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We evaluate the surface impedance of thin metallic plates in a constant external magnetic field H in the 
range of high frequencies w of the electromagnetic wave, where w to is much larger than the ratio r /8 of 
the radius of curvature of the electron trajectory to the skin-layer depth, (to is the mean flight time of the 
charge carrier). We show that the size-effect cyclotron resonance, experimentally observed by Volodin, 
Khatkin, and Edel'man (1973) will diminish when w to increases while the logarithmic singularity at the 
resonance frequencies will occur not for the impedance, but for its derivative with respect to the magnetic 
field. The non-local character of the coupling between the current density Fourier components and those of 
the high-frequency electrical field plays under those conditions an essential role; if it is not taken into 
account, it is no longer possible to obtain the correct order of magnitude of the resonance curve width and 
of the amplitude of the effect. We analyze in detail the effect of the nature of the reflection on the shape of 
the resonance curve, we elucidate the role of the retardation effect on the size-effect cyclotron resonance, 
and we study the effect of the inclination of the magnetic field on this effect. 

PACS numbers: 73.25. +i 

A study of the resonance absorption of the energy of 
electromagnetic waves by thin conductors with a thick
ness d appreciably smaller than the electron mean free 
path Z, but considerably larger than the skin depth 6, 
reveals new possibilities for studying the electron en
ergy spectrum. [l] In a magnetic field H parallel to the 
surface of the plate, at 2rmax >d, there appear new cy
clotron resonance (CR) frequencies (1,3] determined by 
the electrons with orbital diameters equal to the thick
ness of the sample, instead of resonance frequencies 
which are cut off. (2] The resonance values of the mag
netic field and the position of the sections of the Fermi 
surface on which resonance occurs are determined by 
the equations 

(1) 

where 2r(P .. )=cD(P .. )/eH; D(Pz) is the diameter of the 
electron orbit in momentum space along the Px axis; the 
y-axis is the normal to the surface of the plate; P .. is 
the component of the electron momentum along the di
rection of the magnetic field; O(P .. ) = eH/m* (P .. )c is the 
frequency of revolution of the electron in the magnetic 
field; m* (P.) the effective mass of the charge carrier; 
e the electron charge; c the velocity of light; and n the 
number of the resonance. 

As the resonance frequencies depend on an external 
parameter-the thickness of the conductor-we can, 
by varying it, obtain resonance on any section of the 
Fermi surface and determine the connection between 
the effective mass m* (P .. ) and the orbital diameter for 
all P... When the magnetic field is inclined to the sur
face of the plate, the frequencies of the size-effect CR 
are due to the Doppler effect shifted by an amount 
which can determine also the drift velocity of the elec
trons on that section. (4] 

At the present time such accurate experiments are 
fully realizable and Volodin, Khalkin, and Edel'man 
have observed this size-effect CR in bismuth films. m 
There is thus undoubtedly interest in a further theoreti-
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cal study of this effect. Since the singularity in the 
impedance caused by the size-effect CR shows up more 
weakly than in the case of resonance in bulk samples, 
one uses for experimental observations very pure sam
ples. At the same time, to obtain a maximum strength 
of the effect it is necessary, as we shall show in the 
present paper, to have not only large mean free paths, 
but also a high degree of the anomalous skin effect, 
viz, 

(2) 

When r/6« wto the spread in the electron diameters 
which participate in the resonance ll.D", r /wto turns out 
to be much less than the skin depth 6 and the selection 
of electrons by diameter is considerably more re
stricted. Under those circumstances the contribution 
from the resonance electrons to the current is small 
compared to the contribution from the other electrons 
on the Fermi surface, and the logarithmic Singularity 
at frequencies satisfying condition (1) does not occur 
for the impedance, but for its derivative with resp~ct 
to the magnetic field. The main resonance character
istics are then determined not only by the electron mean 
free path, as is the case normally for CR in bulk con
ductors, but also by the distribution of the high-fre
quency field in a thin sample (when the mean free path 
is infinite the width of the resonance curve is deter
mined by the parameter 6/r). 

Although the position of the resonance frequencies is 
not connected with the nature of the reflection of the 
carriers by the surface of the sample, nevertheless, 
the form of the resonance curve is sensitive to this 
electron scattering mechanism and its role in the size
effect CR, and we shall also study the role of the re
tardation effect in what follows. 

1. STATEMENT OF THE PROBLEM 

To find the surface impedance Z I'V of the sample, 
which connects the electrical field at the metal surface 
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with the total current, 

• 
E.(O)=Z"J J.(y)dy (3) 

o 

it is necessary to solve the Maxwell equations which we 
write down for the Fourier components of the high-fre
quency electrical current j(k) and field (' (k): 

k2~.(k) +2E.' (0) =4niwc-';.(k), 
d 

~.(k)=2 fEy(y)coskydy. 
(4) 

o 

The prime indicates here diffentiation with respect to 
Y; ~, /I;: (x, z); we assume the electromagnetic field to 
be monochromatic and to be excited in the plate at the 
surface Y = 0 so that the amplitudes of the high-frequen
cy electrical field E(Y) and current J(Y) decrease with 
increasing y. 

We restrict our consideration of the problem to only 
the main approximation in the anomalous skin-effect 
parameter old, and we have therefore dropped in Eqs. 
(4) terms proportional to E ,.(d) and E~(d). In the same 
approximation we can put Ey(Y) = 0 and we can forget 
about the equation for the electrical neutrality which is 
used to determine that component of the field. When w 
=nn there appear electromagnetic field spikes in the 
metal at depths which are multiples of the orbital diam
eter of the resonance electrons and the quantity E ,,(d) 
may turn out to be large. [6) The field amplitude in a 
spike decreases slowly with increasing number of the 
resonance when the resonance electrons make the main 
contribution to the current and the spread in the diam
eters of their orbits is less than the skin depth, i. e., 
when wof» rio. In a thin sample (2r max> d) when wfo 
» rio the electrons responsible for the CR make, as 
we shall show below, a small contribution to the elec
trical current and E ,,(d) is therefore negligibly small 
compared to the field amplitude in the skin layer. This 
justifies the use of Fourier's method, continuing the 
function E ,,(y) to be an even function and putting E ,,(y) 
=0 for Iyl >d. 

We can find the connection between j ,,(k) and (' ,,(k) by 
solving the kinetic Boltzmann equation with the boundary 
conditions for the electron distribution function, taking 
into account the nature of the reflection of the carriers 
by the sample boundaries. Such calculations are not 
difficult to perform for the case of a magnetic field par
allel to the surface of the sample and, if we perform 
then, we obtain the following expression for the elec
trical current j(k): 

-
;.(k)= S Q .. (k,k')~,(k')dk', (5) 

o 

Q •• (k, k') =Q • .'(k, k') +Q~~II(k, k') +K •• (k, k'). (6) 

The last term in Eq. (6) takes into account the con
tribution to the current from electrons with trajectories 
which do not touch the sample boundary, the so-called 
volume electrons, and has the form 
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4e'H .. 
K •• (k, k') = -- I dp,8(d-2r(p,») {1- exp[iw'T(p,) ]}-' 

lIch' 
-Po 

T d-t+lI(t) t xI dtu.(t) I dycosky J dt'v.(t')exp[iw·(t-t')}cosk'(y+y(t')-y(t», 
\J r+y(t) f_T 

(7) 

where v = a elap is the electron velocity; Po = P':u on the 
Fermi surface; w* =w+iltfi, h is PlanCk's constant; 
6(x) = t {1 + sign x} is the Heaviside function; T(P.) = 21T I 
n (P .. ); t is the time the charge moves in the magnetic 
field 

, 
y(t)= J v.(t)dt. 

The kernels Q~ and Q,:!l describe the contribution 
to the current from electrons which collide with the 
sample boundaries, where 

4 3H Po T d t 

Q,,,o (k, k') = -T, J dp. J dt J dyJ dt' L',.(t) v,(t') 
:rc _}', 0 0) i. 

(8) 
X exp [iw' (t' -t) ] cos ky cos k' (y+y (t') -y (t» 

is independent of the nature of the reflection of the elec
trons and contributes only to the smooth dependence of 
the high-frequency current on the magnitude of the ex
ternal magnetic field. Here A is the moment when the 
electron is reflected by the sample boundaries Ys = 0, 
d, i. e., the root of the equation 

y(t) -y(A) =y-y,. (9) 

which approaches, but is less than, t. 

The remaining part of the kernel Q "V can be written 
in the form 

(10) 

where Q~~ describes the contribution to the current 
from the electrons which collide with the plate surface 
y = 0, and has the form 

1'0 T/2 T 

(I,::' (k,I/)= J dp, J di.{ O(d-2r(p,»+O(2r(p,)-d)O(i,-z+T)} 
_1',_ 0) 

q,uy(i.) ',' ,.) I,' (. ..) x ct. (I., W ,1I ct. I .. -uJ • II , 
q I l'" l' [ i uJ • (T - 2i.) ]- 1 

while the kernel Q~J is connected with the electrons 
which collide only with the surface y = d: 

TJ'2. 

Q~:' (k,k')= J dp, J di,{8(d-2r(p,))+8(Zr(p.)-d)8(T-i,)} 

q,c, (i.) '" '(" "I) <1) ,. (I '. d) x - 'P~l I., W ~ [, \' •. -(I). . 

q, l'xp[iu) '2i.]-1 

(11) 

(12) 

One notes easily that when the specularity parameters 
q 1 and q2 of the plate surfaces y = 0 and y = d are close 
to unity the kernels Q~~ and Q~J have a resonance char
acter. 

The quantity Q~~2) takes into account the contribution 
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to the high-frequency electrical current from electrons 
colliding with both surfaces of the plate. Like Q(l) and ( ) ,..v 
Q;v this part of the kernel vanishes when the reflection 
of the electrons is diffuse, 1. e., when ql = q2 = 0, while 
for purely specular reflection it has the form 

i.-ri. 

-t'l}]dt' .f C(t.i.:O)t\(I)e-,w·'dt (13) 
,. 

'.+Ti. 

- 5 c,' (t'. i.: 0) [",,(t' lex!'{i",' (t' -2i.)} 

'-+7), 

-'-1' .• (-t') e-'o'" 1 dt' .f C' (t. i.: 0) t\ (-I) e'·" dt }. , 

We choose the origin of t such that y(O)=Ymln and Y(T/2) 
corresponds to the maximum value of the coordinate Y 
on the electron trajectory, The time T~ it takes an 
electron to move from one surface of the plate to the 
other and the quantity T are determined by the equations 

y (i.-"- T,) -y (i.) =d. y (T) -y (0) =d. (14) 

The functions cp~ and <P~ have the form 

( 4e'H )" T" 

'f.'(i..,w·;Ys)= --, 5 dtC'(t:i.:y,)[t·,,(t)e'W·' 
:r.ch , 

+v,(-t)exp{iw' (T -t)}], 

C'(t. i.: y,) =cos k(y(t)-y(i.)+y,). 

The resonance singularity of Q(1';;) is nevertheless 
considerably weaker than that of K -tv due to the fact that 
the resonance denominator exp(2iw T~) - 1 is additional
ly integrated over A. As the period of the motion of the 
electrons near one of the surfaces of the plate also de
pends on A, the singularities of the kernels Q~1,: and Q~2,: 
turn out to be in a number of cases, in particular when 
wto» kr, less important when compared with the con
tribution to the resonance part of the current from the 
"volume" electrons. 

We assume, in order to avoid unnecessary complica
tions of the formulae, that the direction of the magnetic 
field is lying in the symmetry plane of the crystal. The 
generalization to an arbitrary case does not cause any 
difficulties in principle; the asymptotic behavior of 
Q,..v(k, k') at large k and k' remains unaltered for any 
orientation of the magnetic field in the plane of the 
plate. This makes it possible to generalize Hartmann 
and Luttinger's method for solving the integral Eq. (4) 
in which the current j ,..(k) is written using (5), (6) to the 
case of an arbitrary disperSion law for the carriers and 
an arbitrary form of the reflection of them by the bound
aries of a thin conductor. However, we restrict the de
tailed consideration to merely some of the most impor
tant particular cases. 
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2, INFLUENCE OF THE SURFACE PROPERTIES 

1. We consider to begin with the simples case when 
the reflection of the conduction electrons from the sam
ple boundaries is diffuse. In that case, only the elec
trons which do not collide with the surface of the con
ductor return many times to the skin layer, and only 
they can absorb in a resonant way the energy of an elec
tromagnetic wave. Under anomalous skin-effect condi
tions, when the penetration depth 0 of the electromag
netic field into the metal is a very small length para.m
eter, the main contribution to the impedance comes 
from large k- 0-1, and to find the shape of the CR line 
it is sufficient to have the asymptotic expression for the 
high-frequency conductivity tensor of the metal at kr 
»1. Integrating in Eq. (7), which describes the con
tribution to the current from the volume electrons, over 
Y and after that integrating over t and f using the sta
tionary-phase method, we gel the following expression 
for the resonance part of the tensor Q,..v(k, k'); 

e' s·' Q,,~es(k. k') "" h' dp,a,,, (p,)8 (d-2r(pJ) 
_po 

(h-exp[iOJ'T(pJ]) (1+exp[ -iOJ'T(p,)]) 
X ---- --=--'---'-...:..,-----,=--:....:c...-----''-'-'-'-

l-exp[iw'T (p,)] 
(16) 

1- cos [ (k'+k) (d-2r(p,» 1 } (kk ' {Sin[ (k'-k) (d-2r(p,» 1 
x .. )- k'-k 

k'Tk ' 

( ., 8v,(p" <r) ,-I 
a".(p,)=~·, p"O)v,(p"O)m a ' 

t:p ._0 

When d = 2r(p.) the integrand in this expression van
ishes and this can weaken the Singularity of the conduc
tivity at w = nn (P1)' This is connected with the fact that 
in a thin sample the position of the center of the orbit 
of volume electron with 2r(p.) =d is fixed. At the sallie 
time in bulk conductors electrons with the same orbital 
diameter contribute the same to the high-frequency cur
rent if the orbital center changes in a range ~Yo ~ O. 

It is necessary to take it into account that a contribu
tion to CR comes from the whole region of electrons of 
width oP. "" Po(wtot1 near the section P. =P1 for which the 
spread in frequencies on (P.) is less than the collision 
frequency. If for the majority of these electrons the 
difference between their orbital diameter and the thick
ness of the plate is not less than the skin depth, 1. e., 
if inequality (2) is satisfied, the above-mentioned fact 
is of no importance whatever. The role of the sample 
boundary Y = d reduces in that case to a selection of the 
resonance frequency n (PI), and the number of electrons 
which take part in the resonance turns out to be the 
same as in a bulk sample. We can under those condi
tions with sufficient accuracy replace in Eq. (16) the 
first term in the braces by rro(k' - k), and the second 
term by its average value which is equal to unity: 

Q,::S (k, k') ""n;.,' fdP, a" (p,J 0 (d-2r(p,») 
-p, 

X (I + exp[iOJ'T(p,)]) (1+ exp[ -iOJ'T(p,)]) (kk')-'{ 0 (k' -k) _ ~_1_}. 
1- exp [iOJ'T(p,) I n k'+k 

(17) 
In this limiting case the way the resonance kernel 

q:v' depends on k and k' is the same as in bulk sam
ples. [71 Thanks to the fact that the (k, k')- and the d-

o. V. I<irichenko et al. 177 



dependence of the kernel Qr:..,s are completely separated 
we can solve the corresponding integral equation which 
is obtained by substituting Eq. (17) into Eq. (4), using 
the method proposed by Hartmann and Luttinger.[S] As 
a result we get the following expression for the imped
ance: 

_ 2'1,,,', _'" 3 (W ) ", _':, 
Z,l - --=..-- e h - LUll' 

~;; e'c 

• L =~ SP'd ()8(d-2 ( )) (1+exp[iw'T(p,) ])(1+exp[ -iw'T(p,)] 1 
.' p, a" p, r p, . 

4 _p, l-exp[iw'T(p,)] 

(18) 

Near resonance, when the magnetic field is close to one 
of the values determined by Eqs. (1), the integral LIJ." 
can be evaluated by the saddle-point method: 

i 
L.,""- 211nex ti.,.(p,)Inx, 

ti .. (p,) =a .. (p,) +a .. ( -PI). 

x= «(;(/,3-1) ..'.+i!wto: 

ex=~~m'l ' 
mop: )).=1', (19) 

..'.=(H-Hres)IHres 

The impedance determined by Eqs. (18), differs there
fore only by unimportant numerical factors of order 
unity from the one obtained earlier by us (see Eqs. (21) 
and (22) in [3]) in the approximation of a local coupling 
between the Fourier components of the current j lJ.(k) and 
the field IIJ.(k). 

In very pure samples, when the inequality 

(20) 

may be satisfied, the resonance curve is described by 
completely different formulae. In that case the reso
nance electrons form a very narrow layer, closely 
clamped to the surface of the plate. The spread in the 
diameters of these electrons is small compared to the 
thickness of the skin-layer and this leads to a weaken
ing of the singularity of the electrical conductivity ten
sor caused by the size-effect CR. 

For small values of the resonance detuning, ~«o Ir, 
the characteristic denominator 

1- exp[iw·T(p,)] 

in Eq. (16) is appreciably "sharper" than the functions 
inside the braces. Integrating in this equation we get 
the follOWing expreSSion for Q~e:: 

Q'OS (k k') "" 4ie' ii •• (p,) ~ _r_ I 
.', nnh' ex' (kk' )". x n x. (21) 

It is clear from this expression that the resonance con
ductivity is in this case only a small fraction of the total 
conductivity of the metal: 

I Q;:- I rl6 
- "" -In wt.<1. Qmon wt . ' . 

In the main approximation in the small parameter rl 
owt, the impedance of the conductor also changes cor-
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respondingly smoothly when the magnetic field varies 
and the resonance behavior appears in the next approxi
mation in that parameter. 

To obtain the impedance in this case we must analyze 
the first term in Eq. (6) which together with the non
resonance part of the kernel K ",,(k, k') determines the 
monotonic behavior of the electrical conductivity ten
sor: 

Q~on(k. k') =A., (dlr) (kk') -'1'6 (k' -k) 

( d) .. 1 ( d ) In(k'lk) 
+B., -;: (kk')-' k+k' + c., 7 k"-k' ; 

( d) :te' p, 

-4., - = - S dp, G", (p,) {8 (d-2r(p,)) 
r h' 

-p, 

x(1-exp[ -iw'T(p,)]) + 8(2r(p,) -d)}, 

I ? 2 Po 

C", (~) = - -=-- S dp, a.,(p,) (8(d-2r(p,)) (1 +exp[iw'T(p,)]) +2} 
r :r.h 3 

-Po 

+ exp[ -iw'T(p,)]) - 8(2r(p,) -d)}, 

d 2e' p, 

C., (-) = --.' S dp,a.,(p,) {8(d-2r(p,)) (1+exp[iw'T(p,) ])+2}, 
r :th" 

(22) 

As one should expect, in the main approximation in the 
anomalous skin-effect parameter old the behavior of 
Q,:n(k, k') is similar to the k, k' -dependence of the 
electrical conductivity tensor in bulk conductors. The 
only difference lies in the fact that in a thin conductor 
the coefficients A IJ."' B IJ.V' and C IJ.V depend smoothly on 
the magnetic field. 

It is impossible to solve the Maxwell equations with 
Q~ev'(k, k') determined by Eqs. (21), (22) exactly, with
out making concrete assumptions about the form of the 
carrier energy spectrum. The resonance term in the 
impedance is, however, apart from a factor which 
varies very slowly with changes in the magnitude of H, 
not connected with the actual form of the conduction 
electron Fermi surface and has the form 

(23) 

where Ie 1J."(dlr) I - 1; Z 0 is the impedance of the plate 
when there is no magnetic field. 

When the detuning ~ increases the "sharpness" of 
the resonance denominator in Eq. (16) decreases and 
when ~ ~ olr the resonance conductivity and corre
spondingly the impedance again are described by Eqs. 
(18), (19). The characteristic magnitude of the detun
ing ~o or, in other words, the width of the resonance 
curve is thus in the case (20) considered here of the 
order of magnitude of ~o = 0 I r. 1> 

2. We now show how the results obtained change 
when the reflection of the electrons by the sample bound
aries is close to specular reflection. When the nature 
of the scattering of the carriers by the surface of the 
conductor is almost specular a considerable contribu
tion to the current comes from electrons which collide 
many times at small angles with the sample boundaries . 
The orbits of these "glancing" electrons which break 
away by almost specular reflections from the surface 
move completely in the skin-layer (see figure) and this 
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Different electron trajectories for the case when the carriers 
are specularly reflected by the conductor surface: 1) trajec
jectory of a "glancing" electron; 2) trajectory of a volume 
electron; 3) trajectory of a resonance electron which collides 
with the sample boundaries (<Po - 0). 

leads to a strong increase in the monotonic electrical 
conductivity of the metal. It is clear that the glanCing 
electrons are unifluenced by the presence of the plate 
boundary y = d as long as d» 0 and the monotonic elec
trical conductivity of the plate is thus for 1 - q« 1 the 
same as Q:n in bulk samples (2r max < d), which was ob
tained by Meterovich(9) and by Zherebchevskit and 
Kaner. (10) One can verify this by separating in Eq. (11) 
the contribution to the integral from the stationary 
phase points t= f = A = T /2 which also exactly corre
sponds to the contribution to the current from the above
mentioned electrons. Integrating, we get for the mono
tonic part of the electrical conductivity tensor the fol
lowing expression: 

moo , 4e' l+q In(k'/k) 
Q", (Ie, Ie ) =- -,-.. -1 -J", --,-;::--,' , 

;r 1," -q ri --c 
( 6 ) '" 

Il -;:- ~l-q~l, (24) 

moo 0;:;-e' ( eH ) ,;, .. 
Q", (k,k')=-,-, - d",(kk')-[(k-k')-'-(kH')-J, 

w' ~d C 

(25) 
P. 

J", = S a,,, (p,)dp" 

where q "'q1' while it will become clear from what fol
lows that qz, the specularity parameter at the plate sur
face y =d, completely drops out of the final formulae. 

The changes in the resonance part of the electrical 
conductivity turn out to be unimportant. At first sight 
this is not immediately obvious as electrons which col
lide with the boundaries return many times to the skin 
layer when 1 - q« 1 and the nature of their motion re
minds us of the motion of volume electrons when the 
angle at which they leave the surface is close to zero. 
However, as we noted earlier, the resonance denomi
natorsinEqs. (11) to (13) contain for colliding electrons 
a dependence not only on p~, but also on the emission 
angle 'Po = OA because of the A-dependence of the frequen
cy of the electron revolution. When wto» (r/o)l/Z these 
denominators are appreciably "sharper" than cosines. 
In that case the resonance denominator is once more 
integrated over A and this leads to the appearance in the 
conductivity of small terms of the kind (wto)"21nwto or 
even (wto) if the electron collides with both surfaces. 

If the skin-layer is extremely narrow, viz., 

(26) 

the resonance denominator can, on the other hand, be 
taken out of the integral with respect to A. In that case 
the change in the frequency of motion of the electron 
O(A, P.) is, when its orbital center is shifted by the 
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maximum allowed amount ± 0, much smaller than the 
collision frequency and hence 0 (A, P.) depends effective
ly only on P.. One sees easily that for electrons with 
an orbital diameter larger than but close to the thick
ness of the conductor the deviation of the period T~(P.) 
from its value for P. = P1 turns out to be proportional 
to IP. - P111/2. The resonance electrical conductivity 
of these electrons turns thus out to be less than that of 
the volume electrons by a factor wto. Only the contri
bution from electrons with orbital diameters less than 
d which collide with the surface y = 0 turns out to be in 
the case (26) of the same order of magnitude as the con
tribution from the volume electrons to the electrical 
conductivity. Evaluating the corresponding integral in 
Eq. (11) we get for the conductivity of these electrons 
the following expression: 

4 2 PO 

Q:~s (k, k') = ~ Sdp, a",(p,)e (d-2r(p,)) (l-exp[iw'T(p,)])-' 
h' 

-Po 

{ [ 1 1 ] 2 In (k' / k) } 
X (kk')-'" 6(k'-k)+--- ----- . 

:t k'+k :t' k"-k' 
(27) 

The total resonance conductivity is given by the sum 
of Eqs. (27) and (17). Bearing in mind that close to 
resonance we can replace the function exp(± iw* T) in the 
numerator of Eq. (17) by unity, we have 

res 8J[e~ Po • 
Q", (k, k') = T S dp, a",(p,)e(d-2r(p,» (l-exp[iw T(p,) ])-' 

-Po 

{ 1 In(k'/k)} 
X (kk')-"'6(k'-k)--;;--,-- . 

:t' k '-k' 
(28) 

This expression is valid when the following inequalities 
are simultaneously satisfied: 

(29) 

The resonance current thus turns out to be either com
pletely independent of the nature of the reflection of the 
electrons by the surface of the conductor, or in the 
case (29) this dependence is very weak so that taking 
into account the contribution from the term Q~ev' to the 
electrical conductivity leads only to giving a more exact 
value of the numerical factor of order unity in the equa
tions for the impedance. Therefore, even for purely 
specular scattering electrons with an orbital diameter 
equal to the plate thickness are "isolated" to the same 
degree as when q = 0, and the nature of the Singularity 
in the electrical conductivity at w = nO (P1) remains un
changed. The sensitivity of the shape of the resonance 
curve to the nature of the scattering of the electrons by 
the sample boundary y = 0 is completely caused by the 
large magnitude of the monotonic component of the high
frequency electrical current when 1- q« 1. At the 
same time the singularity in the electrical conductivity 
caused by the size-effect CR is logarithmic or even 
weaker. When the condition 1 - q« n/lnwto, which is 
practically equivalent to 1 - q «1, is satisfied the mono
tonic component of the electrical current thus exceeds 
the resonance component and for any ratio of the param
eters o/r and wto the oscillations in the impedance which 
are connected with the size-effect CR are a small part 

O. V. Kirichenko et al. 179 



of its average value. The resonance term in the imped
ance on the other hand, is determined just by the ratios 
of· the above-mentioned parameters and by how close 
the specularity parameter is to unity. 

We analyze first of all case (2) when the electron 
mean free path is not too large. For small, but never
theless finite values of the quantity 1 - q 

n(fJ/r) '1'<1-q<1 

the resonance conductivity is given by Eqs. (17) or (28) 
and the monotonic part by Eq. (24) while the equation 
for the Fourier components of the current and the field 
reduces to Hartmann and Luttinger's equation. In the 
main approximation in the small parameter 1 - q the im
pedance is independent of the magnitude of the magnetic 
field and in the next apprOXimation the resonance con
tribution has the form 

res 4l'3 n'I'r'nl'oo '( L. ) 'J, L\Z = (1-q) I, _ 
J.I c2k" Jv.' (30) 

k = ( 16e'ool. ) 'f, . 
• (1-q)c'h' ' 

the index J..L corresponds here to the axis in which the 
tensor J,.v is diagonal. 

If the scattering of the electrons by the surface is yet 
closer to being specular: 1 - q« n( 0/ r)11 2 it is neces
sary for finding t:..Z'":v· to solve the Maxwell Eqs. (4) with 
the current density (17), (25) or (28), (25). Using the 
relations 

to introduce the dimensionless variables ~, F ,.(~), we 
can write these equations in the form 

~ ~ 

s'F" (;) -i S Qo (s, s')F. (s') d;' -iE" S QI (;, s') F" (;') d;' = 1, (31) 
o 0 

where 

(32) 

(33) 

In(1Ix) 4 ii.(PI)Ypo R=~ 
e.=p. (7<.,R) ':, ' P. = 1'01 m' (PI) ad" ' eH ' 

(34) 

Il ==7< -I = (4n'" e' ( eH ) 'I, d ) -'J, 
" (i/ooto-i)c'h' c" 

(35) 

(0,. is the skin-layer thickness for specular reflection 
of the electrons from the surface of the sample and the 
given polarization of the electromagnetic wave, while 
the indexJ..L corresponds to the axes in which the tensor 
d,.v is diagonal). 

We shall look for a solution of Eq. (31) in the form of 
of a series in the small parameter e,.: 
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Using the symmetry of the kernel Ql(~' e) under the 
substitution ~ - e we easily get the following formula 
for the resonance contribution to the impedance: 

~ ~ 

res 800 
L\Z, =C -;;:- f •• 

C If, 

C = S ds S d£' F'" (£) F'O) (6')QI (s, s'). 
• • 

(36) 

(37) 

One can find the solution F(O)(~) of Eq. (31) with €,. equal 
to zero in Zherebchevskil and Kaner's paper. [10] 

We can use the same way of evaluating t:..z~e. also in 
the limiting case of very long electron mean free paths 
(inequality (20)). We can easily transform the Maxwell 
equation with the current density given by Eqs. (21), 
(24) or (21), (25) to the form (31). For specular reflec
tion: 1_q«n(0/r)1/2 the kernel Qo(~, n is given by 
Eq. (32) and when n(0/r)1/2« 1-q« 1 we have for the 
quantity Qo(~, e) 

10(£'/<') 
Qo(£. ;·)=2~. 

I"' -'-,.-
(38) 

The formulae for the small parameter f ,. have in the ap
propriate limiting cases the form 

I ~-1.p"(7<"r)'I'xlox, 1-q<n (~)"", 
~ a 1 

f = 
" iii.(PI)~(I)k I ( Il )'" 1 I ~ -q ·.rx 0 x, n -;: < -q< . 

(39) 

The resonance contribution to the impedance is de
scribed by Eq. (36) in which we can write, taking into 
account the Simple form of the kernel Ql(~' e)=(~e)-1/2, 
the constant C in the form 

(40) 

As in the case of diffuse reflection, Eqs. (36), (39), 
(40) are valid when t:..« o/r. In the wings of the reso
nance curve t:.. ~ o/r the impedance is again given by 
Eqs. (36), (34), (37). The nature of the scattering of 
the charge carriers by the surface of the conductor 
therefore shows up in the detailed structure of the reso
nance curve without, however, changing the position of 
the resonance frequencies or the order of magnitude of 
the width of the Z ,,(H) curve. Regardless of the degree 
of specularity, the width of the resonance curve is de
termined by the electron mean free path when r/o ~ wTo 
and by the attenuation depth of the high-frequency field 
in the opposite limiting case. 

3. RETARDATION EFFECT 

All that has been said above is valid when the phase 
of the electromagnetic wave changes little during the 
time the electron stays in the skin layer, 1. e., when 
(ro)1/2/v «21T/W. However, for sufficiently pure metals 
in magnetic fields for which 2r > d the frequency of revo
lution of the resonance electrons may be considerably 
lower than wand, hence, resonance peaks with large 
n may be experimentally resolved. When the condition 
(r /0)1/2« n« wto is satisfied it is no longer possible to 
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neglect the change in phase of the electromagnetic wave 
when it has a resonance interaction with the electrons. 
This fact which is called the retardation effect in cyclo
tron resonance[U] leads to a weakening of the CR am
plitude and has been studied in a rather detailed way in 
bulk conductors in Refs. [12,13] • Below we consider the 
role of the retardation effect in the size-effect CR. 

In the case considered the resonance contribution to 
the current comes, independent of the nature of the scat
tering of the electrons by the surface of the conductor, 
from the "volume" electrons and the non-monotonic 
electrical conductivity of the metal is completely deter
mined by the last term in Eq. (6). When we evaluate 
the asymptotic behavior of the integrals over t and t' in 
Eq. (7) for KI"v(k, k') we must take into account the shift 
in the stationary phase pOints caused by the presence in 
the index of the exponent exp{ - iw * (t' - t)} of the large 
parameter I w* /n I '" n. Integrating we get the following 
expression for Qr;:(k, k') 

I ' ~ 0 

r~s I --1e- S Q", (k, k ) '" h dp, a,,(p,) 6(d-2r(p,») (l-exp[iw'T(pJ l)-' 

{ I [ ,n' (1 1 )] X -,-~in (d-2r(pJ) (I; -1;)--- --;--
/, -/c 2r(pJ I; I; 

(41) 
1 ["' (1 1) ] 1 [ ----ill -- --- -L--C05 (d-2r(p.)) (k'-rl;) 

/:'-/c 2rl[,,1 1/ k 1;''-1; . 

II' (1 . 1)] 1 [n' (1 1)]} 
- 2rlp,1 17-1: - 1/_k c05 '2r(p,) 177--;: , 

which is valid when (kr)1/2 « n« kr. 

It is rather obvious (and this is verified by further 
calculations) that under retardation conditions we can 
consider the magnetic field as a perturbation. This 
means that in the main approximation in the small pa
rameter kr /n2 the absorption or'the electromagnetic 
wave by the conductor is independent of the magnitude 
of H. To find the resonance contribution to the imped
ance we use Chambers' formula 

~z '''= 8:1(,,' S~ ilk S~ dl;' Q "'(I, I;')lt (0) (kilt'" (/;') 
" c' [E,,' (U)]' "",,,,,,. 

(42) 

In this expression the Fourier components of the field 
are found from Eq. (4) in which j I"(k) is the current 
when there is no magnetic field which in a plate of thick
ness d» 0 is the same as the current in the half-space. 
Substituting Eq. (41) into (42) we get after Simple trans
formations 

-i ... (pJ (~-~)] 7 ,,1+_ coo[k,."(d-'2r(p,») (;'+s) 
; ; ;;, 

-t.,(p,) (;, + ~ )]} , (44) 
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/; n' 
1,,(pJ=~( )' 

_h~, r pz ;=T: 
(45) 

(k~)-l is the penetration depth of the electromagnetic 
field into the metal when H = O. 

All functions in the integrand in Eq. (43) have differ
ent scales over which they vary. The resonance de
nominator changes in a characteristic interval op, 
=PO(wtO)-l, the interval of change of the function 11(P.) is 
equal to op; = PoD /r, while that of the function 12(P,) 
equals op~' = Po/Ao' When inequality (2) is satisfied the 
quantity 11(P.) is "sharper" than the resonance denomi
nator and its role is reduced to a contraction to the lim
iting value of the function 

1, .(1 1) 
;'_; 51n/.o -;' - ;' , 

which is equal to - 1TO (~' - ~) as Ao - 00. 

The asymptotic behavior of t:..Zr;· when Ao» 1 is then 
given by the quantity 12 (P.). In the case (20) when the 
"sharpest" function of P. is the resonance denominator, 
the asymptotic behavior of t:..Z~·· is for Ao» 1, on the 
other hand, determined by the function 11(P.). USing 
the saddle-point method to integrate in Eq. (43) we get 
the follOWing expressions for t:..Z~··: 

1 1-' I;/"« 1--i1 , 
wt'J 

(46) 

I,Ii.oIP,))=-:-· S di.'[g ~ li.'I-·ig~ Ii.') r. 
--1:1 <>; 

i _ -
J (i..IP')) = -,-[g:,(i.o(P')) -...ig,(i. (p')) 1', 

'i,'1 

~ 

gp=(i.,)= S d;F,,(l ;l;-' exp[±ii.o;l, (47) 

To evaluate the integral g; it is necessary to know 
the actual form of the function Fo(n, i. e., to solve the 
Maxwell equations with H = O. This calculation is given 
in the classical paper by Reuter and Sondheimer [14] for 
any form of the scattering of the electrons by the sur
face of the conductor. Fo(~) has the simplest form in 
the case of specular reflection: 

F,(;) =;/(;3_;). 

We have then for the functions [2(AO) and J(Ao) which de
scribe the fast decrease in the amplitude of the reso
nance peaks with number n, as a result of the integra
tion 
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1,(1.0)-- - exp i- -1'0(1 +n3) - - f' ("i,»)." it [:t -] 1 -10 

18 3 1O:t 

:t ,- 1 
1(1.0 ) = -exp[ -)'0(1+03)]+ - ['(,/,») .. ,-' 

9 :t 

(48) 

-'- 2 [('I)' -'I, . [ , 1+il3] ':3 .,1.0 exp -I.o~ , 

r (x) is Euler's gamma-function. These formulae are 
valid also when q *' 1, provided 1 - q« 1/Xo' In the case 
of a rough boundary (when 1 - q 1/Xo) the resonance 
amplitude decreases somewhat more slowly: 

(49) 

The expressions we have obtained for the impedance 
describe the shape of the resonance line in all limiting 
cases and give a comprehensive solution of the problem 
of the size-effect resonance in a magnetic field parallel 
to the surface of the plate. The universal role of in
equality (2) shows up when we consider both the effect 
of the properties of the surface on the size-effect CR 
and the retardation effect. If inequality (2) is satisfied, 
it is clear from the formulae given above that the im
pedance might be obtained by "splitting off" from the 
resonance current the electrons with 2r(pz) > d in the 
appropriate formulae of the CR theory. [7,9.10,13) 

In the opposite limiting case (20) there occurs to a 
full extent a specific size-effect CR and it is important 
to note that even to determine the order of magnitude of 
the width of the resonance curve it is necessary to take 
the non-local relations between the Fourier components 
of the high-frequency field and of the current into ac
count rigorously. This inequality which in the range of 
magnetic fields 2r max ~ d is equivalent to the condition 
d~« niB determines the behavior of the size-effect reso
nance also when the magnetic field is inclined relative 
to the surface of the plate (see (4)). In such thin con
ductors where d 2«nIB there is a range of angles d 2/nZ2 
«cp« B/Z where the size-effect CR occurs only in the 
subsequent approximations in the small parameter d 2 / 

ncpZ2. At the same time the CR in bulk samples is com
pletely insensitive to such angles of inclination of the 
magnetic field. Calculations which we shall not give 
here show that for such angles the impedance is de
scribed by Eqs. (23), (36) with, in general, other di
mensionless constants, provided the right-hand side of 
these formulae is mUltiplied by the quantity d 2 /ncpZ2. 
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1)It follows from what has been said above that the results 
of (3), obtained in the approximation of a local coupling be
tween the Fourier components of the current density and the 
electrical field, have a limited region of applicability: they 
are valid when kr ~ '-"to. When kr« '-"to, Eqs. (21) and (22) 
from(3) describe the behavior of the derivative of the imped
ance with respect to the magnetic field near the size-effect 
CR frequencies, rather than that of the impedance itself. 
The form of the resonance curves shown in the figure occurs 
oniy when k1'« '-"to, if we bear in mind that along the ordinate 
axis we plot not R, but aR/ aH, while the electrical field vec
tor of the linearly polarized wave is at right angles to the ex
ternal magnetic field. 

1l\I. A. Lur'e and V. G. Peschanskii, Abstracts of the contri
butions to the XVIII-th All-Soviet :'\Ieeting on Low Tempera
ture Physics. Donetsk, 1972; and in Physics of the Con
densed State, No 30, FTThI'T (Physico-Technical Low Tem
perature Institute) Khar'kov, 1974, p. 27. 

2E . A. Kaner, Dok!. Akad. Nauk SSSR 119, 471 (1958) [Sal'. 
Phys. Dok!. 3, 314 (1959)]: 1\1. S. Khalkin, Zh. Eksp. Tear. 
Fiz. 41, 1773 (1961) [SOl!. Phys. JETP 14, 1260 (1962)]. 

3l\I. A. Lur'e and V. G. Peschanskil, Zh. Eksp. Tear. Fiz. 
66, 240 (1974) [Sal'. Phys. JETP 39, 114 (1974)]. 

4M • A. Lur'e and V. G. Peschanskii, Fiz. Nizk. Temp. No. 
8, 1044 (1975) [Sal'. J. Low Temp. Phys. (1976)]. 

5A. P. Volodin, M. S. Kharkin, and V. S. Edel'man, Pis'rna 
Zh. Eksp. Tear. Fiz. 17, 491 (1973); Zh. Eksp. Tear. Fiz. 
65, 2105 (1973) [JETP Lett. 17, 353 (1973); Sol'. Phys. 
JETP 38, 1052 (1974)]. 

6,,1. Ya. Azbel', Zh. Eksp. Tear. Fiz. 39, 400 (1960) [Sol'. 
Phys. JETP 12, 283 (1961)]. 

7M. Ya. Azbel' and E. A. Kaner, Zh. Eksp. Tear. Fiz. 32, 
896 (1957) [Sal'. Phys. JETP 5, 730 (1975)]. 

8L . E. Hartmann and J. M. Luttinger, Phys. Rev. 151, 430 
(1966) . 

9B . E. Meferovich, Zh. Eksp. Tear. Fiz. 58, 324 (1970) 
[Sol'. Phys. JETP 31, 175 (1970)]. 

IOD. E. Zherebchevskir and E. A. Kaner, Zh. Eksp. Tear. 
Fiz. 63, 1858 (1972) [Sol'. Phys. JETP 36, 983 (1973)]. 

111. F. Koch and A. F. Kip, Proc. Ninth Int. Conf. Low 
Temp. Phys .• Columbus, Ohio, USA (Plenum Press Inc., 
New York, 1964); D. A. Smith, Proc. Roy. Soc. A296, 476 
(1967). 

12H. D. Drew, Phys. Rev. B5, 360 (1972). 
1311:. A. Kaner. O. I. Lyubimov, and N. M. Makarov, Zh. 

Eksp. Tear. Fix. 67, 316 (1974) [Sol'. Phys. JETP 40, 158 
(1975)]. 

!4G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. 
A195, 336 (1948). 

Translated by D. ter Haar 

O. V. Kirichenko et al. 182 




