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A theory is constructed for anomalous penetration (AP) of an electromagnetic wave into a metal located 
in a magnetic field parallel to the surface of the metal. The reflection of electrons by the metal-vacuum 
interface is assumed to be specular. AP of the field occurs along a chain of electron trajectories. It is 
shown that under anomalous skin-effect conditions. at distances equal to one or two cyclotron diameters. 
there are singularities in the field distribution. At greater depths the field has a quasiharmonic character. In 
the radiofrequency range. and also on the left wing of the cyclotron resonances (on the weak-field side). the 
singularities of the field have the form of spikes with a marked spatial structure. On the right wing of the 
resonance lines. the spikes disappear. and a short cyclotron wave is excited in the metal. The possibility of 
experimental detection of these effects is discussed. 

PACS numbers: 72.30.+q 

1. INTRODUCTION 

It is well known that in a number of cases a metal 
placed in a constant magnetic field H may prove to be 
transparent for electromagnetic radiation. One of the 
mechanisms of anomalous penetration (AP) of a wave 
into a metal is so-called trajectory transport, which is 
realized under anomalous skin-effect conditions. The 
essence of it is as follows. A high-frequency field E is 
absorbed in the metal by electrons whose trajectories 
pass through the skin layer 15. Since in the plane per­
pendicular to H their motion is finite and periodic, an 
electron transports the energy obtained in the skin layer 
into the depth of the specimen at a distance equal to the 
diameter D of the Larmor orbit (D »15). The greatest 
contribution to AP is made by electrons of extremal 
sections of the Fermi surface. They form, at a dis­
tance Dextr from the metal boundary, a secondary cur­
rent plane-a spike of electromagnetic field. The skin 
layer produced at depth Dextr serves as a source of en­
ergy for the next spike, etc. Thus there occurs in the 
metal a whole series of spikes of electromagnetic field 
(see Fig. 1). An AP effect of the trajectory type under 
cyclotron-resonance conditions was predicted by 
Asbel' • (1] In general, however, trajectory transport 
is not dependent on resonance conditions and takes place 
over a wide range of frequencies. [2] The most impor­
tant theoretical and experimental results obtained in in­
vestigation of various AP mechanisms are contained in 
a review by Gantmakher and one of the authors. [3] 

We emphasize that the basic skin layer 150 that gener­
ates the subsequent spikes of electromagnetic field E is 
formed by electrons located near the metal boundary. 
Therefore the physical picture of AP along the chain of 
trajectories depends on the nature of the interaction of 
the electrons with the surface of the specimen. Never­
theless this fact has been disregarded in all the theoret­
ical researches carried out so far. It has been as­
sumed that AP effects are determined by electrons that 
do not collide with the boundary. This approximation 
can give only a qualitative description of the situation 
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in the case when the reflection of the electrons from the 
surface of the metal is diffuse or nearly so. Recently, 
because of the possiblity of obtaining materials with 
near ly ideal surfaces, [4-7] great interest has been 
aroused in investigations of the high-frequency proper­
ties of metals with specular reflection of the electrons 
by the specimen surface. 

The chief peculiarity of specular reflection in a par­
allel magnetic field H consists in the fact that in addi­
tion to the electronic states that exist in an unbounded 
metal (volume states), there appears a group of elec­
trons connected with the surface-surface electrons. To 
this group belong electrons which, moving in the mag­
netic field H, are on each volution reflected by the 
specimen boundary. The trajectories of both electronic 
groups are depicted in Fig. 1. 
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FIG. 1. Picture of the anomalous penetration of an electro­
magnetic field into a metal with a specular boundary. On the 
left are shown trajectories of the groups of electrons that par­
ticipate in AP: 1) volume electrons, 2) grazing electrons (of 
grazing angle cp ~ (iS o/R)1/2). On the right is shown a schematic 
form of the field distribution in the specimen. 
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The presence of surface electrons leads to a number 
of interesting effects. They are responsible, for ex­
ample, for oscillations of the surface impedance in 
weak magnetic fields, discovered by Khaikin, [8] and for 
a change of character of the anomalous skin effect[9] 
and of the cyclotron resonance. [10] It is natural to ex­
pect that the trajectory AP effect in a metal with a mir­
ror boundary will also change as compared with the dif­
fuse case. With diffuse reflection, the wave field in­
teracts chiefly with the volume electrons that form the 
initial skin layer 60, But they transport the electromag· 
netic field from this skin layer into the depth of the 
metal by producing spikes of current. In the case of 
specular scattering, the determining role in the pro­
duction of a screening current is played by surface 
electrons whose trajectories lie completely within the 
skin depth 60 (grazing electrons). In Fig. 1 the trajec­
tory of grazing electrons is marked with the index 2. 
The specific property of trajectory penetration in the 
specular case consists in the fact that current produced 
by grazing electrons is transported into the depth of the 
metal by volume electrons. 

In the present paper, a theory is constructed for AP 
of an electromagnetic field along a chain of trajectories 
into a metal located in a magnetic field H parallel to thE 
boundary. The reflection of the electrons by the metal­
vacuum interface is specular. It is shown that the first 
two spikes of the electromagnetic field are well de­
scribed within the framework of the theory of the anom· 
alous skin effect. Study of the behavior of the field at 
greater distances from the surface requires considera­
tion of the long-wave components in the spectral decom· 
position of E. This indicates absence of pronounced 
peculiarities in the distribution of the high-frequency 
field at such depths. In fact, experiments carried out 
on bismuth, rubidium, and indium (see[3]), and also 
on cadmium, [11] give evidence that at distances from 
the surface exceeding the depth of the second spike, the 
field has a quasiharmonic character. 

2. FORMULATION OF THE PROBLEM 

We shall consider a metallic half-space located in a 
constant and uniform magnetic field H. The vector H 
lies in the plane of the metal-vacuum interface. We 
choose the following system of coordinates: we place 
the y and z axes on the surface of the metal (the plane 
x = 0), the z axis parallel to H, and the x axis parallel 
to the normal into the interior of the specimen (Fig. 1). 

Let there be incident on the boundary x = ° a plane 
monochromatic wave of frequency w, whose E vector is 
polarized perpendicular to the constant field H (E II y). 
The direction of propagation of the wave coincides with 
the x axis. The electric field E = {O, E, O} inside the 
metal, x;?o 0, depends only on the coordinate x; that is, 
E= E(x) exp(- iwt) We introduce Fourier transforma­
tions according to 

1 ~ S (2 ) E(x)=-S dk8(k)cos(kx), 8(k)=2, lxE(x)cos(kx). .1 
n 0 

Maxwell's equation for the Fourier component 'i5(k) of 
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the field has the form 

k'8 (k) +2E'(0) =4c!iwc'j (k). (2.2) 

Here j(k) is the Fourier component of the current den­
sity, c is the velocity of light, and the prime denotes 
differentiation with respect to the argument. 

Formulas connecting the Fourier component j(k) of 
the current density with the field e(k) in a metal with a 
mirror boundary were given in[9]. Because of spatial 
inhomogeneity, this relation is an integral relation: 

'1 '" 
j (k) =%(k)8 (k) - - S dk'Q(k, k')8(k'). (2.3) 

n 0 

Here %(k) is the Fourier component of the conductivity 
of an unbounded metal, due to volume electrons. The 
integral kernel of the electrical conductivity operator 
Q(k, k') contains contributions both of volume and of 
surface electrons. 

We shall not write down the exact formulas for the 
conductivity of a metallic half-space x;?o 0, which are 
contained in[9]. We shall give only the asymptotic ex­
preSSions, needed hereafter, for the kernels,7( k) and 
Q(k, k') in the anomalous skin-effect limit. 1) For sim­
plicity, we shall restrict ourselves to consideration of 
the case of a quadratic and isotropic law of dispersion 
of the conduction electrons (an alkali metal). The re­
sults obtained below, however, are also applicable 
when the cross section of the Fermi surface in a plane 
perpendicular to H is a convex closed curv.e of arbitrary 
shape. 

The asymptotic form of the conductivity ,7(k) of an 
unbounded metal is 

%(k)- 3w,' [coth(1T'Yl- 1/ ~sinh-l(1T'Y) Sin(2kR~~/4) ]. (2.4) 
= 1I3ku y it (2kR) " 

( 4".\'e')" 
6)(1= -- , 

In 

eH 
£1=--; 

me 

Wo is the plasma frequency of the metal; N is the con­
centration, e is the absolute value of the charge, m is 
the effective mass, and v is the Fermi velocity of the 
electrons; R is the maximum Larmor radius of the 
electronic orbit, n is the cyclotron frequency of rota­
tion in magnetic field H, and IJ is the frequency of col­
lision of an electron with the scatterers. 

The integral kernel of the conductivity Q(k, k') asymp­
totically approaches the sum of three terms: 

9n w/ Ik-k'I-'-(k+k')-'" 

20·2['(,/,) QyR" (kk')' 
Q(k,k')~ 

3w,' In(klk') 
+ IG:1V coth(1T'Y) k'-k" (2.5) 

_. :)(U,' .... 811-'(:11) [ros(2kR-n/4) COS(2k'R-it/4)]. 

4(2n),,'lJ k'-k" (2kR)'" (2k'R)'" 

The first term in (2.5) is the conductivity of grazing 
electrons with characteristic grazing angles cp ex. (601 
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R)1/2 (see Fig. 1). The remaining terms of (2.5), like 
(2.4), represent a contribution of volume electrons. It 
is the second term in (2.4) and the third term in (2.5), 
containing factors that oscillate over 2kR, that insure 
an AP effect on the trajectories of electrons of the cen­
tral cross section of the Fermi surface. 

The conductivity of the metallic half-space x", 0 is 
described asymptotically by the expressions (2.4) and 
(2.5) under conditions of strong spatial dispersion. 

I'Y coth (rq) I '4:kR (2.6) 

with specular scattering of the electrons by the speci­
men boundary. By "specular reflection" one must un­
derstand closeness of the reflection coefficient p to uni­
ty: 

1-p4: h I/(kR)"'. (2.7) 

The condition (2.6) includes a whole series of inequali­
ties, namelykR»lyl, kR»I, andkR»lyI2. The 
first of these is simply the condition for anomalousness 
of the skin effect and is equivalent to the requirement 
vllv-iwl »k-1-5. The second inequality implies 
anomaly with respect to the magnetic field, R» 5. 
These two conditions are sufficient to determine the 
asymptotic behavior (2.4) of the conductivity.?t(k) of an 
unbounded metal. For calculation of the asymptotic ex­
pression (2.5), it is necessary also that the third condi­
tion contained in (2.6) be satiSfied, namely kR» I y 12. 
The physical meaning of this condition is that the char­
acteristic arc length (8R50)1/2 of a trajectory of grazing 
electrons is much smaller than the effective length 
vii v - iwl of the free path. Fulfillment of this inequal­
ity is necessary in order that the surface electrons may 
make a Significant contribution to the current density 
j(k). We note that the condition kR» I y 12 implies also 
the absence of a retardation effect in cyclotron reso­
nance. [12] 

By virtue of the inequality (2.6), the conductivity of 
grazing electrons (the first term in formula (2.5) is 
larger by a factor (kR)I/2/Iycoth(1T")I)1 »1 than the 
smooth terms in the volume conductivity (the first term 
in the expression (2.4) and the second in (2.5». The 
AP terms in the electrical conductivity of volume elec­
trons (2.4) and (2.5) contain, as compared with the 
smooth terms, an additional smallness parameter 
(kRt l / 2 , equal to the relative number of volume elec­
trons that participate effectively in trajectory transport. 
This means that the high-frequency current in the skin 
layer 50 is formed chiefly by grazing electrons. 

For convenience in the subsequent discussion we shall 
introduce the symbols 

g (k) =-2E'(O)ko-'F(k/ko) , 

( 9nl'2 (J}{J}o' ) 'I, 
k o= 10r'('/,) c'QyR'" . 

(2.8) 

The value of ko determines the depth of the primary skin 
layer 50 produced by grazing electrons (50'" I ko I-I). 

We substitute the asymptotic expressions (2.4) and 
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(2.5) for the electrical conductivity of the metal in for­
mula (2.3) for the current. Then in Maxwell's equation 
(2.2), with the current density (2.3), we transform from 
the Fourier component If(k) to the function F(klko)' We 
also introduce the dimensionless wave number ~ = klko• 
As a result we obtain the following integral equation: 

- 5ir'('/')'Ycoth(rrY)'_'[F('s)_~S~ dxF("x) lnx ]=1 
6 (2k oR)"'· CT' c "x'-l 

(2.9) 
_ 1O;f',('/,) '( (2kom-';-';'[F(;)Sin(2koR's-rr/4) 

3" ' sinh(7T')') 

1 S~ (-) x-'/'cos(2koR;x-rr/4).-cOS(2koRs-rr/4) 1 
-- ~F~ • . 

IT 0 x--l 

Solution of equation (2.9) determines the function F(~) 
and consequently also ?(k). Knowing ;if(k), we shall by 
means of (2.1) investigate the spatial distribution of the 
electromagnetic field E(x). 

3. SOLUTION OF THE INTEGRAL EQUATION 

The AP effect along a chain of trajectories represents 
a spatial resonance in the interaction of electrons with 
those Fourier harmonics of the field whose wave vec­
tors are multiples of the reciprocal of the diameter 2R 
of the extremal orbit. Therefore it is natural to seek a 
solution of Eq. (2.9) in the form of an expansion in a 
"Fourier series of spatial harmonics": 

(_)_ (_) 5if'('/,) ')'coth(rq) Ll (_) 
F • -Fo • + 6 (2koR)' F ~ 

+~[1Oif'(I/,) '( (2k oR)-'r.]n (3.1) 
.i..J 3,,' sinh( 7T')') 
n=1 

X {/+n m exp (2ink,Rs-inrr/4) +/-n ('s) exp (-2ink"R;'+inCT/4)}. 

The first two terms in (3, 1) represent the zero-order 
harmonic-the smooth part of the function F(~). The 
terms with n = 1, oscillating over 2koR (the first har­
monic), determine the anomaly of the field in the vicini­
ty of the first spike. Correspondingly, the second har­
monic (the terms with n = 2, oscillating over 4koR) in the 
spectral resolution of E(x) describes the character of 
the field distribution in the region of the second spike. 
The monotonic terms in the expression (3.1) are due 
chiefly to the conductivity of grazing electrons and to 
the smooth part of the volume conductivity from (2.4) 
and (2.5). In general, the OSCillating terms in (2.4) and 
(2.5) also make a contribution to the zero-order har­
monic of the field. It is easy to show, however, that 
the corresponding terms may be neglected because of 
their smallness. The first and second harmonics in the 
spectrum of E(x) arise because of the AP terms in the 
conductivity of volume electrons. The small value of 
the volume conductivity, in comparison with the sur­
face, permits us to seek the function F(~) in the form of 
the perturbation-theory series (3. 1) in the parameter 
lycoth(1T")I)/(2koR)I/21« 1. 

In the smooth part of the function F(~) it proves con­
venient to separate the two terms Fo(~) and .:.IF(~), cor-
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responding to fields produced by grazing and by volume 
electrons, respectively. The first of these, Fo(~), is 
the solution of the unperturbed problem and is deter­
mined from Maxwell's equation (2.2) with the current 
density of grazing electrons; that is, 

~ . II-xl-'-(1~x)-
~'F (:,)-i Sd.rFi~xl =1 
- 0 - '.' - (~x)' . (3.2) 

Equation (3. 2) was first solved in[9l• According to[9l, 
the function Fo(~) can be represented in the form of a 
Mellin contour integral 

(3.3) 

The Mellin transform M(z) is regular in the vertical 
strip - 2 < Rez < ~ of the complex z plane. At the points 
z = - 2 and z = ~, the function M(z) has simple poles with 
residues 1 and - i/4 respectively. M(z) satisfies the 
difference equation 

.lI(z-'I,) =02:1 [(z+',,)c05[:1 (;-'/,)/2J 

.1l(z) [(;-i)cosi .• ; ~I 
(3.4) 

and is determined by the following expression: 

{ :+2[., (,.,)/]} ( .• :)1'(:+1) 
M(z)="xJl 5 l:1Tln ~:1 co- T ~ 

X[(~-2 ~)r(~-~ ~). 
il J J J 

(3.5) 

The only singularities of M(z) are simple poles located 
on the real axis. From formula (3.3) it follows that 

(3.6) 

The second term in formula (3. 1) is due to the contri­
bution to the current density j(k) from the smooth part 
of the volume conductivity, which in the present case 
plays the role of a perturbation operator. Therefore 
<IF(~) is the solution of the equation 

S~ . 11-xl--(l+x)-
;'~Fm-i 0 d.dF(;x) (;x) . 

(3.7) 
Fo(':.) 1 S~ Inx 

=-.-----,;;: dxFo(';x)-.-. 
; :1-; ,. r-I 

Here we have omitted small smooth terms due to the 
first and second harmonics in (3.1). Equation (3.7) 
was solved in[lOl. For the purposes of the present work, 
knowledge of the explicit form of the function <IF(~) is 
not obligatory, since it enters into the formula for the 
field E(x) in the form of an insignificant correction to 
the large monotonic term from Fo(~). Therefore we 
shall not discuss the solution of (3.7). 

We move on to the calculation of the amplitudes 
f+n(~). The equations for the functions f +n( ~) are ob­
tained by equating the coefficients of the corresponding 
rapidly oscillating exponentials after substitution of the 
expansion (3. 1) in the integral equation (2.9). It turns 
out that the amplitudes f+l(~) are determined solely by 
the solution Fo(~) of the unperturbed problem. The 
contribution of the smooth correction <IF(~) and the ef-
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fect of the second harmonic on the first are small by 
virtue of the inequality (2.6). The coefficients of the 
second harmonic f +2.(~) are expressed in terms of f+l(~). 
PhYSically this means that the field in each successive 
spike is determined solely by the field amplitude in the 
preceding currenty layer, while the effect of the in­
verse relation is inappreciable. 

In the process of solution of (2.9), there occur on its 
left side several characteristic integrals of rapidly os­
cillating functions. It is necessary to obtain asymptotic 
estimates of these integrals in the limit when 21 kol R~ 
»1. On supposing that the amplitudes f+n(~) are smooth 
functions of their argument, we have 

(3. B) 

The integral containing the logarithm in (2.9) intro­
duces a small correction to the monotonic part of the 
function F(~). For example, for the first harmonic it 
is asymptotically equal to the following expression: 

(3.9) 

where C is Euler's constant. The contribution of this 
integral to the expression for <IF(~), like the omitted 
smooth term in (3.B) (the contribution of the pointx=O) 
may be neglected because of its smallness. A similar 
conclusion may be drawn about the smooth contribution 
of the second harmonic. Thus in calculating the coef­
ficients of the first and second harmonics, among the 
integrals of the left side of (2.9) it is necessary to take 
into account only the oscillating term (3. B). 

On the right side of (2.9) there also occur integrals 
of OSCillatory functions, which we shall estimate as­
ymptotically under the condition 21 ko 1 R~ »1. It is easy 
to show that 

2 S". X-'I, exp (±2ikoR; (x-1» -1 
-; dxFol;x) x'-1 ±iFo(~)-illo(S). (3.10) 

Here <l>o(~) is determined by the equation 

2 ~ F (~) 1 ,+.~ 
<Do(;)=- Cdx~=-. S dz 6'M(z) tg(nz/2) , -1<c-Rez<'/ •. 

;t~ x-I 2:u c_ i l!Cl 

(3. 11) 

From formula (3. 11) follows 

(3. 12) 

The behavior of <l>o(~) in the limit of small ~ coincides 
with the corresponding asymptotic behavior of the func­
tion Fo(~) (see (3.6)). Integrals of the type (3. 10), but 
with substitution in the integrand of the first harmonic 
fH(~) exp(± 2ikoR~) instead of the function Fo(~), having 
the form 

1 S~ d (.) x-'j, exp (±4ikoR1; (x-1» - exp (±2ikoR1; (x-1» 
-;- x t"" .x x'-1 ' 

o 
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and zero in the approximation being considered. 

The result of the calculation of the coefficients /"I(~) 
looks like this: 

t «)=_ icll,(;)±3F,(6) [1+5r'(I/')'YCoth(1T'Y) +i<'( k,R )",]-1 
"" s 4 (2ns) 'I. 6(2:r)' s:r 

(3.13) 

The amplitudes /~(~) of the second harmonic can be 
expressed in terms of /,,1(0 as follows: 

(3. 14) 

The expressions [ ••• rl in formulas (3.13) and (3. 14) 
consist of three terms. The third term is the contribu­
tion of the vortical part in Maxwell's equation (the first 
term on the left side of (2.9)). The unity terms in the 
expressions (3.13) and (3.14) originate from the con­
ductivity of grazing electrons, whereas the second term 
is produced by volume electrons (the second and third 
terms, respectively, on the left side of (2.9)). Thus 
in contrast to the zero-order harmonic, which is de­
termined chiefly by grazing electrons, the contributions 
of volume and surface electrons in the denominators of 
the oscillatory terms of the expansion (3. 1) can in gen­
eral prove to be of the same order. 

In the solution of (2.9) we have restricted ourselves 
to the first three harmonics in the spectral representa­
tion of the function F(O. This was not done accidental­
ly, since the procedure presented above for finding F(~) 
is correct only for the first two spikes. The ampli­
tudes of even the third harmonic cannot be found by this 
method, because a logarithmic divergence at small ~ 
occurs in the integrals on the right side of (2.9). This 
indicates the inapplicability of the anomalous-skin-ef­
fect approximation (2.6), and consequently the absence 
of any marked singularities in the field distribution at 
distances of three or more cyclotron diameters. This 
fact is corroborated experimentally, as was indicated 
in the Introduction. The reason for this behavior of 
the wave field lies in the fact that with increasing dis­
tance from the metal surface x = 0, information about 
the distribution of the field E(x) is determined by 
smaller and smaller values of the wave numberk. 
Study of the structure of the field at such depths re­
quires an accurate taking into account of the long-wave 
asymptotic behavior of the conductivity tensor and con­
stitutes a very complicated problem. Its solution does 
not fall within the purposes of the present work, and 
therefore we shall restrict ourselves to consideration 
of just the first two spikes of E(x). 

4. THE FIELD DISTRIBUTION 

The spatial structure of the electromagnetic field 
E(x) in the metal is determined by means of the solu­
tion F(O of the integral equation (2.9) according to the 
formula 

2E'(0) ~ k) 
E(x)=---,- J dkF( - COS (kx). 

nk" k, 
(4.1) 
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Since the function F(k/ko) is the sum of three spatial 
harmonics, the field E(x) also consists of three terms, 
each of which corresponds to a definite harmonic: 

, , 2E'(0) .Tt ( 6, )" [ ,(X-'2R) (X-':-'2R)] 
E(.rl=£,(.r)-'-~6 ~nh( )'-R '1'1 -6- -,-1j!'1 --{)-

.Inu t' S1 1r'Y ':±.:l l , 

---- -- - Ij!', -- ,Ij!', . 8 £'(0) [ :r~ (1\ )"']'[ (X-4R) -'- (_ X+4H)] 
. -, k .. 'f., sinh(1T'Y) .... R - b, - fI, 

(4.2) 

Here Eo(x) is the monotonic component of the field dis­
tribution, due principally to the zero-order harmonic 
Fo(x). The second and third terms in (4.2) determine 
the Singularities of the field in the vicinity of the first 
(x = 2R) and second (x = 4R) spikes, respectively. The 
value of Ov characterizes the scale of variation of the 
field at the spikes and is 

6,= (3ww,'/4c'R I \'-iw I) -". (4.3) 

It is interesting to note that Ov coincides with the depth 
of the skin layer produced by volume electrons under 
anomalous skin-effect conditions. The relation be­
tween the thickness of the skin layer of grazing elec­
trons' 00 = I ko I-I, and that of volume electrons, ov' is 
obtained very simply from (2.8) and (4.3): 

k,6,,=[6:r}2:ri5f'(l/,I] (k,RI:t)".exp [i(:r-'2%)16] 

= [6:r}2:l/5f'(1/.) r.(RI:t6cl', exp [i(.-,-'2%)/;;], 

where x=cot-I(v/w). It is obvious that 1 "'01 ov» 1. The 
resulting renormalization of the value of the skin depth 
at the spikes with respect to the original skin depth 00 
is quite natural. Physically it is a consequence of the 
fact that the spikes are formed exclusively by volume 
electrons. 

The function wI(x) has the following form: 

J~ cit [3F, (tlk,o,) -<Do (I, k,o,) leas (xt) 

Ij!'.(x)= "t' t'exp(i><)+1T'YCoth(1Tl') +6:r (2:t) ','/5f' (II.) 

J~ dt [3Fo(tlk,<'l,) + clio (tlk,<'l,)jsin (xt) 

-':- t'" t'exp(i%) + 1Tl'coth(1Tl') +6:r(2n) '/5f' (II.) 
o 

The expression for wa(x) looks like this: 

Ij!', l' = S~ cit <Do(tikoO.)cos(xt)-3F,(t/k06'),si~(~t) 
J) "t t'exp(i%)+ 1Tl'Coth(1Tl') +6:r(2;t) I'/"f-(I,,) 

(4.4) 

X [t' exp (1%) + 1Tl' coth(1Tl') +6:r'/',5[, (II.) ]-1, (4. 5) 

We shall consider in detail the structure of each of 
the terms in formula (4.2). 

The monotonic component Eo(x) of the field is formed 
by grazing electrons. To obtain it, it is necessary in 
formula (4.1) to substitute the function Fo(k/ko) instead 
of F(k/ko)' The corrections to Eo(x) for the volume 
group of electrons are small. By use of the represen­
tation (3.3) for the function Fo(k/ko), it is easy to ob­
tain Eo(x) in the form of a contour integral: 

2E' (0) 1 '+i~ , 
£o(x)=----, J dz(k,x)-'J!(z-1)f(z)cos(:rz!2), 

:Tko 2:r, '_'~ 
(4.6) 

° < C = Rez < t. The integral (4. 6) is equal to the sum of 
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the residues at the poles of the integrand located in the 
left half-plane Rez < 0; that is, 

r.~ (-k,.x) n ( 3 2n) ( 2n) 
E, (x) =£.. (0) " [ -::- -i- -::- [1+-::-

[(' J (Il!)- oJ.J oJ 

n [ ('I ). ]} 
xexp{ -5' in+ln 2:, . (4.7) 

The behavior of the field E(x) at great distances from 
the surface, I kol x» 1, is described by an asymptotic 
expression which consists of the residues of the inte­
grand of (4.6), with sign reversed, at the simple poles 
z= t and z =~: 

E,(x)=Eo(O) -ilZ;- (koX)-'I'[H 9iV(-i) (k.x)-']' 
16.11(-1) 2" 

(4.8) 

The power-law nature of the attenuation of the field 
Eo(x) with distance from the metal surface x= 0 is a 
consequence of the anomalousness of the skin effect, 
Mathematically, it is due to the presence of the branch 
point k- l/2 in the integral operator of the conductivity of 
grazing electrons (the first term in (2. 5». In contrast 
to (4,8), the field of the principal skin layer in the dif­
fuse case decreases in inverse proportion to the square 
of the distance. 

The analysis of the second and third terms in formula 
(4,2) we shall carry out separately for the low-frequen­
cy case and for frequencies in the neighborhood of the 
cyclotron resonances. 

1. LOll' frequencies, strong magnetic fields, w« lJ 

«n. In this range x = 1T/2, the wave number ko is real, 
and ;rycoth(1T')')"" 1, since Iyl« 1. The terms contain­
ing Ij{l(-(x+2R)/5v ) and >¥a(-(x+4R)/5v) are small . 
monotonic corrections to Eo(x) and may be neglected. 
The asymptotic expressions for the function'll l(X) near 
the center of the spike (small I xl) and at its edges 
(large I xl) have the following form: 

ImS,(z) ReS,(z) 
Z r 

~---------, , 

,ReS,lzl 
0.01 -

~c_g 

-15-13-/1 :>-z 
-0.01-

I' 
1\ 
I \ , ' 

" \ , \ , 
" , , , 

\ 
\ 
\ 

10 15 z 

,~ 
"" 0.01 

9 /I J I, z! 
'~Ol ./ 

-----' 
FIG. 2. Line shape of the first spike. The solid curve sholVs 
the behavior of Re:::! (z), the dotted curve that of 1m:::! (z); 
z =(x -2R)a!/3/ov' 
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1m'::z (Zll ReS,lz) 

" I "L 

! \'Ii I \ 
I \ 
I \ 

! JI1 
I I! , \' , I 

! Il 
I 2 /,--/ ! 

/ n:\ 

-/5 

FIG. 3. Line shape of the second spike. The solid curve 
sholVs the behavior of Re:::2(z) , the dotted curve that of Im:::2(z); 
z = (x _4R)a l/3 /o v ' 

I 2;1 ( :Ii ) [ ( ni )] _. -. exp --:- 1 +2xa'" exp - - , 
a-'n 3'·, 3 6 

'¥ (x)""--
, -2(k,6,)' 2i, 6 

--T-- a- '~Ixl. 
xcx;"-' X~CI.:' ~ (4,9) 

Here a = 1 + 61T,f2iT/5r2(i):>: 1. 7, The asymptotic forms 
of the function >¥a(x) are also obtained without difficulty 
and are determined by the formula 

ia-'" ao exp( -:Ii/12) -a,xa exp (-:IiI4) , Ixl ~a-" 
'¥,(x)"'--. { 

4(k06,)' bo(I-3sgllx) .b,(h3sgnx) I I 
Ixl'a" 'Ixl'a"" a-'~ x. (4.10) 

Here 

5:I (. 1 .. (l-aj(l2-1) )-19-' 
ao=-gpF 1'6,2. a+2'-1 - . I, 

=..::c:.. ( ~.?(1-a)(l2-1))"'1~1' 
a, 2[1 F i, 2 • -, a+2'-1 .1 , 

bt 
b,= -. - '" 1.43; 

2~ 
b = 151;- H(3 ",5.96' 
, 8·2'·~' ' 

j3=(a+[2'" -1)/a[2'":>:O,88; F(a, b; c, d) is the hyper­
geometric function; the sign function sgnx = 1 for x> 0 
and sgnx= -1 for x<O. 

Figures 2 and 3 show graphs of the real and imagi­
nary parts of the functions 

- J~ cos~zt)+2sin(zt) -2 'i (k 6 ),/,'1' ( -'I,) 
=1 (z) = dt 13_; ex. J 0" l zcx. (4.11) 

o 

and 

E, (z) =i J~ dt 3 sin (zt) - cos (zt) -4a"" (k 6,),/,'1', (za-'I,) 
"t'.'· (t'-i) (t'-ip) 0 , 
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constructed by means of an electronic computer. 
These numerical calculations, together with the ana­
lytic formulas (4.9) and (4. 10), give exhaustive infor­
mation about the field distribution in the vicinity of the 
first and second spikes. 

The line shape of the spikes in a metal with a mirror 
surface differs importantly from that that occurs in the 
diffuse case. [2,3J The important fact is that the field 
distribution E(x) inside the spikes reflects the character 
of the principal skin layer 00 (see formulas (4.4) and 
(4.5)). Near the centers of both spikes, X= 2R and 
x = 4R, the field changes linearly with distance. This is 
a general rule of behavior of E(x) and is independent of 
the nature of the reflection. On increase of distance 
from the centers, the behavior of the second and third 
terms in (4.2) is different. Thus in the first spike, 
ImE(x)/E'(O) decreases in inverse proportion to the 
distance from the center (meanWhile ReE(x)/E'(O) 
changes according to the law (x - 2R)-4). In the second 
spike, the change of ImE(x)/E'(O) is slower-inversely 
proportional to the square root of this distance (ReE(x)/ 
E'(O)- 1 x - 4R 1-7/2 ). Such a spreading out of the spikes 
with increase of the spike number indicates the absence 
of singularities in the distribution E(x) at distances of 
three or more cyclotron diameters from the metal sur­
face x= O. Besides the change of shape of the spikes, 
specular scattering leads to a diminution of their inten­
sity in comparison with the diffuse case. The ratio of 
the amplitudes of the spikes in (4.2) to the correspond­
ing values for diffuse reflection is proportional to the 
small quantity (I kol ovt5/2« 1. PhYSically this is due 
to the fact that the impedance of the metal in the spec­
ular case is less than in the diffuse by a factor 1 kol Ov 
»1. It is interesting to note that the ratio of the sec­
ond term to the first in (4.2) is independent of the char­
acter of the scattering of electrons at the boundary and 
is in order of magnitude equal to [71')1/ sinh( 1TY)]( oJ 
41TR)1/2« 1. This result is quite natural, because the 
field Eo(x) of the prinCipal skin layer 00, which depends 
on the law of interaction of the electrons with the sur­
face x = 0, affects both spikes in the same way. 

2. HighJrequencies, proximity to cyclotron reso­
nance, 11« 0 and 1 w - nO 1 «O(n = 1, 2, 3, ••• ). In this 
range x=O, the wave number ko= Ikol exp(i1T/5), and 
71')Icoth(71')I) ~ w/(w - nO+ ill). The contribution of grazing 
electrons in expressions (4.4) and (4.5) (the third 
terms in the denominators) in the resonance region are 
negligibly small in comparison with the contribution of 
volume electrons, 71')Icoth(71')I), and may be disregarded. 
Furthermore, the inequality (2.6) permits replacement 
of the functions Fo(t/koov) and if!o(t/koov) by their as­
ymptotic expressions for small values of the argument. 
As a result of all these simplifications we have 

, -s cos (.xt) +2 sin (.xt) 
'1'. (.x) = ""2""(k:-,6-:-.~)'~h 0 dt t'- (Ll-iv) ' • 

(4.12) 

i ·s dt cos(.xt)-3sin(.xt) 
'1'. (.x) = 4(k,6.)'/' • t'h [t'-(Ll-iv) ']' . (4.13) 

Here the following symbols have been introduced: 
ii= II/W, the reciprocal of the quality factor, and 
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..:l = (nO - w)/ w, the relative "detuning" of the resonance 
(ii« 1 and l..:ll « 1). 

In the immediate neighborhood of the resonance (ii 
» l..:ll ) and also on its left wing (..:l < 0, l..:ll ~ ii), for­
mulas (4.12) and (4.13) can be analyzed by a method 
similar to that used in the preceding section. At dis­
tances of the order x = 2R and x = 4R there remain sharp 
spikes of the field. In contrast to the low-frequency 
case, the line shape of the spikes in the neighborhood 
of cyclotron resonance becomes complicated because 
of the presence of phase in the wave number ko• There 
fore the real and imaginary parts of E(x)/E'(O) in this 
frequency range are determined by combinations of 
Re>¥l and Im>¥l in the region of the first spike and of 
Re>¥a and Im>¥a in the region of the second. The role 
of the quantity a is now played by the large complex 
parameter (..:l - iiit i • The resonance condition l..:l - iTJ I 
« 1 leads to a compression of the spike picture along 
the x axis as compared with the low-frequency field 
distribution. PhYSically this change of scale is due to 
the sharp diminution of the thickness of the skin layer 
of volume electrons under cyclotron-resonance condi­
tions: 

(4.14) 

The structure of the field in the specimen changes 
radically on transition to the right wing of the reso­
nance, ..:l>0. If the detuning is sufficiently large, that 
is if 

(4.15) 

then in the metal there can occur a propagation of 
weakly attenuating electromagnetic oscillations-cyclo­
tron waves. [13J The wavelength A of these excitations 
and their attenuation distance A, in the transparency 
region (4.15) of the metal in the short-wave range 
(2.6), are determined by the formulas 

;.=6,.:'.. .\=3i .. V':;l>; .. (4.16) 

From the expressions (4.12) and (4.13) it follows that 
in the metallic half-space, when conditions (4.15) are 
satisfied, an unusual cyclotron wave is excited. Math­
ematically this corresponds to the appearance in the in­
tegrands of (4.12) and (4.13) of a pole t = ..:l-1/3(1 + iii/3..:l) 
whose real part is much larger than its imaginary. 
The centers of excitation of the wave are the points 
x = 2R and x = 4R. We shall consider the structure of 
'11 1 and >¥a in the region (4. 15) of existence of cyclotron 
waves. The function '11 1 can be expressed as the sum of 
two terms: 

( .x-2R) Ll'I, {. S'" t'+2sgn(.x-2R) ( 1.x-2RI ) '1', -- =---- t dt exp ----t 
8, 2 (k,B,) '/. 0 t'+1 t.. 

n1'5 . :\. +-3-exp[I.x-2RI(it..-'-A-')-tsgn(.x-2R)tan 1 3lr (4. 17) 

The second term in (4.17), which oscillates with period 
21TA, describes the field of a cyclotron wave that prop­
agates in the vicinity of the point x = 2R. The first term 
in (4.17) is a monotonic function of 1 x - 2R 1 and decays 
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over a distance of the order of the wavelength A from 
the center of excitation x = 2R. It is the mean value of 
the field of the cyclotron wave. The asymptotic forms 
of this term are easily calculated, and therefore we 
shall not present them. The geometric center of the 
wave x = 2R is distinguished by the fact that the phase of 
the wave at this point undergoes a discontinuity of 
amount 2tan-l 2, while the mean value of the field, 
which experiences a jump, is different from zero. It 
is interesting that the amplitude of the wave is not mod­
ulated. 

The expression for the function 'l12 looks like this: 

( x-4R ) i"i"I, {i S dt (lx-4RI) 
'1', -6-, - =- 4(k06.)'" 1'2 0 7- exp ---'A- t 

(t'-1) [1-3 sgn(x-4R) ]_2t3[ 1+3 sgn(x-4R)] 
(t'+!) , 

:tY10( Ix-4RI ) ~ --- 1-2i--- exp[lx-4RI (i'A-'-A-') + isgn(x-4R) tan-l 2] . 
18 1. 

(4.18) 

The meanings of the first and second terms in (4.18) 
are the same as for the corresponding terms of formula 
(4. 17). The discontinuity of phase of the wave at the 
center x = 4R is 2 tan-l 3. 

Thus we have shown that excitation of a cyclotron 
wave by an external source of field occurs in the vicini­
ty of the points x = 2R and x = 4R. If the wave is prop­
agated over a distance A« 4R, then in formula (4.2) we 
may neglect the terms containing 

( x+2R) (x+4B) '1', --1)-,- and'¥, --6-,- . 

In the reverse case A» 4R, the terms containing 

( x+2R) (x+4R ) '1', --1)-,- and'¥, --6-,- , 

give the same kind of contribution to the wave-field dis­
tribution as do the terms containing, respectively, 

( X-2R) (X-4R) '1', -- and'¥, -- . 
I), I 6, 

The structure of the field of the cyclotron wave in the 
metal depends strongly on the nature of the scattering 
of the electrons by the specimen surface x = O. The ex­
citation of cyclotron waves by the trajectory AP effect 
in a metal with a diffuse boundary was investigated 
qualitatively in[14J, The distribution of the field E(x) 
obtained in[l4J differs significantly from the correspond­
ing expreSSions (4.2), (4.17), and (4.18). The different 
forms of the field in the specular and in the diffuse 
cases may make it possible to determine the character 
of the scattering of electrons by the specimen surface in 
experiments on wave transmission. 

The phenomena considered in the present paper may 
be detected in experiments with metallic plates. In one-
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sided excitation of a plate of thickness d, the contribu­
tion of spikes to the impedance is negligibly small. 
Therefore it is possible to detect them only by analyz­
ing the field E(d) that passes through the metal under 
conditions such that a given spike emerges at the sec­
ond specimen boundary x = d. The fact that in the case 
(4.15) the field in the spikes is a short cyclotron wave 
may facilitate experiments on detection of such waves. 
Usually difficulties are connected with the fact that the 
amplitude of a short cyclotron wave passing through a 
plate is exponentially small. If one uses the current 
plane x=2R or x=4R as a generator of cyclotron waves, 
then it is possible to choose conditions under which 
d - 2R < A (or d - 4R < A), and the wave field will emerge 
at the second metal surface x = d not too much weakened. 
In experiments with two-sided excitation, the effect of 
the second surface of the plate reduces to the fact that 
the formulas obtained in the present paper for the field 
E(x) at x= d determine the line shape of the dimensional 
effect. 

l)The method of obtaining the asymptotic behavior of ;;t(k) and 
Q(k, k') is described in sufficient detail in[9,IOJ; therefore 
there is no need here to go into the details of the calculation. 
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