)e(g"u'u'gooogoo-u'u·og ih ). (1. 5) 

Here and below Ig I =det II gab II. 

In order to simplify the expression (1. 5), we choose 
the time r such that 

(1. 6) 

and then under the condition (1. 6) the first term in 
(1. 5) is zero. The time r is related to the synchronous 
time t(goo(t) = 1) by dt= Ig 1~/2dr. 

In accordance with the variational principle (1. 4) and 
(1. 5), the "tensor components" (i, j = 1, 2, 3) of the Ein­
stein equations are equivalent to the equations 

aL d aL 1+k -----.-= __ e(uiuJ_kg"u'u'giJ)lgl(lH)I', (1. 7) 
Eig'i dT Eigii 2 

where the function L(giiJ iii) is obtained from iRq 
by omitting the total derivative with respect to the time 
and has the form 

(1. 8) 
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The Einstein equation Rg - t R = Tg has the form 

H=B{(1+k)uo'goo-k) Igl(t+k)I', 
H='/, I gt,,-k)I' (x" "x.'-x.'x,") +1/, I g 1-(1_')1' (21 g I g'"_g"g,,). (1. 9) 

The Einstein equations Ro", = To", have the form 

-)/,x,'C"r'=(1+k)wou" (1.10) 

where C~y are the structure constants of the type IX 
group (S0(3)) in the standard form. 

From Eqs. (1. 9) and (1.10) and the condition 

(1. 11) 

we can obtain the expressions 

goo 
1 (( 16k ) 'j,) 2' H + H' - (1+k)2 X.X,g,blgl' , (1.12) 

l+k t il I"H)I' 4XtXi lgl' 
-2-WU g = (1+k) (H+(H'-16k(1+k)-'X.X,g"lgl')') 

(1. 13) 

where Xa = -tx ~ C~y I g I U-")/2. 

Substituting (1. 13) into Eq. (1. 7), we obtain a closed 
system of second-order differential equations for the 
components of the matrix gli(T): 

aL d iJL .. ____ =h1] 

ag;; d. agtj , (1. 14) 
4 (XtXi-kg .. X·X'gO) Igl' 

(1+k) (H+ (If'-16k (1+k) -'X.X,g"lgl'),I,) 

We transform the system (1. 14) into a system of first­
order equations defined in the phase space of p Ii and 
gil' The momenta p Ii are defined by 

" aL Igl"-·)/'.. . .. 
p"='-. =---(g"(lnlgl) -g.,g"g"). 

agt; 4 
(1. 15) 

In the phase space, the system (1. 14) goes over into the 
system 

.. aH h" plJ= ___ ", 
agt; 

. aH 
gt;=O'/F' (1.16) 

The function H (see (1. 9)) in the coordinates piJ and giJ 
has the form 

H = __ 1_[ (Sp(p.g))'-2Sp(p.g.pog)+~ (2Iglg""- Sp(g'»]' 
Igl(I-')I' 4 

(1. 17) 

Here, Sp (Y) is the spur of the matrix Y, po g is the 
product of the matrices p = II P iJ II and g = II gi" II. 

The dynamical system (1. 16) is, by virtue of the 
derivation, equivalent to the complete system of Ein­
stein equations. The time dependence of the velocities 
U '" and the energy density e can be determined from 
Eqs. (1. 9)-(1.11). 

2. TRANSFORMATION OF THE DYNAMICAL SYSTEM 

To study the system (1. 16), we transform it by means 
of three changes of coordinates to a more convenient 
form. 

1. We introduce the coordinates S~ =gki P Ii. In ac­
cordance with (1. 15), 

(2.1) 
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where X~=gklgii. The prinCipal directions of the ma­
trix S~ coincide with those of the matrix x~, which in[1] 
are called the Kasner axes. The matrix S = II S~ II for 
nonzero velocities u'" is not symmetric (in contrast to 
the matrices g = II gjJ II and p = II P Ii II). To see this, we 
use (1.10) and (1.15), obtaining 

X,=-1/4x ,'·C./1 gl (I-k)/2=1/2 (1+1.:) WoU. I gl "-"I'=S,'·c",'. (2.2) 

Obviously, the matrices Sand g satisfy the identity 

g,s'=s'g. (2.3) 

Here, SI is the transposed matrix. 

The system (1. 16) in the coordinates S~ and gli takes 
the form 

1. ( l-k ) S.i=- 2Igl"-')I,[lg l (6,Jg""-g")-g"gt;1+6,i -2- H-g"h", 
(2.4) 

. 2 (S' , gd = Igl"-W 2 gt, ,-2g"S,). 

The system (2.4) has the two first integrals Land K: 

(2.5) 

K= H-----Z +H H ----Z --H • [( , 161.: )'i' ][( 2 16k )'1. I-I.: ] (,-"I«+" 
(1+k)' (1+k)' 1+1.: ' 

(2.6) 

where Z= Xa x;, gab I g I k. Using Eqs. (2.2), (1. 9), and 
(1. 12), we obtain an expression for these integrals in 
terms of the velocities uOi. and f: 

L ( 1+k)' '-'II( '+' 2 = ~ E U o g U I u,-+u,), 

2k (1-')/(IH, 

K = 2 (--) e'/(IH'U' 'igi 1+k 0 , 

(2.7) 

where Uo is the velocity component in the synchronous 
frame. As k- 0, the integral K (2.6) must be replaced 
by dK/dk [formally, (2.6) gives K=O for k=O]. The 
integrals (2. 7) for the case k = 1/3 were given by Grish­
chuk et al in[S]. Here, using the expressions (2.5) and 
(2.6), we point out important applications of these in­
tegrals to the problem of the typical states of the metric 
during the early stage of expansion of space. 

The system (2. 4) has the monotonic function 
d 

F = 3- (lgl'l.) = (S.') Igl-" 
dt ' 

dF 
-"';0. 
d. 

(2.8) 

When the direction of time is chosen in the direction of 
decreasing volume I g I, we have F< ° and S: < 0. It 
follows from the monotonicity of the function F that the 
trajectories of the system (2.4) do not leave the region 
S:"""O. If the direction of time is chosen in the direc­
tion of increasing volume I g I, then F> ° and the func­
tion F decreases monotonically. 

2. We introduce the coordinates 
. S.; glj G 

s·'=c' YfJ=C' , (2.9) 

where 

The coordinates YiJ satisfy the identity 
, 

,EYt,'=1. 
t,i=l 
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The coordinates (2.9) are convenient for studying the 
behavior of the system (2.4) in the neighborhood of the 
state of maximal expansion, where det II giJ II reaches 
a maximum and s: = 0. 

3. To study the behavior of the system (2.4) near the 
cosmological singularity (where det II go II = 0) we intro­
duce the coordinates 

(2.10) 

where 

• 'I 

e = ( L (S.')') '. 
ct,B=l 

The coordinates s ~ satisfy the identity 
3 

1: (s,') '=1. 
h)=1 

The system (2.4) in the coordinates (2. 10) after the 
change of the time 

d., e' 
d. 2Igl"-h)/2 

(2.11) 

takes the form 

s,'=w[ -Iyl (fi,'y"-y") +y"y,,+s,'(lyl (s."y"-s.'y·') -Ya,S,'Yl') J 
. 81ylw 

+ (fi,'-s,'s,')H, (1-k) - (1+k) [H,+ (H ,'-16k(1 +k)-',ex,x,lyly") "'J 
X[X/lXayCtJ-kXaXbyUb6,/-Sk] (XfJ.Xly~lS{/'-kxaxbyaosrT) ], 

YI,=8(-YlkSl+Y';Ya,s,'Y,a) , (2.12) 

w=2w [ Sa' (4- (1-k)H,) -8y.,S/Yl'+W ( I y I (s,'y"-s.'ya,) -Ya,S,'Yla 

+ 8 (xaxTlylyl'Sa'-kX,XblyIY"STT»)] 
(1 +k) (H.+ (H,'-16k(1 +k)-'WX,Xblyly·b) 'I,) 

G=4G (Sa "-2Ya,Sr'YTa). 

Here 

The system (2. 12) contains a closed subsystem in the 
coordinates s~, Y/j, w. This system can be considered 
in the region S, which has dimension 11, which is de­
termined by the natural conditions 

3 . 
yost=soy, ~ y,/=I, 

(2.13) 
1: (s,')'= I, 

',]=1 11)=1 

Iyl=det Ily"II>O, O<w<oo, K?>O. 

It follows from the condition K:;.O in particular that 

The boundary r of S [see (2.13)] consists of three 
components: r 0, r 10 and r w, which are determined by 
the following conditions: ro: det II YiJ II =0; r 1: K=O; 
r w: W= 0. It is obvious that the system (2. 12) can be 
extended continuously to the components ro and r wand 
to the component r 1 for H1 ,* 0. As H1 - ° the expressions 
containing H1 in the denominator [see (2.12)] are, by 
virtue of the condition 

H.'?>16 k(1+k)-'wx.x,lyly·' , 

bounded above by 

H Ix,xjlylyljl elx,1 (lylyl,W),". 
c 1 x"xblylyab ' 
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Therefore, these expressions tend to zero as H1 - 0, 
except for points at which the matrix YiJ is simply de­
generate, and xa Xb I Y I ~b = 0, w'* 0, (xl. X2, x 3 )'* 0. 
Thus, everywhere except these exceptional points, 
which are distinguished by the two conditions det lIyu II 
= ° and xa Xb I Y I yab = 0, the system (2.12) in the limit 
H1 - ° can be extended continuously to the boundary r. 

The components r o, r h r w of the boundary are in­
variant manifolds of the system (2.12), i. e., a tra­
jectory that begins on the boundary remains on it for 
all time. 

3. POWER-LAW ASYMPTOTIC BEHAVIORS. 
TYPICAL STATES DURING THE EARLY STAGE IN 
THE EXPANSION OF SPACE 

We find the power-law (with respect to t) asymptotic 
behaviors of the metric of the type IX model with moving 
matter as space contracts. A metric having this form 
can be represented in the coordinates (2. 10) by a tra­
jectory of the system (2.12) entering one of the singu­
lar points of this system. By virtue of the existence of 
the monotonic function F = s:/ w 1/ 2 I Y 1 1/ 3 all the singu­
lar points of the system (2.12) lie on the boundary com­
ponents r 0 (I Y I = 0) or r w( W = 0). The singular points 
form six sets: 4>LKh, N, T, A, B, and K. 

1. The set 4>LKh has dimension 5 and is determined 
by the conditions S1=-3-1/ 201, w=O, and Yu arbitrary; 
H1(4)LKh) = 1. A six-dimensional separatrix enters the 
set 4>LKh from the physical region S, this separatrix 
corresponding to diagonalizable metrics (no moving 
matter) with the quasi-isotropic asymptotic behavior 
found by Lifshitz and Khalatnikov[71: 

g,j(t) ""t,j3('+k'g,,' (3. 1) 

(here, the synchronous time tends to zero, t- 0). 

2. The set N, which has dimension 2, is determined 
by the conditions 

(1 0 0) 
IIYi;II=OI 0 0 0 Q/, 

000 

Here and below, Q1 is an arbitrary orthogonal matrix; 

S, =-2 (3+k) (43+2k+3k') -", s,=- (5-k) (2 (43+2k+3k') ) -''', 

w=8(1+3k)(1-k) H(N)- 8(5-k) 
43+2k+3k' ,- 43+2k+3k' 

A five-dimensional separatrix enters the Singular 
points of N from the physical region S, this separatrix 
representing diagonalizable metrics with the asymptotic 
behavior 

(3.2) 

The singular points of 4>LKh and N are nondegenerate 
and unstable. 

3. The set T, which has dimension 5, 
by the conditions 

is determined 

(
?_.I, 0 

IIYi;ij=QI 02-'[' 
, 0 0 

0) (S 0 0) o Q/, II Sk; II = QI 0 S X QI" 
o 0 0 0 
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Here, the coordinates s and x satisfy the conditions 
s,,;O, 2s2+x2=1, w;"Oanarbitrarynumber, H1(T)=0. 

A seven-dimensional separatrix enters the set T from 
the physical region S; it represents metrics (with rota­
tion of the axes for xf. 0) with asymptotic behavior gen­
eralizing that found by Taub: 

(3.3) 

The singular points of T for sf. 0 are nondegenerate and 
unstable. The boundary of the set T for s = 0 is the set 
of degenerate singular points TO. 

4. The sets A and B, which have dimension 6, are 
determined by the conditions 

II Yi ; ~ = Q'(Y~ ~2 ~) Q,', lis.; II = Q, (~l s~ :~:) Q,', w=O. 
,0 0 0 ,0 0 3, 

On A, sl=(l/4)S2 and on B, S2=0; H1(A) =H1(B) =0. The 
singular points of A and B do not have separatrices 
reaching them from the physical region S, so that no 
asymptotic behaviors correspond to them. 

5. The set K has dimension 7 and is determined by 
the conditions 

(3.4) 

The set K lies in the intersection ro n r 1 n rw of the 
boundary components. These singular pOints are non­
degenerate (for stf.S~*s~) and unstable. The separa­
trices of the singular pOints of K lie on the boundary r 
and move (for time directed in the direction of contrac­
tion of space) from one singular point of K to another. 
The singular points of K do not correspond to any power 
asymptotic behaviors. These singular points together 
with their separatrices are an approximation (see the 
Appendix) of the most general mode of the metric for 
contracting space-the BLKh oscillatory mode. [1,2] 

Note that all these sets of singular pOints and power 
asymptotic behaviors (3. 1), (3.2), and (3.3) were pres­
ent in the diagonal type IX model (see[4]). 

We shall now show that in the presence of moving 
matter the power behaviors (3.1) and (3.2) are not 
realized. From the integrals L (2.5) and K(2. 6) one 
can form an integral M that is invariant under the 
transformations 

The integral M in the coordinates s" Yo, w has the 
form 

1 k _211_lq/(1+3h) 

X(Z'-~H)' (Z'f'+H)-2(Hk);«+Jk) 
1 l+k 1 1 1 

where 
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(3. 5) 

If the metric right up to the singularity has the be­
havior (3. 1) or (3.2), then the corresponding trajec­
tory of the system (2.12) enters the singular points of 
<PLKh or N. The integral M (3.6) is equal to zero at the 
singular points of <PLKh and N. Therefore, a trajectory 
entering these singular points corresponds to a metric 
without moving matter, i. e., the behaviors (3.1) and 
(3.2) are not realized when moving matter is present 
and space contracts right down to the singularity. 

Note that the parameter value k = 1/3 is distinguished 
by the fact that the integral M for k = 1/3 does not de­
pend on the energy density e: 

M(~) =~u,-'''lgl-'I'(U,'+U,'+u,'). 
3 9 . 

It is natural to say that the matter moves fast if M» 1 
and slowly if M $ 1. 

If the direction of time coincides with contraction of 
space, all the trajectories of the system (2.12) ap­
proach the boundary r because of the presence of the 
monotonic function F (2.8). At the same time, F--oo 
along each trajectory since F= _00 on the boundary. 
Having reached a small neighborhood of the boundary 
r defined by the condition I F I» 1, a trajectory of the 
system (2. 12) begins to move along the trajectories of 
this system that lie on r. A 11 the trajectories of the 
system (2.12) on rare separatrices of singular points 
and lead from one singular point to another (we do not 
give the separatrix diagram here since it is essentially 
the same as that given earlier inC 4] for the diagonal 
type IX model). After a finite number of transitions 
(there is never more than three) along the separatrices 
of the Singular points of <P LKh, N, T, A, and B, the tra­
jectory arrives in the neighborhood of the singular 
points of K and begins to move along their separatrix. 
During this motion of the trajectory, the metric is in 
the BLKh oscillatory mode (see the Appendix). Thus, 
all metrics of the type IX model with moving matter 
except for the metrics that have the Taub asymptotic 
behavior (3. 3) reach the BLKh oscillatory mode, which 
is therefore a typical state of the metric when space 
contracts. 

If the direction of time coincides with expansion of 
space, the BLKh oscillatory mode ends at a certain 
time. Let us consider the question of the typical states 
of the metric that follow the BLKh oscillatory mode 
(see[4,8]). The precise formulation of this problem is 
based on the following important property of the mono­
tonic function F=d(lg 11/6 )/dt: If the direction of time 
coincides with expansion of space, the function F along 
each solution decreases from + 00 to 0, and F = 0 at the 
time of maximal expansion. It is natural to say that the 
states of the metric for which F» 1 are the early stage 
of the expansion. Note that the function F is invariant 
under the scale transformations (3.5) and has a simple 
physical meaning: It is the rate of change of the mean 
radius of the universe defined as I g 11/6 ( Ig 11/6 has the 
dimensions of a length); for the Friedmann solution, 
F=a, where a is the radius of the three-dimensional 
sphere (the function F= a (lg 1/6 1)/at is monotonic along 
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any (for example, inhomogeneous) solution of the Ein­
stein equations in a synchronous frame). 

The determination of typical states of the metric 
during the early stage of expansion consists of the fol­
lowing. Suppose that for F = FI » 1 in the phase space 
of the coordinates gij and the momenta p Ii initial condi­
tions are given in some manner (for example, the dis­
tribution can be taken uniform on the surface F= FI). 
By virtue of the Einstein equations, these initial con­
ditions are displaced in the phase space and for some 
F=F2» 1 (F2< FI) can be concentrated in a small neigh­
borhood of certain special points of the phase space. At 
the same time, the metric will be approximated by cer­
tain special regimes, which we shall call typical states 
of the metric during the early stage of the expansion. 

In the model considered, the condition F = FI » 1 
means that the initial data on the manifold S are in a 
small neighborhood of the boundary r. Therefore, 
trajectories emanating from these initial data move 
along the separatrices of the singular points of the 
system (2.12) lying on the boundary r until they arrive 
in the neighborhood of singular pOints that have separa­
trices going into the physical region S. These singular 
points are the pOints of the sets <P LKh, N, and T. Thus, 
the original distribution of initial data is transformed 
into a distribution concentrated in the neighborhood of 
the sets <P LKh, N, and T of singular points. At the same 
time, the trajectories remain near the boundary r, and 
therefore F» 1. As a trajectory moves along the sep­
aratrices of the Singular points of <P LKh, N, and T that 
go into the physical region S, the metric can be approxi­
mated by the power laws (3.1), (3.2), and (3.3), and 
these are the typical states of the metric of the type IX 
model during the early stage of expansion (at the same 
time, the function F reduces to values F-1). 

Note that the time to required for the metric to reach 
one of these power regimes (to is longer than the dura­
tion of the BLKh oscillatory mode) may be arbitrarily 
short and it depends strongly on the solution itself [this 
is already obvious from the presence of the scale trans­
formations (3.5)]. For all solutions, to« tm, where tm 
is the time that elapses from the singularity (at t=O) 
to the time of maximal expansion. 

In the presence of moving matter, the typical states 
of the metric during the early stage of the expansion 
defined above by the condition F=d(lg 11/6)/dt» 1 de­
pend strongly on the value of the integral M. If M» 1 
for some solution (Le., the matter moves fast), the 
corresponding trajectory of the system (2. 12) can never 
be in a neighborhood of the sets <PLKh or N since M = 0 
on these sets. Therefore, for M» 1 the only typical 
state of the metric during the early stage of expansion 
is the power regime (3.3), which generalizes the Taub 
regime. But if M$ 1 (slowly moving matter), the pow­
er regimes (3.1), (3.2), and (3.3) are typical states of 
the metric during the early stage of expansion, as for 
the diagonal metric. 

I am very grateful to S. P. Novikov for helpful dis­
cussions of the results of this paper. 
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APPENDIX: COMBINATORIAL MODEL OF THE 
OSCILLATORY MODE 

The Appendix contains a complete integration of the 
separatrices of the singular points of K and derivation 
of a combinatorial model of the oscillatory mode by 
means of an approximation of a trajectory of the sys­
tem (2.12) by a sequence of separatrices of the singular 
points of K past which this trajectory moves (as space 
contracts). 

We give an invariant description of the set K. The 
point P of this set is determined by two matrices: 
P=(YIi> s1) (at the same time w=O, HI(P)=(Sp(s))2 
= 2Sp(S2) = 0, s = II s ~ II). In accordance with (3.4), the 
matrix Y/i has rank 1; let ey be the eigenvector of Yo 
corresponding to its unit eigenvalue. In accordance 
with (3.4), the vector ey is also an eigenvector of the 
matrix s~; let s be the eigenvalue of this matrix cor­
responding to it. (An equivalent formulation is this: 
the matrix Yo is a projector onto some principal direc­
tion of the matrix s~. ) 

Suppose Sl ~ S2 ~ S3 are the three eigenvalues of the 
matrix s:. It is convenient to split the set K into three 
subsets K10 K2 , K3 defined by the following condition: 
s =s, on K,. 

The eigenvalues of the system (2. 12) and their prin­
cipal (eigen) directions at the singular points of K, are 

A,=2(1-k) (S,+S2+S,), variables so', 

).,=8(s"+s",-s,) , variable w, (A. 1) 
A,=8(s,-s"), A,=8(s,-sm), variables Yij' 

Here, (s" sm, sn) = (Sh S2, S3)' The remaining seven 
eigenvalues AS, ••• , All are equal to zero and corre­
spond to directions that are tangent to the set K. By 
virtue of the conditions 

H, (K) = (s,+s,+s,) '-2 (s,'+s,'+s,') =0 and S,+S2+S,~0 

we find that sl .;; 0 and the signs of the eigenvalues A10 
A 2, A 3, A 4 are different, L e., the singular points of 
K, are nondegenerate and unstable. 

We now integrate the separatrices of the singular 
points of K. From every point P( Ylj, 8') belonging to 
KI there emanates a two-dimensional separatrix that 
moves along the boundary component r w (w = 0) at the 
level HI = 0 [see (A. 1 )]. This separatrix has the form 

(A. 2) 

where go is a symmetric matrix such that gost = 8go 
[then for all TI: Y(TI)St =sY(Td, see (2.13)] and YIJ(-oo) 
=YIJ' WedenoteY~J=YiJ(+oo). It is obvious that the 
matrix Y~J has rank 1 and ylst = syl. It is not difficult 
to verify that the equation ylst = sY I means that the ma­
trix Y I is a projector onto a principal direction of the 
matrix S, L e., the point pi = (y Ii> s~) belongs to either 
the set K 2 or the set K3 • It follows from (A.l) that only 
a one-dimensional separatrix enters a point of K2 along 
the manifold w = 0, HI = 0; therefore, almost the whole 
of the two-dimensional separatrix that emanates from 
the point P enters the point pi = (y ~J' s!) belonging to 
K 3, and a one -dimensional separatrix is separated from 
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it and enters the point (Y~J' s~) of K 2' The matrices 
Y~J and Y~J are projectors onto the principal directions 
of the matrix s, corresponding to the eigenvalues S3 and 
S2, respectively. 

From each point P = (Yil, s') belonging to K2 there 
emanates a one-dimensional spearatrix of the form 
(A. 2) which enters the point p1= (y ~JJ s') of K 3' 

From each point P = (YiiJ s~) belonging to K3 there 
emanates a one-dimensional separatrix having the form 

; () _ i ch t. sh t-sh t. _ 
y~(t)=y,;, 8. t =8, ~+ cht y,;, 

(A.3) 
wet) =-4(sh t-sh t.) [sh t+sh t.-2(8,+8,) ch t.]ch-' t. 

Here, the time tis related to 71 by dt=w(t)d71 and the 
constant to is determined by the condition tanh to = S3, 
where 0", Sl'" S2'" S3 are the eigenvalues of the matrix s,. The separatrix (A. 3) is defined for to~t~t1 <0. 
For t= to, we obtain the initial point P = (YiJ' s~); for 

2(8,+8,)-8, 
t=t , (1-(8,),)'1. 

we obtain the final pOint p1=(Yil, S~(t1))' w(t1)=0, 
H1(t)= O. It follows from (A. 3) that the final matrix 
s,(t1) is obtained as the first point of intersection of the 
shorter arc of the great circle that passes (on the 
sphere LtJ=1(S~)2=1) through the two matrices, st and 
Yo, and the surface H1(S~) = (Sp(s))2_2Sp(S2) = O. The 
final point p1 = (YiJ, St(t1)) belongs, as is readily veri­
fied, to the set K1 or the set K 2. 

The results of the integration of the separatrices are 
reflected in a separatrix diagram of the form 

(A.4) 

Here, the arrow and the symbol a{ denote a transition 
along a separatrix from the set Ki to the set KJ• Note 
that from each point of K1 two tranSitions are possible: 
a~ and a~, but, as is readily verified, a~ 0 a ~ = a l, i. e. , 
after these two transitions one and the same point on 
the set K3 is obtained. 

As we noted earlier, a general trajectory of the sys­
tem (2. 12) after a certain time begins to move along 
the separatrices of the Singular points of K, and can 
therefore be approximated in accordance with (A. 4) by 
an infinite sequence of these separatrices and Singular 
points. When the trajectory is in the neighborhood of 
the singular points of K" one of the eigenvalues of the 
metric giJ{t) is much greater than the other two (since 
the matrix 

has rank 1 on the set K). To this maximal eigenvalue 
there corresponds a prinCipal direction of the matrix 
giJ which is asymptotically close to the common eigen­
vector of the matrices YiJ and s~. ThUS, the infinite 
sequence of separatrices defined by the diagram (A. 4) 
is an approximation of the oscillatory mode of the 
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mE!tric gIJ(t). This approximation is mapped as fol­
lows into the BLKh[1] piecewise approximation of the 
oseillatory mode by Kasner solutions. 

Let e~, e~, e: be the eigenvectors of the matrix s~ 
(as we noted earlier, they coincide with those of the 
ma.trix }{~, which are called "Kasner axes" in[4]) and 
s1> S2, S3 be the corresponding eigenvalues. In the case 
of motion of the trajectory along the separatrices of 
a~, a~, a~ the metric gIJ(t) can be approximated by 
the following Kasner solution: 

where the Kasner exponents P1 are determined by 

2s, 
p,=i---.-. 

8,+82,83 

To motion of the trajectory along the separatrices of a~ 
and a~ in the BLKh model there corresponds a "change 
of the Kasner exponents and rotation of the Kasner 
axes." It is not difficult to show that the Kasner expo­
nents Pi and eigenvectors ei obtained after the transi­
tions a ~ and a ~ are the same as after the "change of 
Kasner exponents and rotation of the Kasner axes" in 
the BLKh model. Thus, the separatrix approximation 
of the metric giJ{t) determined by the diagram (A.4) is 
isomorphic to the BLKh approximation provided the 
basic transition along the two-dimensional separatrix 
of a ~ is chosen from the two possible transitions a ~ and 
a~. 

Let us describe briefly the combinatorial model ob­
tained here for the oscillatory mode. In it, the trajec­
tory of the system (2. 12) is periodically in the neigh­
borhood of the Singular points of K, and these points 
are obtained from one another by successive application 
of some mapping T. 

A point of the set K is a pair of matrices (Yib s~) 
satisfying the conditions 

s.'';;O, H,(s)=(Sps)'-2Sp (8')=0, 

, (A. 5) 
1: (S,i) '=1, 
1)=1 

where the matrix Yo has rank 1 and is the projector 
onto a certain (real) prinCipal direction of the matrix 
st. Let Sy be the eigenvalue of the matrix ~ corre­
sponding to this direction [by virtue of (A. 5), sy~ol. 

On the set K there acts a mapping T defined asfol­
lows. If Sy is not the minimal eigenvalue of the matrix 
s~, then the mapping T may be two-valued a~d carry the 
point (YIJ, st) to the point (Yil' sL), where YiJ is the 
projector onto the other principal direction of the ma­
trix s, corresponding to the eigenvalue smaller than 
Sy. If Sy is the smallest eigenvalue of the matrix s" 
the mapping T is single valued and carries the point 
(Yo, ~) to the point (YIJ, st), where the matrix s~ is 
the first point of intersection of the shorter arc of the 
great circle (on the sphere L tJ=l (s ,)2 = 1) passing 
through the points s~ and YiJ and the surface H1(s)=0. 

The mapping of this combinatorial model into the 
BLKh combinatorial model is determined by the fact 
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that the principal directions of the matrix s{ coincide 
with the "Kasner axes," and the Kasner exponents Pi 
are determined by the equations 

where s1I S2, S3 are the eigenvalues of the matrix s~. 
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Properties of second vacuum pole pi in the theory of 
the pomeron as a Goldstone particle 
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It is proposed that the pomeron is a Goldstone particle that appears upon spontaneous symmetry breaking 
of the system of vacuum poles and P and P. The properties of the pomeron are barely affected by the 
interaction and are determined by its bare (unrenormalized) characteristics. The properties of P depend 
strongly on the interaction with the pomerons. The contribution of P at low energies s contains terms 
that decrease in power·law fashion (and can, generally speaking, also oscillate as functions of In s, 
depending on the choice of the model). At high energies this contribution goes over into an expression 
analogous to the usual negative contribution of non-enhanced reggeon branch cuts, but those containing a 
small cutoff radius and therefore strongly dependent on In s. This can result in a rather rapid growth of 
the total cross section even in the experimental energy region. At a momentum transfer 10#0, a mixed state 
is produced in the system of two pomerons and its contribution to the angular distribution leads to the 
appearance of a second maximum at to#O. The existence of such a state can therefore explain the known 
anomalies in the angular distributions of pp scattering at high energies. 

PACS numbers: 11.60. +c 

INTRODUCTION 

In the theory of complex angular momenta, the w = j 
= 1 Pomeranchuk pole P is the analog of a nonrelativis­
tic massless excitation. An illustrative confirmation 
of this property is the fact that the positions w = 0 of 
all the singularities corresponding to exchange of an 
arbitrary number of pomerons coincide (at reggeon 
momenta k = 0). [I, 2] 

For most nonrelativistic physical systems, the ap­
pearance of a massless Goldstone excitation is evidence 
of spontaneous breaking of the continuous symmetry ex­
isting in the system. [3] This phenomenon is well known 
in solid state physics, [4] namely, the onset of zero-gap ex­
citations in a phase transition. It is therefore natural to 
assume that the existence of a pomeron is also due to 
an analogous cause, namely spontaneous breaking, at 
momentum transfers t< 0, of the symmetry of a certain 
continuous group characterizing hadron interactions in 
a vacuum channel of positive signature (t = - k 2). 
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A phenomenological identification of the type of group 
that can be responsible for the appearance of a pomeron 
as a Goldstone particle is afforded by the character of 
the excitations with the aid of which it is customary to 
describe the vacuum channel. At t < 0 this channel con­
tains a second vacuum trajectory pI besides the pomer~ 
on. It was therefore proposed in [5], henceforth re­
ferred to as I, that the Pomeranchuk pole is produced 
as a Goldstone boson following spontaneous breaking of 
the symmetry of a system of two interacting reggeons 
P and p'. This hypothesis, as shown in I, leads to 
hindrances and constraints on the constants of the reg­
geon interactions, and makes it possible to find their 
possible forms when the interactions are expanded in 
powers of the reggeon momenta k j • 

The traditional representations (see[6]) call for the 
contribution of pI to the cross sections of the processes 
to be small and to decrease in power-law fashion with 
increasing energy s: 
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