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The resonance pecularities of the absorption of Rayleigh sound waves by conduction electrons in metals 
located in a weak magnetic tield para!lel to the surface are studied. It is shown that there should be 
absorption of two types in the propagation of sound waves at an angle with respect to the magnetic field. 
One of these is due to Doppler-shifted cyclotron resonance for electrons from the limiting points on the 
Fermi surface. which do not collide with the metal boundary. Another type of oscillation (geometric 
resonance) is produced by a group of electrons which collide with the surface and drift along it. The shape 
of these oscillation lines is sensitive to the nature of the electron scattering at the boundary. 

PACS numbers: 72.55.+s 

1. INTRODUCTION 

In recent years, theoretical studies have been carried 
out by the authors on the propagation of surface sound 
oscillations (Rayleigh waves) in pure metals at low tem
peratures (see, for example, [1-3]). It has been shown 
that the absorption and velocity dispersion of surface 
sound waves possess a number of specific peculiarities 
in comparison with the case of volume sound oscilla
tions. These pecularities are due to two circumstances. 
First, the nonuniform character of Rayleigh waves 
(their amplitude decreases towards the interior of the 
metal at a distance of the order of the sound wave
length[41) leads to the result that they interact most ef
fectively with electrons moving at the surface. Second, 
the trajectories of the electrons that collide with the 
surface in a magnetic field turn out to be more compli
cated than in the case of an unbounded sample. 

In the present work, we study the coefficient of Ray
leigh sound wave absorption by conduction electrons in 
a metal placed in a constant and uniform magnetic field 
parallel to the metal-vacuum interface. The region of 
classical magnetoacoustic resonance effects is consid
ered in which the conditions of strong spatial dispersion 
are satisfied: 

kl~kR~1. (1.1) 

Here k is the wave number of the surface sound, l the 
free path length of the conduction electrons, and R the 
characteristic radius of the electron orbit in a magnetic 
field. It is shown that when surface waves propagate at 
an angle to the magnetic field, two types of resonance 
effects should occur. The first of these is due to the 
interaction of the sound with the "volume" electrons, 
which do not collide with the boundaries of the metal. 
The physical reason for the oseillations of the absorp
tion coefficient in this case is the Doppler-shifted cyclo
tron resonance on electrons from the vicinity of the 
limiting pOints of the Fermi surface. In sound absorp
tion by "surface" electrons, which collide with the 
boundaries of the metal and which drift along it, reso
nance oscillations have been discovered of the type of 
Pippard geometriC resonance. The geometric oscilla
tions of the absorption are due to a group of surface 
electrons which possess an extremal shift along the 
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sound wave vector and which move on parts of their 
trajectories, fall in the "skin-layer" of the sound wave 
on its phase surface. The shape of the lines of these 
oscillations depends materially on the character of the 
reflection of the surface electrons from the boundary of 
the metal. 

In the calculation of the absorption coeffiCient, we 
have taken into account only the deformation mechanism 
of electron-phonon interaction. This is explained by 
the fact that, upon satisfaction of the conditions (1. 1), 
as is shown in the work of one of the authors, [5] the ab
sorption due to the vortex electric fields is small in 
comparison with the deformation absorption. The in
duction part of the absorption also does not exceed the 
deformation part in order of magnitude. Since all three 
indicated mechanisms make an additive contribution to 
the sound absorption, allowance for the electric fields 
can lead only to a numerical change in the absorption 
coefficient obtained below. 

2. GENERAL RELATIONS 

1. We first consider an elastic metallic halfspace 
(Fig. 1) along the boundary of which a surface sound 
wave is propagating. The components of the deforma
tion tensor in the Rayleigh wave are determined by the 
relation 

u;,(r,t)= ~ u;,·(O)exp[i(kr-wt)-x.x). (2.1) 

Here Ufk(O) is the amplitude of the deformation tensor 
on the surface x = 0, k = k {O, ky, k z} is the two-dimen
sional sound wave vector, w the frequency, x'" = (k2 

- W2/S~)1/2 is the damping decrement of the sound wave 
in the interior of the metal, s'" is the velOCity of longi
tudinal (s,) or transverse (St) sound. The symbol ~'" 
indicates that the elastic deformations represent a su
perposition of the potential (a=l) and vortex (a=t) 
sound oscillations (see [4]). 

Deformation interaction of electrons with sound leads 
to dissipation of energy of the sound waves. It is con
venient to express this in terms of the mean (over a 
single period of oscillation) damping decrement of the 
amplitude of the Rayleigh wave U1: 
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FIG. 1. Possible types of electron trajectories (in the plane 
z = const) in a magnetic field parallel to the surface of the met
al. 

1 I~ r = 4W Re" dx(A"X>u,,.. (2.2) 

Here W is the energy density in the Rayleigh wave, Au 
is the deformation potential tensor, and Xo( E - eF) the 
density of the nonequilibrium electrons with energy E. 

The dot indicates the time derivative, the angular 
brackets (. 0 • > denote integration over the Fermi sur
face, the asterisk denotes the complex conjugate, we 
sum over the twice repeated indices i, k = 1,2,3. 

The nonequilibrium contribution X to the electron en
ergy is determined by solution of the linearized kinetic 
equation 

(iI~ + vV+Q a: h') x=!5EaaA"u;" (2.3) 

in which II = -r-1 is the collision frequency of electrons 
with scatterers in the bulk of the metal, v is the veloc
ity, O=eH!mc is the cyclotron frequency, -e is the 
charge, m is the effective mass of the electrons, c is 
the velocity of light, and cp the azimuthal angle in the 
plane perpendicular to the magnetic field H, which is 
directed along the Oz axis. The boundary conditions to 
Eq. (2.3) will be discussed below. 

2. We now consider a model of the metal with a spher
ical Fermi surface. In a magnetic field parallel to the 
boundary, the trajectories of the electrons are deter
mined by the relation 

x=X +R,L cos cr, y=R,L sin If, z=Rn,lf. (2.4) 

Here X is the coordinate of the center of the electron 
orbit, and Rl, =R sinO is the radius of that orbit. The 
angles 0 and cp (0 is the polar angle in momentum space, 
cp varies in the range [-rr, rr]) are chosen so that 

nx=-sin e sin <p, nu=sin e cos <p, n,=cos e. 

The electrons are naturally divided into two groups in 
accord with the character of the trajectories, The 
"volume" electrons (trajectory I in Fig. 1) do not col
lide with the boundaries. In the plane z = const, their 
trajectories are circles of radius Rl, and the x coordi
nate of the centers X> Rl,o The second group of elec
trons, the "surface" electrons, have trajectories (types 
II and III in Fig. 1) which touch against the surface 
x = 0, and are incident on the boundary at the grazing 
angle 1jJ. For surface electrons, the value of X is con
nected with IjJ by the relation 
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(2.5) 

The boundary condition for the volume electrons is 
the condition of nonperiodicity: Xy(cp) = Xy(cp + 2rr). Keep
ing it in mind that X(r, t) = X(x) exp[i(k, r - wt)], we ob
tain the function Xy(x) in the form 

9 d ' ,,' " 
xv(x) =.1" I Q<P 6e (x+R I nxd<p"; <p') exp ( I1 d<p") , 

<-,. < • (2.S) 

v+i(kv-w) 1 I' 
.A"=[1-exp(-2nv)]-', 1=--Q--' v=z;-__ 1d<p. 

The distribution function of the surface electrons Xs 
depend on the properties of the surface. We shall de
scribe the reflectivity of the boundary phenomenological
ly in terms of the specularity parameter p: 

x,'(O) =PJ[. t (0) + (i-pho. (2.7) 

On the left side of this relation, we have the denSity of 
those electrons which were reflected from the boundary 
(the arrow t) at an angle cp = -?J;. It is connected with 
the density of electrons incident on the surface ( arrow 
t, cp = 1jJ) through the macroscopic "specularity coeffi
cient" p (0"'; p"'; 1). The second term on the right side 
of Eq. (2.7) is proportional to the fraction of diffusely 
reflected particles 1-p and contains the constant Xo 
which renormalizes the chemical potential of the elec
trons emerging from the boundary. 

Solving Eq. (2.3) by the method of characteristics 
and using the condition (2.7), we find 

"d ' i" " 

Xs(X)= I ~ BE (x+R I nxd<p"; <p') exp (S 1 d<p") 
-t ~ !II 

111 d ,,' cpr 

+[.A"(p,1jJ)-1] I ; 6E (x+RI nxd<p";<p')exp ( I 1 d'l''') 
-t ql q: 

+(1-p)xo.A"(p,1jJ)exp ( - j 1 d'l''). (2.8) 
-¢ 

The function 

determines the number of cycles of periodiC motion of 
the electrons with a given grazing angle 1jJ. We note that 
the use of the single symbol .A" in Eqs. (2.6) and (2.8) 
is not accidental. The trajectories of the volume elec
trons are exactly the same as those of the surface elec
trons which execute a complete rotation over the circle 
(1jJ = rr) and are specularly reflected from the boundary 
of the metal. It is therefore natural that Jf= K (1, rr). 

The constant Xo that enters into Eqs. (2.7) and (2.8) 
should be found from the condition of conservation of 
the number (energy) of incident and reflected electrons, 
i. e., the vanishing of the normal component of the elec
tric current j on the surface: 

The scheme for this calculation is quite simple and we 
will not give here the explicit but rather cumbersome 
expression for Xo. 

3. In conclusion of this section, we shall write out 
the general formulas for the absorption coefficient r. 
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In the calculation of the integral over x in (2.2), the 
contributions of the volume and surface electrons are 
separated. Since the volume electrons correspond to 
X> RJ. and the surface electrons to IXI <RJ.' it follows 
that a transition takes place on the characteristic Xo =RJ. 
(1 + coscp) from the value Xv (for x> xo) to the value Xs 
(for 0 '" x < xo)' In correspondence with this, the coeffi
cient r is represented in the form of the sum of the vol
ume and surface components: 

The component r v (after integration of the function Xv 
over x> xo) takes the form 

kR BB'" " 
r,.=.'r-Re .Ek-·_' IdS sin S exp[-(x.+x,)R.L1K I dq> 

23t a ~ Xa+X~ 0 _ll 

(2.10) . 
X I dq>' exp[ -y (q;-q;')-ik,R.L (sin q;-sin '1") -xaRc. cos <p-x,R,l. cos cr']. 
\ -~.~ 

(2.10) 

Here we have introduced the notation 

B = A"u,,·(O) 
• kuxl(O)eF(~A)'" 

The quantity :J is the coefficient of collision-free ab
sorption of volume sound, N. is the concentration of the 
electrons, PL is the density of the crystal, u;(O) is the 
amplitude of the x component of the potential mode of 
the sound field at the boundary, t = (A/e F )2 is the dimen
sionless constant of electron-phonon interaction, A 
(- e F) is the characteristic value of the deformation po
tential, and the constant A depends on the relation of 
the sound velocities, U] B" are the components of the 
dimensionless two-dimensional vector that character
izes the contribution to the interaction of the potential 
(O! = 1) and vortex (O! = t) sound modes. In obtaining Eq. 
(2.10), we have assumed that the factors B", do not de
pend on the direction of the electron velocity Vo 

If we expand the exponential in (2010), which contains 
the oscillating functions cp and cp', in a double Fourier 
series, and carry out integration over cp and cp', we ob
tain 

X t SdS sin SD (n+k,Rcose- ~) M,,(x.R.L)Mn(x,R.L)' 
'1=-0<> 0 

D(n+k,R cos O-w/Q) =:c' Re (Y+in)-'. (2.11) 

The "matrix elements" 

1 • 
Mn(x.R.L)=-I dq> exp[ -x.R.L(1+cos q;)+ik,R.L sinq;-in'l'l 

2n _l't 

k -x ) n/2 __ _ 

=exp(-x.R.L) (k:+X: J,,(rk,'-x.' R.L) (2012) 

describe the interaction of the electron with the field of 
the inhomogeneous Rayleigh wave, and In(q) are the 
Bessel functions. 

It is not difficult to establish the fact that the absorp
tion (2.11) does not depend on the sign of k z and there
fore we shall set k z > 0 everywhere in what follows. 

The initial expression for the absorption r s is ob
tained by substitution of X = Xs in Eq. (2.2) and integra-
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tion over x in the interval O<x<xo. Changing the order 
of integration over x and:p, and transforming from in
tegration over x to integration over 1fi with the help of 
the formulas (2.4) and (2. 5), we obtain 

(kR)' '\'1 I" I" I',=-iT-,-Re ,--B.B,· dSsinS d¢n,(",) 
!!:t a,tI (I 0 

¢ q: Ql tJ' 

X I dq; exp [ - (x. +x,) R I n, d<p" ] I dq>' exp [J d<p" (l- x•Rn,) ] 
_lj -~ -1/' Ql 

-p:TCl (kll)' .ER,B,;· Re I dS sin S I d¢ n,(>I') ,A"(p, ¢) 
'L.B 0 I) 

X v!{(xaR.i.' >I·)J{(x,u~. >I.)-(1-p):T" L,BaB, Re(P.P,G-'). 
(t.r. (2.13) 

In this formula, the matrix elements 

(2014) 

describe the interaction of the surface electrons with 
the sound on one turn of the trajectories of type II and 
III. The quantities P" and G have the following form 

11 :t 

P .=kR I dS sin S I d¢ nx(¢).K(x.R.L' ¢)K(p, ¢), 
o 0 

(2. 15) 

3. ABSORPTION BY VOLUME ELECTRONS 

1. The volume part of the absorption (2011) was 
studied in the work of the authors[2] in the case in which 
the sound wave was propagated perpendicular to the 
magnetic field (kz = 0). In such a geometry, 

It.E B.B' ~ ( W)., r,.=.'r- k--i.-lD n-- Tn , 
2 x.+x, Q 

0;,6 n=_oo 

. 
Tn·'=kR I dS sin SMn (x.R.L) M" (x,R.l.)' (3.1) 

o 

It is easy to estimate the quantity T: 8 by using the 
asymptotic expansion of the matrix elements. The 
maximum values of the functions Mn are achieved in that 
range of the parameters in which the argument of the 
Bessel functions entering into Eq. (2012) turns out to be 
less than the index. The principal term of the asymp
totic matrix elements at large values of the index n has 
the following form[6]: 

(-i)" 
Mn(x.R.L)= (2n)"[n'-(k,'-x.')R.L']' 

x -- exp -x.R.L+[n--(k, -x. )R.L-l ( k,-x. ) n/2 { • 2 , • ", 

k,+x. 

(k,'-x.')R.L' ]';'} 
-lnIArth[ 1- n' . (302) 

Using Eq. (3.2), we obtain the following asymptotic 
expression for the quantity T:8 for 1« I nl« I .?yR I : 

V2 (kR)"lnl" ( q.q, )';'c (k) k T 0;6 = - -- n Ii' qa = -, 
n "lk,RI'!' q.+q, x. 

f 1, n sgn k,<O 
C (1.-)= 

n Y l (k,-x,) n ( k,-x, ) " __ -- n sgn k,>O. 
k,+x. k,+x,' 

(3.3) 
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Formula (3. 3) gives the correct order of magnitude of 
the result -even for I nl'" 10 To estimate the component 
with n = 0, we must set I nl = 1 and Cn = 1 in Eq. (3.3). 

In the range of low frequencies w« v the quantity 
w/O in Eq. (3.1) can be neglected and only the compo
nent with n = 0 remains in the sum over n, The absorp
tion (3.1) in this case has a collisional character and 
is equal to 

(3.4) 

In the opposite limiting case of high frequencies 
w »v, the argument of the D functions in (3.1) vanishes 
upon satisfaction of the condition w = nO (n is an inte
ger). The absorption in this case undergoes periodic 
oscillations as a function of H- i , due to the acoustical 
cyclotron resonance (ACR) and, close to the resonance 
maximum, is described by the formula 

IT ( W )"\1 B.B' r,=£1-D n-- ,,-"k--Tn·'. 

2 Q ".+'" 
(3.5) 

a.' 
The effect of the nonuniform character of the surface 
sound wave appears in the decrease in the amplitude of 
the ACR relative to the case of volume sound. This de
crease is connected with the fact that only those elec
trons absorb the sound more effectively which do not 
leave the "skin layer" of the sound wave in the time of 
free flight. Such electrons are concentrated in the 
vicinity of the limiting points of the Fermi surface. 
Their relative number is determined by the value of 
T~a in (3.5). 

The surface character of the Rayleigh wave leads also 
to the appearance of a dependence of r v on the sign of 
ky which is described by the quantity Cn(k) from (3.3). 
Using the scheme shown in Fig. 2, we can note that for 
k 1 H all the resonance electrons have a smaller velocity 
relative to the sound wave on the upper portions of their 
trajectories if ky < O. It is this which explains why the 
absorption (3.5) at ky < 0 is larger than at ky> 0, 

2. We now consider the situation in which the vectors 
k and H are oriented at arbitrary angles. The charac
teristic width of the D functions near their maxima is 
determined by the quantity 

FIG. 2. Effectiveness of the interaction of volume electrons 
with the Rayleigh wave (view of the metal from above). The 
solid line denotes the upper portions of the electron trajector
ies, the dashed lines, the lower portions. 
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Ll (cos 0) ~ (kJ) -'. (3.6) 

If the angle between k and H is such that the parameter 
k8Z« 1, the D functions can be assumed to be indepen
dent of the momentum. The result for the absorption in 
this case turns out to be the same as for k 1 H. 

Upon satisfaction of the inequality 

k,l>l (3.7) 

the interval (3.6) is small in comparison with the inter
val of integration over e. However, the matrix ele
ments in Eq. (2.11) are also sharply peaked functions 
and their width under certain cases can compete with 
the width of the D functions. Using the asymptotic form 
(3.2), we can establish the fact that in the range 0 < e < 1f 

the functions Mn have at I nl < I kyR I two maxima whose 
locations are determined by the equality 

sin 8n =ln/k,,RI. (3.8) 

The characteristic width of the matrix elements near 
these maxima is of the order of 

(3.9) 

If I nl > I kyR I, then the matrix elements have a Single 
maximum in the range 0 < e < 1T, at e = 1f/2, the width of 
which is 

Ll (cos 0) ~ I nk,Jk i _'J,. (3.9') 

We consider the behavior of r v in the region of (3.7) 
as a function of the parameter k.R, assuming that its 
value changes due to change in the angle between the 
vectors k and H. 

Low frequencies, w« v. In the region 

\"fQ«k,R« 1 

the maxima of the D functions do not fall in the range of 
integration over e in (2,11). This enables us to remove 
the D function from the integral at the points of maxi
mum value of the matrix elements. The absorption in 
this case is essentially determined by the component 
with n=O, 

IT l: B B' Q't r,.=£1 -D(k,R) k-·-'-To"'-£1-(k,l}-', 
2 ".+'" kR 

(3.10) 
., 

and turns out to be smaller by a factor (k.l)2 than for 
k.=O. 

When the quantity k.R reaches the value kzR = 1, the 
maxima of the D functions in the components with n =± 1 
begin to enter the range of integration over e. This 
corresponds to the appearance near the limiting points 
of the Fermi surface of two groups of electrons, which 
satisfy the condition of Doppler-shifted cyclotron reso
nance kzVF =± O. At the moment of superposition of the 
maxima of the D functions and matrix elements, the 
absorption exhibits a sharp spike. A similar increase 
in the absorption takes place each time k.R reaches the 
next integer value. The characteristic feature of the 
low-frequency situation is that two components with 
n =± k.R are resonant simultaneously. This leads to 
the result that the dependence of T:a on the sign of ky 
does not appear in the absorption. 

The shape of the resonant spikes of absorption can be 
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w«v 

0, 

FIG. 3. Schematic diagram of the absorption curve r v in the 
low-frequency region, Qj=flr/kR, Q2=(flr)4/5/(kR)3/5. The 
region kllR~ (Q2/Qj)2 corresponds to the transition from the 
collisional absorption to collision-free. 

different, depending on the relations between the char
acteristic widths of the D functions and the correspond
ing spike of the matrix elements. If the matrix ele
ments are sharper than the D functions, the absorption 
turns out to be collisional and is described in the vicin
ity of the resonance spike, which appears at kliR = I nl , 
by the expression 

(3.11) 

The width of the collisional resonance peaks is t:.(k.R) 
.- 11/0, and their shape is Lorentzian. The absorption 
(3.11) has at maximum the order 

(kR)'J, 
fT IkyRI'I,QTlnl'I' 

(3.12) 

and increases with the number n (Fig. 3). Such an os
cillation picture can occur upon satisfaction of the in
equality 

k.R<.1 k,Rj /(kR) 'I'(QT)'!'. (3.13) 

It expresses the fact that the width of the matrix ele
ments (3.9) for I nl "" k.R is less than the width of the D 
functions (3.6). 

Upon further increase in k.R, when 

k.R> I k.R I l(kR) '!'(QT) 'I., (3.14) 

the D functions become sharper than the matrix ele
ments. This means that in the vicinity of (3.14) the D 
functions can be replaced by Ii functions, by formally 
setting II = O. The resonance absorption in this case 
becomes collision-free and is described by the formula 

k n B B' '\' ( ( n') 'I. ] rv=-fT-l:k-·-'-l... M" y..R 1---
k. 2 '.' x.+x, '''''h,R (k,R)' 

XMn[x,R(1- (k~~)')"']' (3.15) 

It should be remarked that in the low-frequency case, 
the parameter (Q2/Ql)2 = (kR)4/5(Or)"3/5, which describes 
the region of transition of the absorption from collision
al to collision-free in the scale of k"R, really does not 
become larger in comparison with unity. This means 
that for w« II, the volume absorption, even for not very 
large kllR, becomes collision-free and is described by 
the expression (3.15). 

The properties of the collision-free resonance peaks 
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can be analyzed by using the asymptotic form (3.2) for 
Mn. The maximum value 

r Vmax -fTkR/n' (3.16) 

of the absorption spike, corresponding to a component 
with numbers ± I nl is reached at kliR = I nl + Ii. The 
quantity 

1 Inl' 
{j= 

2 (kR)'-n' 

in the region of resolvability of the resonance spikes 
(see the inequality (3.18» is relatively small: Ii« I nl • 

The characteristic width of the collision-free peaks of 
absorption turns out to be of the order of 

il(k,R) -(kR) 'I'(MI nl )'1 •. 

Beginning with the values 

k,R;;> I k.Rt/(kR) 'I. 

(3.17) 

(3.18) 

the width (3.17) becomes greater than the distance be
tween the neighboring peaks. This leads to the result 
that the absorption coefficient becomes a smooth func
tion of the parameter kliR. 

In contrast with the collisional region (3.13), the 
peaks of the collision-free absorption have an asym
metric shape (see Fig. 3). The right-hand exponential
ly decreasing wing of the peak is cut up by the oscilla
tions of geometric resonance, which result from the 
oscillating asymptotic form of the Bessel functions in 
Mn (they are shown only in the middle part of the curve 
on Fig. 3). In the absorption of volume sound, a com

,bination of such geometric resonances led to aperiodic 
changes in the absorption coefficient. [7] In Rayleigh 
sound, these oscillations have an exponentially small 
amplitude. . 

The value of the absorption in the region (3.18) can 
be found by replacing the summation over n in Eq. 
(3.15) by integration. An important role in the integral 
over n is assumed by the large number of components 
t:.n- (k/k)5/2(kR)1I2 localized near 

no=-k;Rk,/k. (3.19) 

Using the asymptotic form (3.2), we find after integra
tion over n, 

n (k.R) 'J, ( q.q, ) 'I, r vmon=fT --- '\' B.B,' -- . 
4 kR l... q.+q, .. ' 

(3.20) 

The fact that, out of all the components in the sum 
over n of (3.15), the terms with n"" no turn out to be sin
gled out is due to the coincidence of the maxima of the D 
functions and of the matrix elements for these compo
nents. Actually, if we substitute the value of en from 
(3.8) in the argument of the D functions, then this argu
ment vanishes for n = no' It is not difficult also to estab
lish the fact that for electrons with polar angle en on the 
upper part of their trajectories (cp =± 1T) the phase rela
tion k . V I ~ =u = 0 is satisfied. These electrons move in 
the skin layer along the front of the sound wave (see 
Fig. 2) and absorb its energy most effectively. 

Highjrequencies, w» II. In the previous section, it 
was established that the appearance of resonance max-
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ima in r v is connected with the circumstance that new 
resonance groups of electrons appear on the Fermi sur
face near the limiting points. In the quasistationary 
region (w« v) such groups appear simultaneously at 
both limiting pointso At high frequencies, under condi
tions of resonance absorption, it is necessary to take 
into account the contribution win. It leads to the re
sult that, upon a change in the parameter keR, new 
resonances appear at the alternating limiting points. 
The oscillation peaks of the absorption r v(kzR) are 
split by a value win. If win> 1, then the splitting of a 
given maximum is greater than the distance between the 
neighboring low-frequency peaks. 

We nOw consider in more detail the dependence of r v 
on IlzR for w> v. From a comparison of the widths of 
the functions D and M., it is not difficult to establish 
the fact that the boundary between the collisional and 
collision-free absorption is located at 

\k.Rl 
".f{~' = (3 21) . " (kJl)"(~h)" 0 

just as for sound of low frequency. Thus, upon satis
faction of the condition (3.13), the absorption is de
scribed by the formula 

:t ~ B.B,,:;" [( W ) ( (0' )] r,.~·.T-,-,l k----- >, T,:" D II+!.-)I-- -I-D n-",/I-·--- . 
I "'-...I %,< 1·%,..... n u 

'ti" 

(3.22) 

It is seen that, for keR = \ n - wlnl, sharp absorption 
peaks appear which have a symmetric shape with width 
to (!lzR) - vln, just as in the previous case. 

It is clear from the scheme shown in Fig. 4 that it is 
convenient to regard the system of resonance spikes as 
a superposition of two equidistant series; the first with 
n> win and the second with n < win. The amplitude of 
the peaks in these two series behaves in essentially dif
ferent fashion. If Ily < 0, then the amplitude of the spikes 
in the first series increase with number as nil 2. The 
amplitude of the peaks of the second series initially 
falls off in proportion to nl/2 and at distances !?zR> win 
begins to decrease exponentially (see Fig. 5). If ky>O, 
then the spikes of the first series lose amplitude expo
nentially with the number. The growth of the spikes of 
the second series is at first exponential and then ac
cording to the law I nl 1/2 at kzR > wn. Naturally, one 
can speak of the two subsystems of spikes only in the 
case in which the two neighboring peaks are separated 
by a distance that exceeds their total width, i. e. , 
to >: vln (to is the fractional part of the quantity win)" 

The fact that the amplitudes of the spikes in both se
ries are determined by the direction of propagation of 
the sound wave relative to H (the sign of k) is explained 
in the following way. It is seen from Fig. 2 that the 
resonance electrons with liz < 0 (the first series of 
spikes-the dashed envelope) move in phase with the 
sound wave at !?y>O on the lower part of their trajec-

-I 0 N wi J? 
I I I 

FIG. 4. 
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FIG, 5. Schematic dependence of the absorption r von the 
mutual orientation of the vectors k and H in the case w» v, 
Q3 Nt/2(kR)-tD(t.) , Q3max N t/2(kR)-tflT, Q4 ~ Q3[(q + 1)/ 
(q -1) r 2N, N is the integral and to the fractional part of the 
quantity w/fl, q 1</% > 1. 

tories. These parts are far removed from the surface 
of the metal, and the amplitude of the sound wave there 
is small. For electrons with v z> 0 (the second series, 
dot-dash envelope) the situation is more favorable. 
They move in the phase plane of the wave on the upper 
part of the trajectories, where the amplitude of the 
sound field is large. Therefore, for !?y>O, the peaks of 
the second series are higher than those of the first. 
For a change in the sign of !?y, the situation changes to 
the opposite. 

With further increase in the parameter keR, when 
.'lzR>?:, the absorption becomes collision-free. In this 
region, the amplitude and shape of the peaks change ac
cording to the same laws (3. 16) and (3. 17) as for the 
low-frequency oscillations. The expression (3. 20) for 
r v mon also remains valid in the region (3.18), where 
the spatial dispersion leads to a broadening of the reso
nance peaks. 

3. It is also of interest to study the peculiarities 
of the volume absorption as a function of the quantity H 
at fixed orientation. The resonance Singularities of r y 

as a function of the parameter !?zR, which now changes 
because of the magnetic field, are described by the 
same formulas as in the case of a change of k/k. The 
picture of the absorption of low-frequency sound, rep
resented in the third drawing, remains the same as be
fore in this case. As to the high-frequency sound, since 
the relation between keR and win is given only by the 
orientation and is fixed, the following picture will be 
observed here. For kz<wlv, (i.e., kzR<wln, see 
Fig. 4) only the components with n> win will remain 
resonant with increase in keR. Consequently, only a 
single subsystem of resonances should be observed on 
the plot of r y{keR) in this case. If ke> wlv, a second 
subsystem appears; however, the spikes of the subsys
tem with n> win will be more frequent, because of the 
fact that the quantity win increases simultaneously with 
!?zR. 
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4. ABSORPTION BY SURFACE ELECTRONS 

The contribution of surface electrons to the damping 
of Rayleigh sound is described by the expression (2.13). 
The components in (2.13) will be numbered by the in
dices 1,2,3 in order of their location. 

1. In the region of strong spatial dispersion (1.1), the 
characteristic dimensions of the trajectories of the 
surface electrons significantly exceed the depth of pene
tration of the sound wave. Therefore, most of such 
.electrons effectively interact with the sound over a 
small portion of its trajectories near the points of col
lision with the boundaries of the metal. Exceptions are 
the so-called grazing electrons, whose trajectories 
(type nI) are contained entirely in the sound skin layer. 
However, as will be shown, the contribution to the ab
sorption from such electrons cannot be taken into ac
count. 

Because of the presence of the factor 

• 
exp ( -xR S nx dcp' ) -. 

in the integrals over cp and cp' and the matrix elements 
"" ('KR.I.' l/!) in (2.13), the principal contribution to the 
asymptotic form of r 5 is made by the ends of the inter
vals of integration. This is valid for not too small 
angles l/!: 

",>(XR.c)-'I., (4.1) 

which correspond to trajectories of electrons which 
penetrate from the surface to a depth much greater 
than the thickness of the skin layer. This contribution 
for the integrals over cp and cp' from r 51 is the follow
ing: 

• • 
S dcp S dcp' ... = 

-t -t 

• 
+exp (- S ydcp )[y+xaRnx(",)]_I[l+x,Rnx(",)]_I. (4.2) -. 

Similarly, the asymptotic form of the matrix elements 
entering in r 52 and r 53 has the form 

• 
.L(xaR.c, 1/')= ~{[y-xaRnx("') ]-I_exp (- S Y dcp) [y+XaRnx(",) ]-'}. 

~ ~. 
(4.3) 

Substituting (4.2) and (4.3) in (2.13), we can repre
sent the quantity r 5 in the following form: 

rs=rs(O)+~rs(H). 

The quantity r 5 (0) is the absorption for H = O. It is de
termined by those components with asymptotic forms 
(4.2) and (4.3) which do not contain the factor 

• 
exp ( - S Y dq; ) . 

(4.4) 
-, 

Since all the electrons collide with the boundaries of 
the metal at H = 0, i. e., they are surface electrons, 
the value of r 5 (0) is equal to the total absorption coef
ficient of Rayleigh sound in the absence of a magnetic 
field reO): 

L ( k k ) al'ctg(qa'-I)' 
r(O)""r.(O)=g"' Re(B..B,·) --+ p-- qa '1) , 

Xa+X' x,-xa \qa -a.' 
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+(I-p).T{1BaB,· qaq, -.T. 
~ (q,+ 1) (qa+ 1) 

(4.5) 
a,' 

The quantity .1r 5(H) is represented in the form of a 
sum of three components. Two of them, .1r 51 (H) and 
.1r 52(H), after substitution of the expressions (4.2) and 
(4.3) in the corresponding components of Eq. (2.13) and 
some transformations, take the form 

, 
kR {1 Re(B..B.) J 

~r Sl (H) +~rS2 (H) =pg"' -2 .t..J k Re de sin e 
n a,li xj!-xa. 0 

S' (S·) [ (x,-x.) I (x,+x.) +p 
X d¢exp - ydq; .K(p,¢) . R 

)'-%" nx 
il _II: 

_ (x,-Xa)/(X,+Xa)+p_I], 

y+xaRnx 
(4.6) 

The third component, .1r 53(H), is obtained as follows. 
Using the asymptotic form (4.3), we can represent the 
quantities P a and G (see (2.15» in the form 

Pa=Pa(O) +I1Pa(H) , G=G(O)+~G(H); (4.7) 

qa 
P a (0) =- qa+l ' G (0) =-n, 

j,P a (H) = :R J de sin e J d¢ nx (¢) exp ( - J y dcp ) 
_n 0 0 _lj: 

.. . 
~G(H) =-(l-p) S de sin e S d¢ nx(¢)exp ( - S Y d<f) .K(p, ¢). 

o 0 -It 

(4.8) 
The presence in Eqs. (4.8) of the oscillating exponential 
(4.4) leads to the result that 1.1 P a (H) 1 « 1 1" .. (0)1 and 
1 .1 G(H) 1« 1 G (0) I. This allows us to keep in A r 5 3(H) 
[by substituting the quantities p .. and G in the form 
(4.7) in Eqs. (2.13)] only the terms of first order in 
A Sl'a(H) and .1G(H). The value of .1r53(H) is thereby 
represented by the relation 

~rs3(H)=-2(I-p)g"' ERe(BaB,) (qa+~;~~,+1) 
a,a 

[ qa+1 1 ] XRe --~Pa(H)--?-!;'G(H) . (4.9) 
qa _It 

2. We proceed to the asymptotic calculation of 
.1r 5(H). As is seen from Eqs. (4.6) and (4.9), the 
quantity .1r 5 (H) is determined by the factor .N' (p, l/!) 
(see (2.9», which depends on the character of the scat
tering of electrons by the boundary of the metal. The 
presence in the expansion of .K'(p, if!) of the rapidly-os
cillating exponent 

leads to the result that the principal contribution to the 
integral over if! is made by the stationary-phase points 

kV(lI', e) =0), (4.10) 

In addition to the oscillating exponentials, Eqs. (4.6) 
and (4.9), the factors contain 

(4.11) 
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These factors are equal in magnitude to the relative 
"lifetime" of the electron in the skin layer. In the cal
culation of the asymptotic form, these factors can be 
assumed to be smooth functions in comparison with the 
oscillating exponent if the point of stationary phase falls 
in the allowed region of angles (4.1). 

The calculation of integrals over 8 is also carred out 
by the stationary phase method. The point of stationar
ity in the integrals over 8 is determined by the equation 

() . 
as S ,dq;=O, 

-t 

(4.12) 

which is the condition that the displacement of the elec
tron along the wave vector of the sound be extremal in 
the time between successive collisions. 

The set of equations (4.1) and (4.12) determines the 
points of stationary phase of the exponential (4.4) in the 
two-dimensional region 0 < l/!, fj < 7T. There can be two 
such points in the region of integration. One of them is 
l/! = 0, and 8 is a solution of Eq. (4.10). This point cor
responds to grazing electrons for which the condition 
(4.1) is violated; therefore, the contribution from it 
will be discussed below. 

The second solution is the point (l/!o, 80), l/!o* 0 and 
corresponds to electrons with maximum displacement 
along the direction of propagation of sound. This solu
tion exists for not all values of the parameters. It is 
simplest to demonstrate this in the case of low-frequen
cy sound w« Y. Excluding the angle 8 from Eqs. (4.10) 
and (4.12), we obtain an equation for the determination 
of l/!o: 

/(1jl,)"'1jl.-1 sin 1jl. cos 'i,.=-k,'lk,'. (4.13) 

It is seen from this that the solution l/!o, if it exists, lies 
in the interval 7T /2 < l/!o < 7T, which corresponds to elec
trons with the x coordinate of the center in the depth of 
the metal. However, if the ratio k~/k~ exceeds the value 

:::=max If('I') I "'-O.21i, ::t/2<1j"<::t, 

the quantity (4.13) will not have a solution. 

.1"11/' 
:T12 

0. 

I In n!+! 11 

d." ,-------------, 
d'l 
1011 

211 

° -107119 

FIG. 6. Shape of the lines of resonance oscillations of sound 
absorption by surface electrons and their derivative as a func
tion of the inverse magnetic field. The dot-dash lines corre
spond to p = 1, the solid lines to p = O. 8, the dashed lines to 
p=O; n is an integer, positive or negative. 
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FIG. 7. Characteristic trajectory of resonance electrons 
which enter into the oscillations of the absorption (4.14): 
a-in the plane z =const, b-in the plane of the boundary of 
the metal. 

Thus, the set of Eqs. (4.10) and (4.12) can be solved 
relative to (l/!o, 80) in a limited interval of angles be
tween k and H. In the case considered of a spherical 
Fermi surface, the maximum angle of departure of the 
vector k from the direction perpendicular to H, when 
the point (l/!o, 80) still exists, is equal to 25°. 

We now consider the case in which the points (l/!o,80) 

exists. Calculation of the integrals over l/! and 8 gives1) 

( 2t,v) 
~l's(H,t"e,)=g-(2k.R)-lexp -~ g""(ll) 

x~B"B~' ~¢:' {(1+P)'+(1-p)Sille,sillljl, 
~ SIll-t, 2 
".' 

(Hp) (2+q¢+q,)+2(1-p)Sine.Sillljl,} 
X , 

(q¢+1) (q~+1) 

(4.14) 

The function 
11 sin 2111] 

g""(I])=p-larctg ? (4.15) 
1-pcos -"I] 

describes the absorption-coefficient oscillations that 
are periodiC in the parameter 1). The quantity p in Eq. 
(4.15) is the renormalized specularity coefficient: .. 

1I==jl(to)=pexp(- S ~ d<p). (4.16) 
-.. 

Figure 6 shows the function g:-(1) and its derivative 
dfld1) for various values of the parameter p. The sen
sitivity of the shape of the resonance curves to the quan
tity 'P makes the measurement of the absorption coeffi
cient of surface sound a convenient method of direct de
termination of the specular coefficient p. The change 
in 'P manifests itself most strongly in the derivative 
d.r/d1) , which reaches at 1) =n (n an integer) a maximum 
value equal to 27T(1 _ 'Ptl. 

The occurrence of oscillations of the absorption (4.14) 
is explained in the following way. The quantity K(p, If;) 
reaches a maximum for 1)(l/!, 8) ;n, i. e., for 

(4.17) 
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The bar indicates averaging over a single cycle of the 
motion of the surface electron with given grazing angle 
I/i, n(l/i) =Orrl1/! is the frequency of this periodic motion. 
The relation (4.17) is no other than the condition of 
Doppler-shifted cyclotron resonance for the surface 
electron. The Doppler shift of the frequency in (4.17) 
is due to the drift of such an electron along the surface. 

The decrease in the absorption amplitude (4.14) in 
comparison with reo) is due to two circumstances. One 
of them is connected with the condition (4.10) of in-

. phase motion of the electron with the surface wave. 
The other is the choice of electrons with extremal shift 
along the wave vector k (the condition (4.12». Each of 
these mechanisms of selection has an "effectiveness" 
I kyR I -1/2, as a result of which the relative amplitude 
of the oscillations (4.14) turns out to be of the order of 
(k yR)"I. 

Thus, the reason for the resonance oscillations (4.14) 
turns out to be the Doppler-shifted cyclotron resonance 
sound absorption of a small group of electrons. The 
characteristic trajectory of the resonance electrons for 
specular reflection from the metal boundary is shown in 
Fig. 7. 

It must be emphasized that the constancy of the quan
tity p, which is used in obtaining Eq. (4.14), is not 
strictly necessary. It is sufficient that the specular co
efficient be a relatively smooth function of the angle of 
incidence of the electrons on the surface of the metal. 
This conclusion follows from the fact that the oscilla
tions described above are due to a small group of elec
trons. The quantity p corresponding to these electrons 
also enters into (4.15). The angle of incidence of the 
resonance electrons on the surface of the metal (we de
note it by ,9) is connected with l/Jo and 80 by the relation 

sin ~=sin 1j;0 sin 80 

and can vary upon change of the mutual orientation of 

110 Sov. Phys.-JETP, Vol. 43, No.1, January 1976 

the vectors k and H (for a spherical Fermi surface, 
within the limits 28 0 <,9 < 900 ). 

3. It was noted above that, along with the solution 
(1/!0,80) of Eqs. (4.10) and (4.12), there exists a solution 
with 1/! = 0, corresponding to electrons glancing inside 
the skin layer. It is quite evident that the contribution 
of such electrons to the absorption is a nonoscillating 
one, since the change in the phase of the Rayleigh wave 
over one cycle of its motion is proportional to 1/! and 
does not have a definite, non-zero value. Since the co
efficient r s (0) is determined by all the values of 1/!, the 
monotonic contribution due to the glancing electrons 
will obviously be small with smallness of the corre
sponding angles 1/! and will not exceed rs(O) (kR)"I/2 
(the quantity cp - (k R)-1/2 is the fraction of the glanCing 
electrons whose trajectories fit inside the skin layer). 
Thus, we can neglect the absorption due to the glancing 
electrons. 

tJrn the particular case k 1. H, this result was published by the 
authors in a short communication. (3) 
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